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This paper will present various techniques for visualizing a split real even E8 representation
in 2 and 3 dimensions using an E8 to H4 folding matrix. This matrix is shown to be useful in
providing direct relationships between E8 and the lower dimensional Dynkin and Coxeter-Dynkin
geometries contained within it, geometries that are visualized in the form of real and virtual 3
dimensional objects. A direct linkage between E8, the folding matrix, fundamental physics particles
in an extended Standard model, quaternions, and octonions is introduced, and its importance is
investigated and described.
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FIG. 1: E8 Petrie projection

I. INTRODUCTION

Fig. 1 is the Petrie projection of the largest of the exceptional simple Lie algebras, groups and lattices
called E8. It has 240 vertices and 6720 edges of 8 dimensional (8D) length

√
2. Interestingly, in addition

to containing the 8D structures of D8 and BC8 (aka. the 8 demicube or alternated octeract), E8 has
been shown to fold to the 4D Polychora of H4 (aka. the 120 vertex 600-cell) and a scaled copy H4/ϕ,

where ϕ = 1
2

(
1 +
√

5
)

is the Golden Ratio[10][20]. Fig. 2 shows the folding orientation of E8 and D6
Dynkin diagrams above the H4 and H3 Coxeter-Dynkin diagrams (respectively).

The 600-cell is constructed from the combination of the 96 vertices of the snub 24-cell and the 24
vertices of the 24-cell shown in Fig. 3. The 24-cell is self-dual and contained within both F4 and the
triality symmetry of the D4 Dynkin diagram. It is interesting to note that it is constructed from the
16 vertices of the BC4 tesseract (or 8-cell or 4-cube) and the 8 vertices of it’s dual, the 4-orthoplex (or
16-cell). All of these polychora can be found within E8 with the excluded 8-orthoplex. The snub 24-cell
is constructed from even permutations of {ϕ, 1, 1/ϕ, 0}. Also shown in Fig. 3 is the dual of the 600-cell,
namely the 120-cell with 600 vertices and a trirectified H4 Coxeter-Dynkin diagram (i.e. the filled node
is moved to the other end).
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FIG. 2: E8 and D6 Dynkin diagrams in folding orientation with their associated Coxeter-Dynkin
diagrams H4 and H3

FIG. 3: 4D Polychora

H4fold =



ϕ2 0 0 0 1/ϕ 0 0 0
0 1 ϕ 0 0 −1 ϕ 0
0 ϕ 0 1 0 ϕ 0 −1
0 0 1 ϕ 0 0 −1 ϕ

1/ϕ 0 0 0 ϕ2 0 0 0
0 −1 ϕ 0 0 1 ϕ 0
0 ϕ 0 −1 0 ϕ 0 1
0 0 −1 ϕ 0 0 1 ϕ


(1)
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a) b) c)

FIG. 4: The 6-cube a) Petrie projection b) 3D perspective c) rhombic triacontahedron

a) b)

FIG. 5: H4 600-cell 2D projections: a) Van Oss (or Petrie), b) orthonormal

The specific matrix for performing this folding of E8 group vertices was shown[16] several years ago

to be that of (1). Notice that H4fold = H4Tfold such that it is symmetric with a quaternion-octonion
Cayley-Dickson like structure. Only the first 4 rows are needed for folding E8 to H4, but the 8×8 square
matrix is useful in the rotation of 8D vectors by taking its inverse.
E8 also contains the 6D structures of the 6-cube or hexeract as shown in Fig. 4. It has been shown

that using rows 2 through 4 of H4fold projects the 6-cube[1] down to the 3D Rhombic Triacontahedron[3].
This particular object is interesting in that it contains the Platonic solids including the icosahedron and
dodecahedron, and has been used to describe the ϕ related geometry leading to quasicrystals[2].

x = {0
(
1 +
√

5
)

Sin
[
π
30

]
0 1 0 0 0 0 }

y = {
(
1 +
√

5
)

Sin
[
π
15

]
0 2Sin

[
2π
15

]
0 0 0 0 0 }

z = {0 1 0
(
1 +
√

5
)

Sin
[
π
30

]
0 0 0 0 }

(2)

X = {0 0.33821 1.2095 0.61803 0 −0.33826 −0.79094 0.61803}
Y = {1.08863 0.50275 0 0.81347 −0.25699 0.50275 0 −0.81347}
Z = {0 1 0.95629 0.20905 0 −1 0.27977 0.20905}

(3)

Projection E8 to 2D (or 3D) requires 2 (or 3) basis vectors {X, Y, Z}. We start with (2), which are
simply the two 2D Petrie projection basis vectors of the 600-cell (aka. the Van Oss projection) as shown
in Fig. 5 a), with a 3rd z basis vector added for the 3D projection. Notice the 8D basis vectors with
zero in the last 4 columns (or dimensions).

The E8 projection basis (3) is obtained by {X,Y, Z} = 4∗H4−1
fold.{x, y, z}. On one face (or 2 of 6 cubic

faces, which are the same), they project E8 to its 2D Petrie projection shown in Fig. 1. On another face
of this particular 3D projection is what would be found on all 6 faces of an orthonormal projection to
3D of the H4 600-cell combined with a scaled H4/ϕ, shown in 2D on Fig. 5 b) and in 3D in Fig. 6.
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a) b)

FIG. 6: E8 projection showing H4 and H4/ϕ orthonormal face orientation in 2D and 3D perspective.
Only 1220 of 6720 edges are shown in order prevent occlusion of vertices in 3D.

FIG. 7: E8 Dynkin diagram with Cartan, Schlafli, and Coxeter matrices

E8srm =



1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
− 1

2 −
1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2

0 0 0 0 0 1 1 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0


(4)

There are several choices for the form of E8, whether it be complex or split real (even or odd). For
the purposes of this work, the form selected is split real even (SRE). While the basic topology of the E8

Dynkin diagram is unique, it has 8!=40320 permutations of node ordering. The node order used here is
given in Fig. 7. The 240 specific E8 group vertex values are determined from the simple roots matrix
E8srm shown in (4). The resulting Cartan matrix and generated algebraic roots are directly dependent
on these as inputs.
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FIG. 8: SRE E8 construction from Pascal Triangle, Cl8 Clifford Algebra and binary permutations

FIG. 9: Particle flavor counts given quantum number assignments

E8Cartan = E8srm.E8Tsrm (5)

E8SREvertex = E8Tsrm.E8root (6)

The Dynkin diagram was constructed as user input with the Mathematica “VisibLie” notebook. Fig.
7 was generated and exported from the referenced tool, as are all of the figures in this paper. It has
the same node ordering as the E8 Dynkin used in Fig. 2, but is now shown with the assigned physics
particles with SRE E8#{206, 194, 184, 176, 1, 169, 170, 166} that make up the simple roots matrix row
entries of (4). The Cartan matrix can be generated directly by the structure of the Dynkin diagram
or from its relationship to the simple roots matrix (5). The positive E8 algebra roots are generated by
the Mathematica “SuperLie” package and listed in Fig. ?? along with its Hasse diagram in Fig. ?? of
Appendix A. The 120 positive and 120 negative algebra roots are then used to generate the SRE E8

vertices using (6).

E8 GraviGUT Extended Standard Model Construction

Lisi has proposed an extended Standard Model (SM) GraviGUT based on an E8 Lie Algebra with a
fundamental physics particle associated with each of its 240 roots[11]. While the particle assignments
were modified from his original model to his current model[12], the model used here is closer to the
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FIG. 10: Particle flavors in row / column groups with boson {group} coloring based on Lie group
assignments (F4F4F4 ,,, F4

sF4
sF4
s, D4&G2,, D4&G2,, D4&G2, G2

sG2
sG2
s)

original. It is modified slightly in order to create a complete 8-bit quantum pattern consistent with
Figures 9 and 10. The complete E8 vertex to particle and octonion assignments are listed for reference
in Figures ?? through ?? of Appendix B. The construction of this model is based on the 256 = 28 binary
pattern from the 9th row of the Pascal triangle {1, 8, 28, 56, 70, 56, 28, 8, 1} and its associated Cl8
Clifford Algebra, shown in Fig. 8.

In this model, the 16 particles associated with columns 2 and 8 of the 9th row of the Pascal triangle
{8, 8} are excluded as dimensional generators from the permutations of {±1, 0, 0, 0, 0, 0, 0, 0}. These
excluded particles are associated with the 8-orthoplex (dual of the 8-cube with 256 vertices). While the
positive generators are added to the “dimension count” of E8, they are not included as vertices per se,
but they do show up in the projections as the axis of the basis vectors. This leaves E8 with its 120
positive roots and 120 negative roots in the other 7 columns of the Pascal triangle.

The SRE E8 roots are defined by combining the 112={56, 56} integer roots of Lie group D8=SO(16)
with 128={1, 28, 70, 28, 1} half integer roots of Lie group BC8=Sp(16). Specifically, D8 contains all
permutations of {±1,±1, 0, 0, 0, 0, 0, 0} and BC8 contains all permutations of {±1, ±1, ±1, ±1, ±1, ±1,
±1, ±1}/2 with an even number of plus signs (an 8 demicube or even 7-cube).

There are 48 assigned D8 integer bosons and only 128 C8 half-integer vertices available. Yet, with
192 = 64 ∗ 3 generation fermions in SM, the meaning or validity of assigning a generation of fermions to
the remaining 64 D8 integer vertices has been hotly debated[7]. In this model, the remaining 64 integer
vertices are assigned to the 2nd generation fermions. For a complete reference of particle assignments,
see Appendix B.

The specific particle assignments are determined by the configuration of the particle {spin, color,
generation, flavor and type} and the patterns within E8. The particle type {e, νe} or {u, d} and spin

{∨L, ∧R, ∧L, ∨R} are assigned or encoded in the positions or dimensions {1, 2, 3, 4} of each E8 vertex. The
generations are encoded in position {5}, and color in positions {6, 7, 8}. The antiparticle operation is
simply the negation of the E8 vertex (or in the binary representation “inverted” 0⇔ 1 as shown in Fig.
8). It should be noted that although the positive roots of the algebra are not all assigned as “particles”,
the negation of the root does represent the “anti” particle operation on the assigned particle. The charge
calculation for the particles is obtained by Q = E8SREvertex.{0, 0, 0,−3, 0, 1, 1, 1}/3. This provides
accurate results for the generation 0 bosons and 1st and 3rd generation fermions. It shows interesting
deviations for some of the 2nd generation fermions that have been assigned to the D8 integer vertices.

It is also helpful to note that the entire binary and SRE vertex list (as constructed in Fig. 8 and listed
in Appendix B) is lexicographically ordered from negative to positive with a left-right and bottom-top

mirroring about the middle, between the 128th and 129th of 256 vertices, which are the
∧
R tau neutrinos

ντ and ντ . Also of interest are the first and last vertex particles which are rows {1, 9} of the Pascal

Triangle with all 0 or all 1/2 entries. These are the
∧
R electron neutrinos νe and νe. This integrated

model aligns well with the idea that it is associated with (T)ime reversal in the Charge-Parity-Time
(CPT) conservation laws and points to the special consideration needed for the right handed neutrinos
in the SM.

II. THE QUANTUM BIT-WISE PARTICLE ASSIGNMENTS

E8 Dynkin3 bit =


3bit =3bit =3bit = 0 1
4 = 22 g0g0g0 Boson Fermion

Gen 0-2 Gen 1-3
2 = 21 ppp e/d ν/u
1 = 20 aaa p p̄

 (7)
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The 1:1 bit-wise correspondence of a particle’s quantum number assignments is a
big-endian (left most significant) zero-based 8 dimensional vector {7-0}. The assign-
ments are {1 antiparticle bit={aaa}(p/p̄), 1 ptype bit={ppp}(e/ν leptons or u/d quark), 2

color bits={c1, c0}(w=0 or none/r/g/b), 2 spin bits={s1, s0}(∨
L,

∧
R,

∧
L,

∨
R), and 2 generation

bits={g1, g0g0g0}(0=bosons/e/µ/τ)} or simply {a, p,a, p,a, p,s1, s0, c1, c0, g1,,,g0g0g0}. The boldboldbold type face in-
dicates quantum assignments which are not only allocated to an SRE E8 vertex dimension as described
above, but are exhibited in the inherent structural symmetry of the E8 algebra, group or lattice. These
boldboldbold bits are used to define the 3 bit structure of (7) associated with the E8 Dynkin diagram in Fig. 7.

Physicsrot =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1√

2
− 1√

2
0 0 0 0

0 0 1√
2

1√
2

0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1√

3
1√
3

1√
3

0 0 0 0 0 − 1√
2

1√
2

0

0 0 0 0 0 − 1√
6
− 1√

6

√
2
3


(8)

Fermionic Trialityrot =
1

2



−1 1 1 −1 0 0 0 0
−1 1 −1 1 0 0 0 0
−1 −1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 −1 −1 −1 −1
0 0 0 0 1 1 −1 −1
0 0 0 0 1 −1 1 −1
0 0 0 0 1 −1 −1 1


(9)

Bosonic Trialityrot =
1

3



3 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0
0 3 0 0 0 0 0 0
0 0 −3 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −2 −1 2
0 0 0 0 0 2 −1 −1
0 0 0 0 0 −1 2 −1


(10)

As already described for the E8 vertices, the {aaa} bit splits the 128 particles from 128 anti-particles.
The {g0g0g0} bit splits the generation 0 boson family of 128(=112 integer roots of D8+16 excluded integer
roots of the 8-orthoplex) from the 128 half integer root (and half integer spin) of C8 fermions. The {ppp}
bit splits all particle families into two types, referenced in the leptons as electron and neutrino types,
while the quarks are designated by up and down types. It splits the integer bosons into 2 types as well,
which is a key feature of this model over the original Lisi model.

These differences are most easily seen in the 8 × 8 rotation matrix used for transforming SRE coor-
dinates to physics coordinates (8) and those matrices used in identifyingfermionic (9) and bosonic (10)
triality transformations. Just as the E8 to H4 folding matrix has symmetric quaternion quadrants in the
octonion matrix, the phyics and triality rotation matrices are divided by an upper left quadrant affecting
the SRE {1-4} spin positions and a lower right quadrant affecting the SRE {5-8} generation-color posi-
tions. As a matter of fact, the physics rotation clearly operates on the SRE E8 vertices by pairing them
into 4 sets, specifically ptype {1,2}, spin {3,4}, generation {5,6} and color {7,8}. This physics rotation
is more dramatically shown in the next section on triality.

Visualizing this E8 based physics model by projection to 2D and 3D with vertex shape, size and
color assigned based on the described patterns is now possible. Using the direct relationship to lower
dimensional geometry symmetries provided by the folding matrix provides the flexibility to select the
contents of the visualization based on the quantum physics parameters of the model and not just the
math of the geometry. A few examples are shown in Fig. 11.
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FIG. 11: E8 showing the Petrie projection face orientation in 2D and 3D persepective with vertices as
physics particle assignments. Vertex shape, size, color/shade are assigned based on extended Standard
Model particle assignments. Only 1220 of 6720 edges are shown in order prevent occlusion of vertices in

3D perspective.

Triality Relationships

The Lisi model also demonstrates a consistency with the bosons and fermions that is related to the
triality relationships within E8. This is shown in Fig. 12 with blue triality lines linking the 3 generations
of each fermion using (9). Applying the triality rotation matrix as a dot product against an SRE vector
gives the 2nd generation fermion particle. Applying it again gives the 3rd generation. Applying it a 3rd
time returns to the 1st generation fermion. The bosons are also involved in triality relationships as well
using (10), rotating through red, green, and blue particle color assignments.

It is interesting to note that the quarks {r/g/b, p/p̄} are all located on 6 corresponding dual concentric
circles around the center. The leptons are hexagonal “Star of David“ patterns in the center, while the
bosons are in single or dual hexagonal rings radiating from the center.

Trialitybasis

H = { 2− 4√
3
, 0, 0,

√
2−

√
2
3 , 0, 0 ,

√
2, 0 }

V = { 0, 4√
3
− 2,

√
2
3 −
√

2, 0, 0, 0, 0, −
√

2 }
(11)

The axis shown in Fig. 12 are rotated to physics coordinates using (8), which puts the basis vectors
(11) on the projected (H)orizontal and (V)ertical axis. It seems to clarify dimensional identities as well.
For example, when the {1, 2, 3} dimensions are moved (i.e. using axis locators in the tool), all vertices
change positions except the ptype=0 bosons {g gluons, xnΦ}. Moving dimension {4} preserves these

as well as the
∧
L and

∨
R quark positions. Moving the dimensions {5, 6} preserves these, except now the

row 4 ptype=0 bosons {xnΦ} emerge from the 6 triple overlap points at center of the quark’s concentric
rings (the intersection of the gluons triality lines). And finally, the {7, 8} dimensions in physics can
be identified with quark color, as {7} preserves the blue quark positions, while {8} moves the dual
concentric rings of quarks while preserving their relative positions within the rings. It is interesting to
note that the dimensions {6, 7, 8} are appropriately labeled {r, g, b} in SRE coordinates, since in this
projection the SRE math coordinates are located at the afforementioned 6 triple overlap points at center
of the quark’s {r̄, g, ḡ, b, b̄} concentric rings (the intersection of the gluons triality lines).

III. E8 TO H4 FOLDING’S APPLICATION TO THEORETICAL PHYSICS

H4fold provides a new and more direct relationship between E8 and its lower dimensional geometric
objects such as H4. This has allowed for improvements to E8 related physics models, such as those of
Lisi[11]. This theoretical model is shown to provide E8srm assigned particles as fundamental building
blocks for generating the rest of the 240 E8 vertex mapped particles[14].
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FIG. 12: E8 with vertices rotated to physics coordinates and projected from 8D→2D, with 86=22
bosonic+64 fermionic triality generated equilateralequilateralequilateral trianges. Vertex shape, size, color/shade are

assigned based on extended Standard Model particle assignments

Those specific particle assignments now also include their association to 8 bitwise quantum numbers,

which are; the anti-particle bit, the particle type bit {e, νe} or {u, d}, 2 spin bits {∨L, ∧R, ∧L, ∨R}, 2 color
bits {w = 0, r, g, b}, and 2 generation bits {0, 1, 2, 3}. This capability of mapping specific particles to
E8 has allowed the verification of related results[9].

This has also allowed for improved charge calculations in Lisi’s extended GraviGUT integrated Stan-
dard Model (SM)[12]. This was done through the analysis of variations associated with a particular
association of generation 0 bosons and generation 1-3 fermions with H4 and H4/ϕ[19].
E8 has also been shown to be related to an 8 dimensional Charge-Parity-Time (CPT) construct for

a Theory of Everything (ToE)[13]. This now includes particle mass predictions such as a Higgs mass
of 124.443...GeV[15], which is within the current error bars of the LHC CMS experiment results for
a discovered Higgs particle mass of 124.70 ± 0.31 (stat) ± 0.15 (syst) GeV[6]. More particle mass
predictions based on the model have been found to be within standard experimental error. Other mass
predictions are suggested by the features of this integrated geometry based physics model and are an
active part of the author’s research on the topic.
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IV. OCTONIONS AND E8 WITH H4 FOLDING

In addition to mapping extended SM particle quantum bits between H4 and the SRE E8 vertices
and algebra roots, they have been mapped[17] to the 480 unique permutations of octonions[5] and the
3840 split octonions[18] through a common pattern associated with the quantum bits. This octonionic
mapping provides valuable insight into related theoretical physics models.

a) b)

FIG. 13: Octonion representations: a) Fano plane, b) 1st triad split Fano plane

Fano plane triads
{{1, 2, 4}, {1, 3, 7}, {1, 5, 6}, {2, 3, 5}, {2, 6, 7}, {3, 4, 6}, {4, 5, 7}}

Flattened triads
{1,4,2,3, 7, 5, 6}

Mask bits
{0, 0, 0, 0, 0, 0, 0}

(12)

The double cover of the 240 vertices requires the addition of a 9th “flip“ bit that operates on the
Fano plane representation by reversing two of the midpoint nodes in the Fano plane triads (i.e. those
with circular directed edges in Fig. 13). These node numbers are always indicated by the 2nd and 3rd
columns of the flattened triads as shown in (12). They are bolded when reversed (or “flipped“), which
shows this particular octonion has the flip bit set. The flattened triad is simply created by taking in
sequence the numbers from the first triad along with the last two numbers in the 2nd and 3rd triads. It
operates to define the node numbers for each canonical position of the Fano plane mnemonic.

As it was for the permutation of node numbers in Dynkin diagrams, there are many permutations of
node number and arrow direction in the octonion Fano plane which are equivalent. What is important
is the representation of the triads given in (12). This particular set of triads is equivalent to that used
in Baez’ work on octonions[4].
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fpi =

1 {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}
2 {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}}
3 {{1, 2, 3}, {1, 4, 6}, {1, 5, 7}, {2, 4, 5}, {2, 6, 7}, {3, 4, 7}, {3, 5, 6}}
4 {{1, 2, 3}, {1, 4, 6}, {1, 5, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 5}, {3, 6, 7}}
5 {{1, 2, 3}, {1, 4, 7}, {1, 5, 6}, {2, 4, 5}, {2, 6, 7}, {3, 4, 6}, {3, 5, 7}}
6 {{1, 2, 3}, {1, 4, 7}, {1, 5, 6}, {2, 4, 6}, {2, 5, 7}, {3, 4, 5}, {3, 6, 7}}
7 {{1, 2, 4}, {1, 3, 5}, {1, 6, 7}, {2, 3, 6}, {2, 5, 7}, {3, 4, 7}, {4, 5, 6}}
8 {{1, 2, 4}, {1, 3, 5}, {1, 6, 7}, {2, 3, 7}, {2, 5, 6}, {3, 4, 6}, {4, 5, 7}}
9 {{1, 2, 4}, {1, 3, 6}, {1, 5, 7}, {2, 3, 5}, {2, 6, 7}, {3, 4, 7}, {4, 5, 6}}
10 {{1, 2, 4}, {1, 3, 6}, {1, 5, 7}, {2, 3, 7}, {2, 5, 6}, {3, 4, 5}, {4, 6, 7}}
11 {{1, 2, 4}, {1, 3, 7}, {1, 5, 6}, {2, 3, 5}, {2, 6, 7}, {3, 4, 6}, {4, 5, 7}}
12 {{1, 2, 4}, {1, 3, 7}, {1, 5, 6}, {2, 3, 6}, {2, 5, 7}, {3, 4, 5}, {4, 6, 7}}
13 {{1, 2, 5}, {1, 3, 4}, {1, 6, 7}, {2, 3, 6}, {2, 4, 7}, {3, 5, 7}, {4, 5, 6}}
14 {{1, 2, 5}, {1, 3, 4}, {1, 6, 7}, {2, 3, 7}, {2, 4, 6}, {3, 5, 6}, {4, 5, 7}}
15 {{1, 2, 5}, {1, 3, 6}, {1, 4, 7}, {2, 3, 4}, {2, 6, 7}, {3, 5, 7}, {4, 5, 6}}
16 {{1, 2, 5}, {1, 3, 6}, {1, 4, 7}, {2, 3, 7}, {2, 4, 6}, {3, 4, 5}, {5, 6, 7}}
17 {{1, 2, 5}, {1, 3, 7}, {1, 4, 6}, {2, 3, 4}, {2, 6, 7}, {3, 5, 6}, {4, 5, 7}}
18 {{1, 2, 5}, {1, 3, 7}, {1, 4, 6}, {2, 3, 6}, {2, 4, 7}, {3, 4, 5}, {5, 6, 7}}
19 {{1, 2, 6}, {1, 3, 4}, {1, 5, 7}, {2, 3, 5}, {2, 4, 7}, {3, 6, 7}, {4, 5, 6}}
20 {{1, 2, 6}, {1, 3, 4}, {1, 5, 7}, {2, 3, 7}, {2, 4, 5}, {3, 5, 6}, {4, 6, 7}}
21 {{1, 2, 6}, {1, 3, 5}, {1, 4, 7}, {2, 3, 4}, {2, 5, 7}, {3, 6, 7}, {4, 5, 6}}
22 {{1, 2, 6}, {1, 3, 5}, {1, 4, 7}, {2, 3, 7}, {2, 4, 5}, {3, 4, 6}, {5, 6, 7}}
23 {{1, 2, 6}, {1, 3, 7}, {1, 4, 5}, {2, 3, 4}, {2, 5, 7}, {3, 5, 6}, {4, 6, 7}}
24 {{1, 2, 6}, {1, 3, 7}, {1, 4, 5}, {2, 3, 5}, {2, 4, 7}, {3, 4, 6}, {5, 6, 7}}
25 {{1, 2, 7}, {1, 3, 4}, {1, 5, 6}, {2, 3, 5}, {2, 4, 6}, {3, 6, 7}, {4, 5, 7}}
26 {{1, 2, 7}, {1, 3, 4}, {1, 5, 6}, {2, 3, 6}, {2, 4, 5}, {3, 5, 7}, {4, 6, 7}}
27 {{1, 2, 7}, {1, 3, 5}, {1, 4, 6}, {2, 3, 4}, {2, 5, 6}, {3, 6, 7}, {4, 5, 7}}
28 {{1, 2, 7}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}, {3, 4, 7}, {5, 6, 7}}
29 {{1, 2, 7}, {1, 3, 6}, {1, 4, 5}, {2, 3, 4}, {2, 5, 6}, {3, 5, 7}, {4, 6, 7}}
30 {{1, 2, 7}, {1, 3, 6}, {1, 4, 5}, {2, 3, 5}, {2, 4, 6}, {3, 4, 7}, {5, 6, 7}}

(13)

sm =

1 {00, 07, 19, 1E, 2A, 2D, 33, 34}
2 {01, 06, 18, 1F, 2B, 2C, 32, 35}
3 {02, 05, 1B, 1C, 28, 2F, 31, 36}
4 {03, 04, 1A, 1D, 29, 2E, 30, 37}
5 {08, 0F, 11, 16, 22, 25, 3B, 3C}
6 {09, 0E, 10, 17, 23, 24, 3A, 3D}
7 {0A, 0D, 13, 14, 20, 27, 39, 3E}
8 {0B, 0C, 12, 15, 21, 26, 38, 3F}

(14)

sm2fpi = {5, 8, 4, 3, 7, 6, 3, 2, 6, 5, 1, 4, 6, 7, 3, 3, 8, 6, 3, 1, 6, 6, 2, 3, 5, 8, 4, 3, 7, 6} (15)

There are 30 canonical sets of 7 triads indexed with a Fano plane index (fpi) in (13). As in E8 with

16 of the 28 = 256 binary representations excluded from the group, there are 32 excluded octonions
from the 29 = 512. As in E8, excluded particles are associated with the color=0, generation=0 (bosons)
which are the positive (and negative) generators commonly associated with the 8-orthoplex with 16
permutations of {±1, 0, 0, 0, 0, 0, 0, 0}.

In order to make a valid octonion, each fpi gets one of 8 possible 7-bit sign masks (sm) applied
(14). Since each sm can be “inverted” (0 ⇔ 1 as we do with the anti-particle quantum bit), this gives
16 ∗ 30 = 480 octonion permutations.

The sign mask operates on the triads by reversing the 2nd and 3rd numbers from canonical (numerical)
order when the mask bit is set on that triad’s position. Each sign mask operation acting on the 30 fpi’s
can be permuted in consistent ways to produce the many isomorphic sets of 480 octonions. Since they are
bit-wise operations, the sign masks use hexadecimal notation with the first bit always 0. It is interesting
to note that there are only 2 octonions that use a sign mask of 00H. The one shown and another discovered
by Dixon[8].
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The 8 sets of 8 sm are assigned to the 30 fpi given in (15), so if fpi=1, the 5th sm group is selected.
Since the octonion in Fig. 13 has fpi=11 and the 11th sm2fpi=1, this means sm bits will index to the
1st sm group in (14).

Assigned Particle and Quantum bits {apccssgg}
SRE E8#177 = s

r
-1/3

∨
L

{00010010} (16)

In this integrated system of E8, particles, and octonions, the 4 bits that make up the 16 possible sign
masks are associated with the 4 quantum particle bits {anti, ptype, and 2 spin bits}. Looking deeper at
the space-(P)arity orientation pattern, where pitch and roll rotations are associated with the up/down
and left/right spin bits, a conjecture is made that the ptype bit can be thought of as a 3rd spin bit, giving
a 3rd spin type which we might call “in/out” or yaw rotation. Since according to (16) the octonion in

Fig. 13 has ptype=0, and spin=00 or
∨
L, this means sm=1, so it gets the 1st sign mask of the 1st sm

group, giving sm=00H.
The assignment of the 30 fpi’s is based on the 4 color and generation bits that are not both 0 (or

excluded) giving 24− 1 = 15. It is not simply a naive index created by simply adding the flip bit to the
index. The extra logic needed to index 2*15 is based on a pattern discovered that relates how the anti
and flip bits operate across the generation and color bits. Specifically, this pattern differentiates the 128
1/2 integer E8 vertices associated with the BC8 group (2 generations of fermions) from the integer 112
vertices in the D8 group (bosons plus an anomalous generation=2 set of fermions).

V. CONCLUSION

FIG. 14: The E8 to H4 3D projection model used to laser etch optical crystal

In terms of mathematical symmetry representing the beauty of Nature, E8 is one of the most beautiful.
It contains a wealth of symmetries, including those of 2D projections, 3D polyhedrons, 4D polychora,
and those up to 8D. An SRE E8 to H4 folding matrix was determined and used to fold E8 to the 120
4D vertices of the H4 600-cell and 120 vertices of H4/ϕ. A direct relationship between the simple roots
matrix and theoretical physics models was introduced. In addition to the mapping for particles, a direct
relationship to the 480 unique octonion permutations was also shown.

The traditional 2D Petrie projections of high dimensional geometry were extended by adding a carefully
chosen third basis vector and generating 3D objects in either orthogonal or perspective views. The folding
matrix was shown to generate these basis vectors used in projecting the E8 vertices. These projected 3D
objects can be realized as 3D models, which allow for their realization as animated rotations, models in
laser etched optical crystal, and in some cases models 3D printed in plastic or even metal as in Fig. 14.

In addition, these new mathematical relationships and visual representations have been used to verify
and improve grand unified theories which rely on these structures.
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VI. APPENDIX A

The positive E8 algebra roots generated by the Mathematica “SuperLie” package and its Hasse dia-
gram. The full source version of the “VisibLie” notebook at http://theoryofeverything.org/MyToE may
be made available by request in order to generate algebra roots and their Hasse diagrams.

See E8toH4fold.pdf for a full version with this appendix.

VII. APPENDIX B

The comprehensive SRE E8 vertex, bitwise particle and octonion assignments. They are grouped by
the Pascal Triangle / Clifford Algebra sort.

See E8toH4fold.pdf for a full version with this appendix.
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