Formula that uses primes as input values for obtaining larger primes as output, based on the numbers 7 and 186

Marius Coman Bucuresti, Romania email: mariuscoman130gmail.com

Abstract. In this paper I present a formula, based on the numbers 7 and 186, that, using primes as input values, often leads, as output values, to larger primes, also to squares of primes and semiprimes. I found this formula by chance, playing with two of my favourite numbers, 13 and 31, and observing that $7*13^2 + 6*31 = 37^2$ (to be noted, without necessarily connection with this paper, that the difference between the two known Wieferich primes, 1093 and 3511, is equal to 6*13*31).

Observation:

The formula $7*p^2 + 186$, where p is prime, often conducts to primes, squares of primes and semiprimes.

Exemplification:

(taking as input values p the first 27 primes; note that were obtained 13 primes, 6 squares of primes and 8 semiprimes)

:	7*3^2	+	186 =	3*83, semiprime;
:	7*5^2			19^2, square of prime;
:	7*7^2	+	186 =	23^2, square of prime;
:	7*11^2	+	186 =	= 1033, prime;
:	7*13^2	+	186 =	37^2, square of prime;
:	7*17^2	+	186 =	47^2, square of prime;
:	7*19^2	+	186 =	= 2713, prime;
:	7*23^2	+	186 =	3889, prime;
:	7*29^2	+	186 =	= 6073, prime;
:	7*31^2	+	186 =	= 31*223, semiprime;
:	7*37^2	+	186 =	9769, prime;
:	7*41^2	+	186 =	= 11953, prime;
:	7*43^2	+	186 =	19*691, semiprime;
:	7*47^2	+	186 =	= 15649, prime;
:	7*53^2	+	186 =	23*863, semiprime;
:	7*59^2	+	186 =	43*571, semiprime;
:	7*61^2	+	186 =	37*709, semiprime;
:	7*67^2	+	186 =	73*433, semiprime;
:	7*71^2	+	186 =	43^2, square of prime;
:	7*73^2	+	186 =	37489, prime;
:	7*79^2	+	186 =	73*601, semiprime

:	7*83^2	+	186	=	48409,	prime;		
:	7*89^2	+	186	=	55633,	prime;		
:	7*97^2	+	186	=	257^2,	square	of prime;	;
:	7*101^2	+	186	=	71593,	prime;		
:	7*103^2	+	186	=	74449,	prime;		
:	7*107^2	+	186	=	80329,	prime.		

Exemplification:

(taking as input values 10 from the 17 larger consecutive primes); note that were obtained 8 semiprimes and 2 primes, and that for the other 7 primes were obtained numbers with maximum four prime factors)

```
7*941083907^2 + 186 = 2205707657*2810650097, semiprime;
:
     7*941083921^2 + 186 = 6199472624553139873, prime.
:
     7*941083951^2 + 186 = 19*326288053674125947, semiprime;
:
     7*941083967^2 + 186 = 743*8343840148871063, semiprime;
:
     7*941083987^2 + 186 = 37*167553337678776037, semiprime;
:
    7*941084021^2 + 186 = 880691281*7039327033, semiprime;
:
    7*941084047^2 + 186 = 23*269542360201099463, semiprime;
:
    7*941084083^2 + 186 = 17137*361759628810857, semiprime;
:
     7*941084167^2 + 186 = 30631*202392212648839, semiprime;
:
     7*941084173^2 + 186 = 6199475944697657689, prime.
:
```

Conjecture 1:

There exist an infinity of primes p such that the number $7*p^2 + 186$ is prime.

Conjecture 2:

There exist an infinity of primes p such that the number $7*p^2$ + 186 is square of prime.

Conjecture 3:

There exist an infinity of primes p such that the number $7*p^2$ + 186 is semiprime.