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Abstract

We study dynamics of two coupled periodically driven oscillators in
general case. Periodic steady-state solutions of the system of two equa-
tions are determined within the Krylov-Bogoliubov-Mitropolsky approach.
The corresponding amplitude profiles, A (ω), B (ω), which are given by
two implicit equations, F (A,B, ω) = 0, G (A,B, ω) = 0, where ω is fre-
quency of the driving force, are computed. These two equations, each de-
scribing a surface, define a 3D curve - intersection of these surfaces. In the
present paper we carry out preliminary investigation of metamorphoses of
this curve, induced by changes of control parameters. The corresponding
changes of dynamics near singular points of the curve are studied.

1 Introduction

In this work we study general case of two coupled oscillators, one of which is
driven by an external periodic force. Equations governing dynamics of such
system are of form:

mẍ− V (ẋ) −R (x) + Ve (ẏ) +Re (y) = F (t)
me (ẍ+ ÿ) − Ve (ẏ) −Re (y) = 0

}

(1)

where x ≡ x1 is position of primary mass m, y ≡ x2 − x1 is relative position
of another mass me attached to m and R, V and Re, Ve are nonlinear elas-
tic restoring force and nonlinear force of internal friction for masses m, me,
respectively

(

we use convention ẋ ≡ dx
dt

, etc.
)

. Dynamic vibration absorber is
a typical mechanical model described by (1) [1, 2] (in this case m is usually
much larger than me). Dynamics of coupled periodically driven oscillators is
very complicated [3, 4, 5, 6, 7, 8]. In our earlier papers we were able, applying
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simplifying assumptions, R (x) = −αx, V (ẋ) = −νẋ, to derive exact 4th-order
nonlinear equation for internal motion (i.e. for variable y only) [9, 10].

In the present paper we study more difficult, entirely nonlinear case:

R (x) = −αx− γx3, Re (y) = −αey − γey
3

V (ẋ) = −νẋ+ βẋ3, Ve (ẏ) = −νeẏ + βeẏ
3

F (t) = f cos (ωt)







(2)

which cannot be reduced to exact differential equation for internal motion.
We find approximate steady-state solutions (nonlinear resonances) of the sys-

tem (1), (2) using the Krylov-Bogoliubov-Mitropolsky (KBM) approach. More
exactly, we study dependence of amplitudes A, B on the frequency ω, given im-
plicitly by the KBM method as F (A,B, ω; a, b, . . .) = 0, G (A,B, ω; a, b, . . .) = 0
where a, b, . . . are parameters and F , G are polynomial functions. The implicit
functions A (ω), B (ω) will be referred to as amplitude profiles or resonance
surfaces. We have learned recently that idea to use Implicit Function Theorem
to study amplitude profiles was put forward in [11]. Metamorphoses of three-
dimensional resonance curve, obtained as intersection of two resonance surfaces,
F (A,B, ω) = 0, G (A,B, ω) = 0, induced by changes of the control parameters
a, b, . . . , are signatures of nonlinear phenomena. In a simpler case of exact
4-th order nonlinear equation for function y (t) only, i.e. when R (x), V (ẋ) are
linear functions of x, ẋ, respectively (in this case variable x (t) can be sepa-
rated off), we deal with resonance curve A (ω), given by one implicit equation
F (A,ω; a, b, . . .) = 0 only [12, 13, 14, 15].

In the present paper we thus study singular points of the three-dimensional
resonance curve, obtained within the KBM approach for the general nonlinear
case (1), (2).

The paper is organized as follows. In the next Section equations (1), (2)
are transformed into nondimensional form. In Section 3 implicit equations
for resonance surfaces A (ω), B (ω) are derived within the Krylov-Bogoliubov-
Mitropolsky approach, where the amplitudes A, B correspond to small and large
masses, respectively. The problem is more difficult than before because these
two equations are coupled. In Section 4 we review necessary facts from theory of
algebraic curves which are used to compute singular points on three-dimensional
resonance curve (intersection of resonance surfaces A (ω), B (ω)). In Section 5
preliminary computational results are presented. Our results are summarized
in the last Section.

2 Equations in nondimensional form

In the first step we transform equations (1), (2) into nondimensional form.
Apart from obvious advantages of working with nondimensional variables and
parameters this procedure conveniently decreases number of control parameters.
We thus introduce nondimensional time τ and frequency Ω and rescale variables
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x, y:

t =

√

µ

αe

τ, ω =

√

αe

µ
Ω, x =

√

αe

γe
u, y =

√

αe

γe
z, (3)

to get:

ü+ Ĥu̇− cu̇3 + âu+ du3 − κ̂hż + κ̂bż3 − κ̂z − κ̂z3 = λ cos (Ωτ)

z̈ + hż − bż3 + z + z3 − Ĥu̇+ cu̇3 − âu− du3 = −λ cos (Ωτ)

}

(4)

where new parameters are given by:

a =
µα

Mαe

, b =
βe

γe

(

αe

µ

)
3

2

, c =
β (αe)

3

2

√
µmγe

, d =
µγ

mγe

h =
νe√
µαe

, H =
ν

M

√

µ

αe

, G = 1
αe

√

γe

αe

f, κ =
me

m

λ = κ
κ+1G, Ĥ = H (1 + κ) , â = a (1 + κ) , κ̂ = κ

κ+1



























(5)

where M = m + me, µ = mme

M
and u̇ ≡ du

dτ
. Note that ü was eliminated from

the second of Eqs. (4).

3 Nonlinear resonances

System of equations (4) is written in form:

d2u

dτ2
+ Ω2u+ ε (σu+ g (u, z, τ)) = 0, (6a)

d2z

dτ2
+ Ω2z + ε (σz + k (u, z, τ)) = 0, (6b)

where:

εσ = Θ2 − Ω2, Ĥ = εĤ0, â = εâ0, b = εb0, c = εc0
Θ2 = εΘ2

0, d = εd0, h = εh0, εδ0 = 1, λ = ελ0

}

(7)

and

g (u, z, τ) = g1 (u) + g2 (z, τ) , (8a)

k (u, z, τ) = k1 (z) + k2 (u, τ) , (8b)

g1 (u) =
(

â0 + d0u
2 − Θ2

0

)

u+ Ĥ0u̇− c0u̇
3, (8c)

g2 (z, τ) = −κ̂h0ż + κ̂b0ż
3 − κ̂δ0z − κ̂δ0z

3 − λ0 cos (Ωτ) , (8d)

k1 (z) =
(

δ0 + δ0z
2 − Θ2

0

)

z + h0ż − b0ż
3, (8e)

k2 (u, τ) = −Ĥ0u̇+ c0u̇
3 − â0u− d0u

3 + λ0 cos (Ωτ) . (8f)

Equations (6a), (6b) have been prepared in such way that for ε = 0 the solutions
are u (τ) = B cos (Ωτ + ψ), z = A cos (Ωτ + ϕ).
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We shall now look for 1 : 1 resonance using the Krylov-Bogoliubov-Mitropolsky
(KBM) perturbation approach [17, 18]. For small nonzero ε the solutions of
Eqs.(6a), (6b) are assumed in form:

u (τ) = B cos (Ωτ + ψ) + εu1 (B,ψ, τ) + . . . (9)

z (τ) = A cos (Ωτ + ϕ) + εz1 (A,ϕ, τ) + . . . (10)

with slowly varying amplitudes and phases:

dA

dτ
= εM1 (A,ϕ) + . . . ,

dB

dτ
= εP1 (B,ψ) + . . . , (11)

dϕ

dτ
= εN1 (A,ϕ) + . . . ,

dψ

dτ
= εQ1 (B,ψ) + . . . . (12)

Computing now derivatives of z from Eqs.(9), (10), (11), (12) and substituting
to Eqs.(6) and eliminating secular terms and demanding M1 = 0, N1 = 0,
P1 = 0, Q1 = 0 we obtain the following equations for the amplitude and phase
of steady-states:

κ̂Aw1x1 + κ̂AΩw2x2 −Bw3x3 +BΩw4x4 + λy1 = 0
−κ̂AΩw2x1 + κ̂Aw1x2 −BΩw4x3 −Bw3x4 + λy2 = 0

A
(

Ω2 − w1

)

x1 −AΩw2x2 +B
(

Ω2 + w3

)

x3 −BΩw4x4 − λy1 = 0
AΩw2x1 +A

(

Ω2 − w1

)

x2 +BΩw4x3 +B
(

Ω2 + w3

)

x4 − λy2 = 0















(13)

where















w1 = 3
4A

2 + 1, w2 = 3
4Ω2bA2 − h

w3 = 3
4dB

2 + â− Ω2, w4 = − 3
4Ω2cB2 + Ĥ

x1 = sinψ, x2 = cosψ, x3 = sinϕ, x4 = cosϕ
y1 = sin (ϕ+ ψ) = x2x3 + x1x4, y2 = cos (ϕ+ ψ) = x2x4 − x1x3

(14)

We solve Eqs. (13) for x1, x2, x3, x4 obtaining:



































x1 = −
η4

(

(κ̂Ω2+η1)
2
+η2

2

)

+κ̂Ω4η2

(κ̂−1)((κ̂Ω2+η1)
2+η2

2)λ
B

x2 =
(η3+κ̂Ω2)

(

(κ̂Ω2+η1)
2
+η2

2

)

−κ̂Ω4(κ̂Ω2+η1)
(κ̂−1)((κ̂Ω2+η1)

2+η2

2)λ
B

x3 = κ̂Ω2(η2+η4)+η1η4+η2η3

(κ̂−1)λΩ2 A

x4 = − κ̂Ω2((κ̂−1)Ω2+η1+η3)+η1η3−η2η4

(κ̂−1)λΩ2 A

(15)

with
{

η1 =
(

3
4A

2 + 1 − Ω2
)

(κ̂− 1) , η2 = Ω
(

− 3
4bA

2Ω2 + h
)

(κ̂− 1)

η3 =
(

â+ 3
4dB

2 − Ω2
)

(κ̂− 1) , η4 = Ω
(

− 3
4cB

2Ω2 + Ĥ
)

(κ̂− 1)
(16)
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Identities x21 + x22 = 1, x23 + x24 = 1 lead to implicit nonlinear equations for
X, Y, Z:

L1 (X, Y, Z) = 0
L2 (X, Y, Z) = 0

}

(17)

where
X = Ω2, Y = A2, Z = B2, (18)

and

{

L1 = Z
((

η24 + u22
) (

u21 + η22
)

+ κ̂X2u3
)

− (κ̂− 1)2
(

u21 + η22
)

λ2

u1 = κ̂X + η1, u2 = κ̂X + η3, u3 = κ̂X2 + 2η2η4 − 2u1u2
(19a)







L2 =
Y

(κ̂− 1)
2

(

u24 + (κ̂Xu5 + η1η3 − η2η4)
2
)

− λ2X2

u4 = (κ̂X (η2 + η4) + η1η4 + η2η3) , u5 = (κ̂− 1)X + η1 + η3

(19b)

and substitutions (18) are also made in (16). Phases are easily computed from
Eqs. (15):

tanψ =
x1

x2
, tanϕ =

x3

x4
. (20)

If we put c = d = 0 in Eqs. (19), (16) (or β = γ = 0 in Eqs. (2)) then the
function L2 becomes independent on Z. In this case it is possible to separate
variables in Eqs. (1), (2) obtaining the fourth-order effective equation for the
small mass [15]. The function L2, defined above, for c = d = 0 is equal to the
function L (X,Y ) defined in Eq. (4.1) in [15].

4 General properties of functions A (Ω) , B (Ω)

Functions A (Ω) , B (Ω) are defined implicitly by Eqs. (17), (18), (19). More
exactly, Eqs. (17) define a three dimensional curve. Singular points of this curve
are computed from the following equations [19]:

L1 (X, Y, Z) = 0
L2 (X, Y, Z) = 0

det

(

∂L1

∂X
∂L2

∂X
∂L1

∂Y
∂L2

∂Y

)

= 0

det

(

∂L1

∂Y
∂L2

∂Y
∂L1

∂Z
∂L2

∂Z

)

= 0

det

(

∂L1

∂Z
∂L2

∂Z
∂L1

∂X
∂L2

∂X

)

= 0































































(21)

This means that in a singular point solutions Y (X) , Z (X) or X (Y ) , Z (Y )
or X (Z) , Y (Z) do not exist.
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Let us consider a special case when L2 does not depend on Z. In this case
we have ∂L2

∂Z
= 0 and Eqs. (21 ) reduce to either of two cases below:

L1 (X, Y, Z) = 0
L2 (X, Y ) = 0

∂L1

∂Z
= 0

det

(

∂L1

∂X
∂L2

∂X
∂L1

∂Y
∂L2

∂Y

)

= 0































(22)

or

L1 (X, Y, Z) = 0

L2 (X, Y ) = 0, ∂L2

∂X
= 0, ∂L2

∂Y
= 0

}

(23)

The latter case, which arises for c = d = 0, was studied in our previous
paper [15].

5 Computational results

In this Section singular points of amplitude profiles are studied. In the neigh-
bourhood of a singular point the form of amplitude profile changes qualitatively
(we call it metamorphosis) and this means that the form of the corresponding
steady-state solution changes as well.

In what follows we assume that parameters c, d in Eq. (4) are small, i.e.
we study small perturbation of the simpler system of coupled oscillators with
c = d = 0 (or β = γ = 0, cf. Eq. (2)), described in [15] (let us recall that in this
case internal motion can be separated off, leading to simpler equation for the
corresponding amplitude profile). The results obtained before for c = d = 0 can
be thus used to elucidate more complicated system with c 6= 0, d 6= 0 considered
in the present work.

We thus start with the case c = d = 0, other parameters assumed as in
[15]: a = 5, b = −0.001, h = 0.5, H = 0.4, κ = 0.05. Then for λ = 0.981505
there is isolated point at X = 4.153001, Y = 4.680111 and self-intersection for
λ = 1.018055 at X = 4.835083, Y = 4.192055, see [15].

Next, we have solved equations (21) numerically for small values of param-
eters c, d, namely for c = −0.001, d = 0.02. And indeed, there are two singular
points: isolated point at X = 4.154856, Y = 4.678062, Z = 0.275652, λ1 =
0.983240 and self-intersection at X = 4.859019, Y = 4.171601, Z = 0.358503,
λ2 = 1.020886, which are clearly equivalents of singular points computed for
c = d = 0.

Figures 1 show how the singular point (isolated point) at Ω = 2.038346,
A = 2.162883, B = 0.525026 (values of Ω, A, B have been computed from X ,
Y , Z given above according to Eq. (18)) is created when λ is increased from
λa = 0.981214 < λ1 to λb = 0.985214 > λ1. The isolated point is created exactly
when green and yellow spire pierces the resonance surface L1 (X,Y, Z) = 0 (red
and blue).
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Figure 1: Amplitude profiles: L1 (X,Y, Z) = 0 (red and blue) and L2 (X,Y, Z) =
0 (green and yellow); λ = λa = 0.981214, left Figure, λ = λb = 0.985214, right
Figure. Critical value of λ is λ1 = 0.983240.

We have computed bifurcation diagrams, shown in Fig. 2, to document
change of dynamics occuring in the neighbourhood of the isolated point.

Figure 2: Bifurcation diagrams: λ = λa = 0.981214, left Figure, λ = λb =
0.985214, right Figure.

Indeed, when λ is increased from λa to λb another branch of steady-state
has been created at Ω ∼= 2. This metamorphosis is consistent with change of
the amplitude profile shown in Fig. 1.

Similar change of dynamics has been observed near another singular point.
In Figs. 3 we see formation of self-intersection at Ω = 2.204318, A = 2.042450,
B = 0.598751 when λ is increased from λc = 1.018860 to λd = 1.022860.
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Figure 3: Amplitude profiles: L1 (X,Y, Z) = 0 (red and blue) and L2 (X,Y, Z) =
0 (green and yellow); λ = λa = 1.018860, left Figure, λ = λb = 1.022860, right
Figure. Critical value of λ is λ2 = 1.020886.

Bifurcation diagram shows change of dynamics in the neighbourhood of sin-
gular point. Indeed, we see in Figs. 4 that upper branch of the steady-state is
disrupted, while lower branch joins another attractor.

Figure 4: Bifurcation diagrams: λ = λa = 1.018860, left Figure, λ = λb =
1.022860, right Figure.

6 Summary and discussion

The present work is a preliminary study of general case of dynamics of two
coupled periodically driven oscillators, cf. Eq. (1). In this model R (x), V (ẋ),
Re (y), Ve (ẏ) are nonlinear functions of the corresponding variables. For the
sake of example we have assumed these functions in form (2). For β = γ = 0 (or
c = d = 0 with c, d defined in (5)) it was possible to separate off motion of small

8



mass to get 4th-order differential equation [15]. Analysis of resonance curve for
this equation was relatively simple. On the other hand, the case c 6= 0, d 6= 0,
considered in the present work is much harder since the amplitude profiles are
given by system of two coupled implicit equations (17). The amplitude profiles
are thus resonance surfaces rather than curves, which arise in the case of a single
oscillator.

We have thus studied singular points of the three-dimensional resonance
curve (which is obtained as intersection of two resonance surfaces) for small c,
d, because we could use our computations, carried out in [15], for c = d = 0.
We have thus solved equations (21) numerically for c = −0.001, d = 0.02, calcu-
lating two singular points: isolated point and self-intersection. It turns out that
qualitative changes of dynamics (metamorphoses) occur in the neighbourhood
of singular points of this three-dimensional resonance curve.
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