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It is obtained a relation between the radiated energy density and the absolute 

temperature. 
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For an ideal gas 

 

 NkTPV =  (1) 

 

where P is the pressure, V the volume, N the number of particles (atoms or molecules), k 

the Boltzmann’s constant and T the Kelvin’s temperature (or absolute temperature). On 

the other hand, the energy of a single particle ( 1=N ) would be 
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But also 

 

 2

2

1
mvE =  (3) 

 

m and v being the mass and the speed of the particle, respectively. From (1), (2) and (3) 
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For the radiation, considered as a gas of photons 
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since cv = , with an “effective mass” of the photon 2chf  and an energy density 

VNhfu = , where c is the light speed in vacuum, h the Planck’s constant and f the 

frequency. Note that for a photon, it is ( ) hfcchfmcE === 222 , and from (2) and (3), 

we have that 3kT = mv
2
, then for E = mc

2
 = hf it would be kTE 3= , and 
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33 NhfNENkTPV ===  and 33 uVNhfP == , which is (5). The total internal 

energy U of the radiation contained in the volume V would be 

 

 PVuVU 3==  (6) 

 

From the first principle of the thermodynamics dWdQdU −= , where Q is the heat and 

W the work, with PdVPAdrFdrdW === , where F is the force, r the distance and A 

the area, and from the second principle of the thermodynamics TdSdQ = , where S is 

the entropy, we have that 

 

 PdVTdSdU −=  (7) 

 

From (7) and (6), we have 

 

 dV
T

P
dP

T

V
dV

T

P
dU

T
dS 43

1
+=+=   

 

 dV
V

S
dP

P

S
dS

PV










∂

∂
+









∂

∂
=   

 

 
T

V

P

S

V

3=








∂

∂
  

 

 
T

P

V

S

P

4=








∂

∂
  

 

Since 

 

 

VPPV
PV

S

VP

S

,

2

,

2










∂∂

∂
=









∂∂

∂
  

 

then 
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 4lnlnln4ln bTbTP =+=   

 

 4bTP =   

 

b being an integration constant. From this last equation and from (5) 

 

 43bTu =  (8) 

 

and the energy density of the radiation is proportional to the fourth power of the 

absolute temperature. 

 

On the other hand 
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where de is the energy of the radiation emitted by the surface ds across the surface sd ′  
in a time dt, J the specific intensity of the radiation, l  the distance between the surfaces, 

and θ  and θ ′  the angles between l  and the perpendiculars to ds and sd ′ , respectively. 

As the solid angle is 2

0

2cos ll sdsdd ′=′′=Ω θ  and in spherical coordinates is 

 

 φθθ ddd sin=Ω  (10) 

 

where θ  and φ  are the angular coordinates, then 

 

 dtddJdsdtdJdsde φθθθθ sincoscos =Ω=   
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and, in general, J depends on θ  and φ , but in an isotropic and homogeneous medium, J 

is a constant, therefore as: 

 

sin 2a = sin(a + a) = sin a cos a + sin a cos a = 2 sin a cos a 

 

sin a cos a = (1/2) sin 2a 

 

∫0
π/2

 cos θ sin θ dθ = (1/2) ∫0
π/2

 sin 2θ dθ = -(1/4) ∫0
π/2

 -2 sin 2θ dθ = -(1/4) [cos 2θ]0
π/2

 

= -(1/4) [cos π - cos 0] = -(1/4) (-1 -1) = 1/2 
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then dsdtJde π=  and 
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where j is the integral radiation and represents the emitted radiation per unit of surface 

and per unit of time. From (9), 2
ldtsJdsdde ′= , for 0=′= θθ , with rR −=l , where 

r and R are the radii of ds and sd ′  respectively, and the volume is dscdt , then 

csJddscdtdedu 2
l′== . Since rR >> , R≅l  and Ω=′≅′ dRsdsd 22

l . Hence, 

cJddu Ω= , and integrating and using (10) 
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And from (11), (12) and (8) 
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where (13) and 43bc=σ  are the law and the constant of Stefan-Boltzmann, 

respectively. For last, integrating the energy density of the Planck radiation formula of a 

black body for all the frequencies, we have that 
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and from (8) 
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and its value is 248 º1067.5 mKwatt−×=σ . And from (12), (11) and (13): u = J4π/c = 

(4/c)j = (4σ/c)T
4
. That is 
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which is the relation between the radiated energy density and the absolute temperature, 

using the Stefan-Boltzmann’s constant. 


