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Abstract

In Int. Journ. Mod. Phys. D 14, 181 (2005) Khriplovich verbatim
claims that �the correspondence principle does not dictate any relation
between the asymptotics of quasinormal modes and the spectrum of quan-
tized black holes� and that �this belief is in con�ict with simple physical
arguments�. In this paper we stress that Khriplovich's criticisms work
only for the original proposal by Hod, while they do not work for the
improvements suggested by Maggiore and recently �nalized by the author
and collaborators through a connection between Hawking radiation and
black hole (BH) quasi-normal modes (QNMs). Thus, QNMs can be really
interpreted as BH quantum levels.

1 Introduction

BH QNMs are frequencies of radial spin j = 0, 1, 2 for scalar, vector and gravita-
tional perturbation respectively, obeying a time independent Schröedinger-like
equation [1, 2]. Such BH modes of energy dissipation have a frequency which is
allowed to be complex [1, 2]. In a remarkable paper [3], York proposed the in-
triguing idea to model the quantum BH in terms of BH QNMs. More recently,
by using Bohr's Correspondence Principle, Hod proposed that QNMs should
release information about the area quantization as QNMs are associated to ab-
sorption of particles [4, 5]. Hod's work was improved by Maggiore [6] who solved
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some important problems. On the other hand, as QNMs are countable frequen-
cies, ideas on the continuous character of Hawking radiation did not agree with
attempts to interpret QNMs in terms of emitted quanta, preventing to associate
QNMs modes to Hawking radiation [1]. Recently, Zhang, Cai, Zhan and You
[7, 8, 9, 10] and the author and collaborators [11, 12, 13, 14] observed that the
non-thermal spectrum by Parikh and Wilczek [21, 22] also implies the count-
able character o subsequent emissions of Hawking quanta. This issue enables a
natural correspondence between QNMs and Hawking radiation, permitting to
interpret QNMs also in terms of emitted energies [11, 12, 13, 14].

For Schwarzschild BH and in strictly thermal approximation, QNMs are usu-
ally labelled as ωnl, where n and l are the �overtone� and the angular momentum
quantum numbers [1, 2, 4, 5, 6]. For each l≥ 2 for BH perturbations, we have a
countable in�nity of QNMs, labelled by n (n = 1, 2, ...) [1, 2, 4, 5, 6]. Working
with G = c = kB = ~ = 1

4πε0
= 1 (Planck units), for large n BH QNMs become

independent of l having the structure [1, 2, 4, 5, 6]

ωn = ln 3× TH + 2πi(n+ 1
2 )× TH +O(n−

1
2 ) =

= ln 3
8πM + 2πi

8πM (n+ 1
2 ) +O(n−

1
2 ).

(1)

In a famous paper, Bekenstein [15] showed that the area quantum of the Schwarzschild
BH is 4A = 8π (we recall that the Planck distance lp = 1.616 × 10−33 cm is
equal to one in Planck units). Using properties of the spectrum of Schwarzschild
BH QNMs a di�erent numerical coe�cient has been found by Hod in [4, 5].
Hod's analysis started by observing that, as for the Schwarzschild BH the hori-

zon area A is related to the mass through the relation A = 16πM2, a variation
4M in the mass generates a variation

4A = 32πM4M (2)

in the area. By considering a transition from an unexcited BH to a BH with very
large n, Hod [4, 5] assumed Bohr's correspondence principle (which states that
transition frequencies at large quantum numbers should equal classical oscilla-
tion frequencies) [16, 17, 18] to be valid for large n and enabled a semiclassical
description even in absence of a complete theory of quantum gravity. Hence,
from Eq. (1), the minimum quantum which can be absorbed in the transition
is [4, 5]

4M = ω =
ln 3

8πM
. (3)

This gives 4A = 4 ln 3. The presence of e of the numerical factor 4 ln 3 stimu-
lated possible connections with loop quantum gravity [19].

2 Criticisms by Khriplovich

Hod's approach has been criticized by Khriplovich [20], who claims that prop-
erties of ringing frequencies cannot be related directly to Bohr correspondence
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principle. Here we show that this criticism works only for the original proposal
by Hod [4, 5], while they do not work for the improvements suggested by Mag-
giore [6] and recently �nalized by the author and collaborators [11, 12, 13, 14]
through a connection between Hawking radiation and BH QNMs. Let us see this
issue in detail. The criticisms by Khriplovich [20] are essentially the following:

1. The exact meaning of Bohr correspondence principle is the following. In
quantized systems, the energy jump 4E between two neighbouring levels
with large quantum numbers i. e. between levels with n and n+ 1, being
n� 1, is related to the classical frequency ω of the system by the formula
[20]

4E = ω. (4)

Thus, in a semiclassical approximation withn� 1, the frequencies which
corresponds to transitions between energy levels with 4n� n are integer
multiples of the classical frequency ω. Khriplovich concludes by claiming
that contrary to the assumption by Hod [4, 5], in the discussed problem
of a BH, large quantum numbers n of Bohr correspondence principle are
unrelated to the asymptotics (3) of QNMs, but are quantum numbers of
the BH itself.

2. The real part QNMs does not di�er appreciably from its asymptotic value
(3) in the whole numerically investigated range of n, starting from n ∼ 1.
Meanwhile, the imaginary part grows as n + 1

2 , and together with it the
spectral width of QNMs (in terms of common frequencies) also increases
linearly with n. In this situation, the idea that the resolution of a QNM
becomes better and better with the growth of n, and that in the limit
n → ∞ this mode resolves an elementary edge (or site) of a quantized
surface, is not reasonable.

3 Clari�cations

One can easily check that criticisms in point 2 above have been well addressed
by the observation by Maggiore [6], who suggested that one must take

4M = ω = (ω0)n − (ω0)n−1, (5)

where (ω0)n ≡ |ωn|, instead of the value (3) proposed in [4, 5]. In fact, the
imaginary part becomes dominant for large n and, in turn the idea that the
resolution of a QNM becomes better and better with the growth of n, and that
in the limit n→∞ this mode resolves an elementary edge (or site) of a quantized
surface works. We will indeed show a quantitative analysis of this important
issue in the following, and this will also help to well address the criticisms of
point 1. above.
Let us return on the connection between BH QNMs and Hawking radiation.
Working in strictly thermal approximation, one writes down the probability of
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emission of Hawking quanta as [21, 22, 23]

Γ ∼ exp(− ω

TH
), (6)

being TH ≡ 1
8πM is the Hawking temperature and ω the energy-frequency of

the emitted radiation respectively.
The important correction by Parikh and Wilczek, due to the BH back reaction
yields [21, 22]

Γ ∼ exp[− ω

TH
(1− ω

2M
)]. (7)

This result takes into account the BH varying geometry and adds the term ω
2M

like correction [21, 22]. We have improved the Parikh and Wilczek framework
by showing that the probability of emission (7) is indeed associated to the two
non strictly thermal distributions [24]

< n >boson=
1

exp [−4πn (M − ω)ω]− 1
, < n >fermion=

1

exp [−4πn (M − ω)ω] + 1
,

(8)
for bosons and fermions respectively.
It is well known that in various �elds of physics and astrophysics the deviation
of the spectrum of an emitting body from the strict black body spectrum is
taken into account by introducing an e�ective temperature, which represents
the temperature of a black body emitting the same total amount of radiation.
The e�ective temperature, which is a frequency dependent quantity, can be
introduced in BH physics too [11, 12, 13, 14, 24] as

TE(ω) ≡ 2M

2M − ω
TH =

1

4π(2M − ω)
. (9)

De�ning βE(ω) ≡ 1
TE(ω) , one rewrites eq. (7) in Boltzmann-like form as [11, 12,

13, 14, 24]

Γ ∼ exp[−βE(ω)ω] = exp(− ω

TE(ω)
), (10)

where one introduces the e�ective Boltzmann factor exp[−βE(ω)ω] appropriate
for a BH having an inverse e�ective temperature TE(ω) [11, 12, 13, 14, 24]. Then,

the ratio TE(ω)
TH

= 2M
2M−ω represents the deviation of the BH radiation spectrum

from the strictly thermal character [11, 12, 13, 14, 24]. In correspondence of
TE(ω) one can also introduce the e�ective mass and of the e�ective horizon

[11, 12, 13, 14, 24]

ME ≡M −
ω

2
, rE ≡ 2ME (11)

of the BH during the emission of the particle, i.e. during the BH contraction
phase [11, 12, 13, 14, 24]. Such quantities are average values of the mass and
the horizon before and after the emission [11, 12, 13, 14, 24].
The correction to the thermal spectrum is also very important for the physi-
cal interpretation of BH QNMs, and, in turn, is very important to realize the
underlying quantum gravity theory as BHs represent theoretical laboratories

4



for developing quantum gravity and BH QNMs are the best candidates like
quantum levels [11, 12, 13, 14, 24].

In the appendix of [13] we have rigorously shown that, if one takes into
account the deviation to the strictly thermal behavior of the spectrum, eq. (1)
must be replaced with

ωn = ln 3× TE(ωn) + 2πi(n+ 1
2 )× TE(ωn) +O(n−

1
2 ) =

= ln 3
4π[2M−(ω0)n]

+ 2πi
4π[2M−(ω0)n]

(n+ 1
2 ) +O(n−

1
2 ).

(12)

In other words, the Hawking temperature TH is replaced by the e�ective tem-
perature TE in eq. (1). Strictly speaking, eqs. (1) and (12) are corrected only
for scalar and gravitational perturbations. On the other hand, for large n eq.
(12) is well approximated by (we consider the leading term in the imaginary
part of the complex frequencies)

ωn '
2πin

4π [2M − (ω0)n]
, (13)

and we have shown in the appendix of [13] that the behavior (13) also holds
for j = 1 (vector perturbations). In complete agreement with Bohr's corre-
spondence principle, it is trivial to adapt the analysis in [1] in the sense of the
Appendix of [13] and, in turn, to show that the behavior (13) holds if j is a
half-integer too. In [11, 12, 13] we have shown that the physical solution of (13),
is

(ω0)n = M −
√
M2 − n

2
. (14)

Now, we clarify how the correspondence between QNMs and Hawking radiation
works. One considers a BH original massM. After an high number of emissions
of Hawking quanta and eventual absorptions, because neighboring particles can,
in principle be captured by the BH, the BH is at an excited level n− 1 and its
mass is Mn−1 ≡ M − (ω0)n−1 where (ω0)n−1, is the absolute value of the fre-
quency of the QNM associated to the excited level n−1. (ω0)n−1 is interpreted
as the total energy emitted at that time. The BH can further emit a Hawking
quantum to jump to the subsequent level: 4Mn = (ω0)n−1 − (ω0)n. Now, the
BH is at an excited level n and the BH mass is

Mn ≡M − (ω0)n−1 +4Mn =

= M − (ω0)n−1 + (ω0)n−1 − (ω0)n = M − (ω0)n.
(15)

The BH can, in principle, return to the level n − 1 by absorbing an energy
−4Mn = (ω0)n − (ω0)n−1. By using eq. (14) one gets immediately [11, 12, 13]

4M = ω = (ω0)n−1 − (ω0)n = −fn(M,n) (16)

with [11, 12, 13]

fn(M,n) ≡
√
M2 − 1

2
(n− 1)−

√
M2 − n

2
. (17)
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One can easily check that in the limit n→∞ one gets fn(M,n)→ 1
4M . Thus,

by using eq. (2) one gets immediately that for n → ∞ two adjacent QNMs
resolve an elementary edge (or site) of a quantized surface 4A → 8π, which
corresponds to the famous historical result by Bekenstein [15] and this cannot
be a coincidence. Then, the quantum levels are equally spaced for both emis-
sions and absorptions being 1

4M the jump between two adjacent levels, and this
also clarify falsi�es the criticism 1. by Khriplovich because in our semiclassical
approximation with n� 1, the frequencies which corresponds to transitions be-
tween energy levels with 4n� n are integer multiples of the classical frequency
ω = 1

4M .

4 Conclusion remarks

Khriplovich [20] verbatim claimed that �the correspondence principle does not
dictate any relation between the asymptotics of quasinormal modes and the
spectrum of quantized black holes� and that �this belief is in con�ict with simple
physical arguments�. In this paper we have shown that the criticisms in [20]
work only for the original proposal by Hod, while they do not work for the
improvements suggested by Maggiore and recently �nalized by the author and
collaborators through a connection between Hawking radiation and BH QNMs.
Thus, QNMs can be really interpreted as BH quantum levels.
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