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Abstract 

 

The formation of a trefoil knot in a measurement space with entropy is described. It is shown 

that for a given prime knot, invariants with the characteristics of Laurent polynomials can be developed 

in 2+1 dimensional measurement space. These polynomials distinguish chiral property and uniquely 

address charge, parity and time symmetries. 
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Introduction 

The role of topology in explaining the structure formation in the high-energy physics is 

becoming more and more prominent. It is required that we first establish a fundamental topological 

structure before developing the description in (t, x, y, z) physical space. The knot theory is one of the 

instruments which allows us to visualize the possible topological states a system may take over a period 

of time. What started as a suggestion by Lord Kelvin and consequently an extensive work done by Tait 

on characterizing the various types of knots, has evolved into a very powerful mathematical field which 

has the potential to unlock the fundamental principles guiding the formation of the elementary 

structures [1-4].  

Mathematically the knot structures are algebraically represented by knot-invariants, which are 

polynomials which remain unchanged for the equivalent knots. The earliest example of such 

polynomials is Alexander polynomial. The other well-known examples are Alexander-Conway 

polynomial, Jones polynomial, and HOMFLY polynomial. We must remember that these knot 

polynomials represent a three-dimensional topology. Conventionally we develop a mathematical 

structure for a physical knot based on certain mathematical rules, determine the knot invariants and 

correlate them to the probability amplitudes. A desirable quality of these knot-invariants is to make 

distinction between the knots based on properties such as chirality as was shown by Jones polynomial. 

Clearly more are the properties distinguished by a knot-invariant more robust is the polynomial. 

In the following work we take a slightly different approach. Rather than assuming the existence 

of a knot, we form a knot step-by-step in a space characterized by entropy. The polynomial is written in 

2+1 dimensional measurement space instead of conventional R3 space. Please note that 2+1 

dimensional space in the context of knots, is not the 2+1 dimensional Minkowski space. Since the 
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entropy is being considered, the order in which the moves are being made while forming the knot 

becomes important. We will consider the most elementary of the prime knots, the trefoil knot and 

develop its corresponding polynomials. 

Knot formation 

We consider a source represented by an infinite information space where a string is formed of 

the measurements made by an observer of finite capacity, who is trying to determine the nature of the 

source. In such case the entropy of the system will be continuously increasing and process as being 

measured, will be irreversible. However since the observer has a finite capacity, the process as being 

measured is reversible but only within a quantum 'h', defined by the observer's resources or its 

environment. (Please note that ‘h’ is defined as a quantum for illustrative purposes only and it does not 

represent Planck’s constant.)  

Let us discuss how prime knots will be formed in such space and how they will be represented 

algebraically. The progress of measured information I in a discrete measurement space along the time-

axis can be described as in Eqn. 1, 

𝐼(𝑡 = 0+) = 𝐼(𝑡 = 0) × 𝑒1−𝑞 .                                                                 (1) 

In Equation 1, q is a natural number (q = 1, 2, 3 ...), I(t=0) represents the information available for the 

initial state (t = 0), and I(t = 0+) represents the information available at a later instant, (t = 0+). A knot is 

formed when an observer cannot measure a state in a single measurement (single measurement 

represents zero entropy as loge1 = 0). In that case more than one measurement is needed and the 

entropy comes into the picture. We consider large q values where a statistical phenomenon is 

established. In that case Eqn. 1, is modified to, 
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𝐼(𝑡 = 0+) = 𝐼(𝑡 = 0) × 𝑒−𝑞 .                                                               (2) 

We postulate that a knot is formed and a polynomial is created only when a measurement is 

made by an observer. A finite capacity observer is always in a discrete measurement space. If a state is 

below the observer's capacity threshold we define it as ɛ, where ɛ represents an indeterminate state for 

a finite capacity observer. The knot formation in a discrete measurement space is shown in Fig. 1. 

 

Figure-1: The knot formation in a discrete measurement space. 

Trefoil knot polynomials 

A trefoil knot as formed in a discrete measurement space for a given q-value, is shown in Fig. 2. It is 

a 2-dimensional plane with third dimension representing the motion within the quantum ‘h’ along the 

time-axis. We have the following properties characterizing the knot, 

i. The motion along time-axis is in positive (over-crossing) and negative (under-crossing) directions 

both. This motion is along the perpendicular to the plane of the page. 

ii. The anticlockwise (ACW) or clockwise (CW) motion in the plane of the page. It represents the 

orientation of the knot at each crossing. 

ϵ 

 

ϵ 

Discrete measurement space 

Knot polynomial 
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iii. The order in which the crossing are approached is important. For example in Fig. 2, U2 and O3 

cannot occur before O1. Similarly O3 cannot occur before U2. 

iv. The nature of the first crossing defines the knot as positive or negative. For example if the first 

crossing of the knot is over-crossing (O1), the knot is classified as positive knot. Similarly if the 

first crossing of the knot is under-crossing (U1), the knot is classified as negative knot. 

 

Figure-2: The representation of a positive ACW trefoil knot in a discrete measurement space.  

 

The polynomial for ACW positive trefoil knot is calculated as shown in Table-1. 

Crossing description Sectional polynomial Complete polynomial 

Crossing 0 0j 0j 

Crossing O1 0j×e-h/2 0j+0je-h/2 

Crossing U2 0j(1+e-h/2)×eh/2 = 0j(eh/2 +1) 
(0j+0je-h/2)+0j(eh/2+1)                                   

= 20j+0je-h/2+0jeh/2 

Crossing O3 
(20j+0je-h/2+0jeh/2)×e-h/2                                      

= 0j(2e-h/2+e-h + 1) 

(20j+0je-h/2+0jeh/2 )+0j(2e-h/2+e-h+1)                                        

= 0j(3+3e-h/2+eh/2
 +e-h)                      

Table-1: The polynomial calculation for positive ACW trefoil knot. 

t 

ϵ 

O3 

U2 

O1 
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In calculating the polynomial the ACW orientation is considered positive per trigonometric conventions. 

The sectional polynomial represents the contribution of the specific crossing which is then added to the 

contributions from the previous sections. The polynomial is completed when a knot is formed. We 

define the polynomial variable as t = e-h. The polynomial for a positive ACW trefoil knot can be written 

from the Table-1 as, 3 + 3𝑡
1

2  + 𝑡−
1

2 + 𝑡. The normalized polynomial for a positive trefoil knot is, 1 +

1

3
𝑡−

1

2 + 𝑡
1

2 +
1

3
𝑡 . The coefficients of the polynomial take integer or fractional values. The polynomial 

variable t represents the variation of the information within the quantum ‘h’. 

We can next consider the reflection of positive ACW trefoil knot, which will be positive CW 

trefoil knot (Fig. 3). In this case the orientation direction of the knot changes from ACW to CW while the 

nature of over- and under-crossing and their respective order do not change. The plane of reflection can 

be either vertical or horizontal. In either case only change is in the orientation of the knot. 

 

Figure-3: Positive ACW and CW trefoil knots. 

The calculation of polynomial in this case is shown in Table-2. The CW orientation is negative per 

trigonometric convention. 

t 

ϵ 

O3 

U2 

O1 

ϵ 

O3 

U2 

O1 
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Crossing description Sectional polynomial Complete polynomial 

Crossing 0 0j 0j 

Crossing O1 0j×(-e-h/2) 0j-0je-h/2 

Crossing U2 0j(1-e-h/2)×(-eh/2) = 0j(-eh/2 +1) 
0j-0je-h/2+0j(-eh/2 +1)  

= 20j-0je-h/2-0jeh/2 

Crossing O3 
(20j-0je-h/2–0jeh/2)(-e-h/2) 

= 0j(-2e-h/2 +e-h + 1) 

20j-0je-h/2-0jeh/2 +0j(-2e-h/2 +e-h + 1) 

= 0j(3-3e-h/2- eh/2
 +e-h) 

Table-2: The polynomial calculation for positive CW trefoil knot. 

The polynomial for positive CW trefoil knot can be written as 3 - 3t1/2 -t-1/2 + t where t = e-h. We can 

similarly write the corresponding polynomials for negative ACW and CW knots. The normalized 

polynomials for all four cases i.e. positive ACW, positive CW, negative ACW, and negative CW trefoil 

knots are summarized in the Table-3. 

 

Trefoil knot type  Corresponding Polynomial 

Positive ACW 1 +
1

3
𝑡−

1
2 + 𝑡

1
2 +

1

3
𝑡  

Positive CW 1 −
1

3
𝑡−

1
2 − 𝑡

1
2 +

1

3
𝑡  

Negative ACW 1 + 𝑡−
1
2 +

1

3
𝑡

1
2 +

1

3
𝑡−1 

Negative CW 1 − 𝑡−
1
2 −

1

3
𝑡

1
2 +

1

3
𝑡−1 

Table-3: Knot polynomials for a trefoil knot in a discrete measurement space. 
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Discussion 

For a trefoil knot four algebraic combinations are available, with the “alternating crossing” and the 

“order of crossing” constraints as shown in Table-3. The structures are clearly distinguishable from each 

other as each polynomial representation is unique. These polynomials have the characteristics of 

Laurent polynomials. They can be thought of a state (positive trefoil knot), its anti-state (negative trefoil 

knot) and their respective reflections (CW and ACW).  We note that in order for a knot to form, over- 

and under-crossings must be alternated. A minimum of three crossings (over- and under- combined) are 

required. 

The description of the structure is in 2+1 dimensional plane. The effect of entropy in the observer's 

environment is accounted for by ensuring that the crossings are ordered and 'h' is defined in 1-

dimensional plane. The quantum 'h' signifies the interaction or the measurement made by an observer 

and its value represents the observer's capacity. The physical description of a knot for the observer 

making the measurements will be developed in the orientation plane which is 2-dimensional. The 1-

dimensinal and 2-dimensional planes for a knot are orthogonal to each other. 

Charge (state and anti-state, 'h'), Parity (reflection along an axis or equivalently ACW or CW knot 

orientation) and Time (order of the crossings, 'h') symmetries are addressed within the same 

polynomial. Chiral property can be distinguished as the polynomials representing ACW and CW 

orientations for positive and negative knots are unique. 
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We can write a generalized algebraic expression for the normalized polynomials corresponding to 

the trefoil knot as in equation-3. 

1 + 𝑠1. 𝐾1𝑡−
1

2 + 𝑠2. 𝐾2𝑡
1

2 + 𝐾3𝑡−1 + 𝐾4𝑡 .                                                – (3) 

 

In Eqn. 3 the coefficients (K1, K2, K3, K4) take the values (
1

3
, 1,0,

1

3
) for positive trefoil knot, and values 

(1,
1

3
,

1

3
, 0) for negative trefoil knot. The coefficients s1 and s2 take the values (1, 1) and (-1, -1) for ACW 

and CW orientations of the trefoil knot.  

We can write an additional set of the normalized polynomials for positive and negative trefoil knots 

for the values equal to (1, -1) and (-1, 1) for the coefficients (s1, s2) as shown in eqn. 4. The values of the 

coefficients (K1, K2, K3, K4) are left unchanged. 

1 +
1

3
𝑡−

1
2 − 𝑡

1
2 +

1

3
𝑡  

 

1 −
1

3
𝑡−

1
2 + 𝑡

1
2 +

1

3
𝑡  

- (4) 

1 + 𝑡−
1
2 −

1

3
𝑡

1
2 +

1

3
𝑡−1 

 

1 − 𝑡−
1
2 +

1

3
𝑡

1
2 +

1

3
𝑡−1 

 

 

We therefore have a set of eight normalized polynomials for a trefoil knot in a discrete 

measurement space. The physical interpretation of the polynomials represented by Eqn. 4 is yet to be 

ascertained. 

It should be noted that the 2-dimensional knot-orientation plane is essentially 1-dimensional if the 

knot orientation values are taken to be +1 for ACW and -1 for CW, as we have done so far. The 
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description in this case is 1+1 dimensional. However we will require a 2-dimensional plane because in a 

discrete measurement space while forming a knot a finite capacity observer cannot retrace its path 

exactly and therefore a loop is formed. For example an observer with lower capacity, is likely to form a 

much larger loop in the knot orientation plane compared to the loop formed by a higher capacity 

observer. Therefore a 2-dimensional orientation plane is required for the comparison of the observers. 

 

Summary 

 The development of the knot polynomials in an entropic 1+2 dimensional discrete measurement 

space for a trefoil knot is described. The polynomial variable represents the capacity of the observer 

making the measurements. The polynomials which are of Laurent nature, are able to uniquely describe 

charge, parity and time symmetries. The methodology described can be used to develop polynomials for 

higher order knot structures.  
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The aim of this work is to develop a fundamental mathematical structure which can be used for 

physical description in (t,x,y,z) space. The knot invariants provide such structures. The knot polynomials 

are calculated in a measurement space which accounts for the entropy inherent in a physical process. 

We are able to develop polynomials for the most basic of the prime knots, known as trefoil knot. These 

polynomials describe the basic symmetries such as charge, parity, and time. We expect to calculate 

polynomials for higher order knots. 


