Limit theorems for k-subadditive lattice group-valued capacities in the filter convergence setting

A. Boccuto [∗] X. Dimitriou†

Abstract

We investigate some properties of lattice group-valued positive k-subadditive set functions, and in particular we give some comparisons between regularity and continuity from above. Moreover we prove different kinds of limit theorems in the non-additive case with respect to filter convergence, in which it is supposed that the involved filter is diagonal.

Definitions 0.1 (a) Given a free filter F of N, we say that a subset of N is F-stationary iff it has nonempty intersection with every element of $\mathcal F$. We denote by $\mathcal F^*$ the family of all $\mathcal F$ -stationary subsets of N.

(b) A free filter F of N is said to be *diagonal* iff for every sequence $(A_n)_n$ in F and for each $I \in \mathcal{F}^*$ there exists a set $J \subset I$, $J \in \mathcal{F}^*$ such that $J \setminus A_n$ is finite for all $n \in \mathbb{N}$

Let R be a Dedekind complete lattice group, G be any infinite set, Σ be a σ -algebra of subsets of G , and k be a fixed positive integer.

Definitions 0.2 (a) A *capacity* $m : \Sigma \to R$ is a set function, increasing with respect to the inclusion and such that $m(\emptyset) = 0$.

(b) A capacity m is said to be k-subadditive on Σ iff

$$
m(A \cup B) \le m(A) + k m(B) \quad \text{whenever } A, B \in \Sigma, A \cap B = \emptyset.
$$
 (1)

(c) We say that a capacity m is *continuous from above at* \emptyset iff

$$
(O)\lim_n m(H_n) = \bigwedge_n m(H_n) = 0
$$

whenever $(H_n)_n$ is a decreasing sequence in Σ with $\bigcap^{\infty} H_n = \emptyset$. $n=1$

[∗]Dipartimento di Matematica e Informatica, University of Perugia, via Vanvitelli 1, I-06123 Perugia, Italy; e-mail: boccuto@yahoo.it, antonio.boccuto@unipg.it (Corresponding author)

[†]Department of Mathematics, University of Athens, Panepistimiopolis, Athens 15784, Greece; email: xenofon11@gmail.com, dxenof@math.uoa.gr

(d) A capacity m is $k-\sigma$ -subadditive on Σ iff

$$
m\left(\bigcup_{n=1}^{\infty} E_n\right) \le m(E_1) + k \sum_{n=2}^{\infty} m(E_n)
$$
\n⁽²⁾

for any sequence $(E_n)_n$ from Σ .

Proposition 0.3 Let $m : \Sigma \to R$ be a k-subadditive capacity, continuous from above at \emptyset . Then m is k - σ -subadditive.

Definitions 0.4 (a) A capacity $m : \Sigma \to R$ is said to be *continuous from above* (resp. *below*) iff

$$
m(E) = (O) \lim_{n} m(E_n) = \bigwedge_{n} m(E_n)
$$

(resp. $m(E) = (O) \lim_{n} m(E_n) = \bigvee_{n} m(E_n)$)

whenever $(E_n)_n$ is a decreasing (resp. increasing) sequence in Σ , with $E = \bigcap_{n=1}^{\infty} E_n$ $n=1$ E_n (resp. $E = \bigcup_{n=1}^{\infty}$ $n=1$ E_n).

(b) A capacity $m : \Sigma \to R$ is (s) -bounded on Σ iff there exists an (O) -sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ and for every disjoint sequence $(C_h)_h$ in Σ there is a positive integer h_0 with $m(C_h) \leq \sigma_p$ whenever $h \geq h_0$.

(c) Let τ be a Fréchet-Nikodým topology on Σ . A capacity $m : \Sigma \to R$ is said to be τ -continuous on Σ iff for each decreasing sequence $(H_n)_n$ in Σ , with τ - $\lim_n H_n = \emptyset$, we get

$$
(O) \lim_{n} m(H_n) = (O) \bigwedge_{n} m(H_n) = 0.
$$

(d) Let $\mathcal{G}, \mathcal{H} \subset \Sigma$ two lattices, such that \mathcal{H} is closed under countable unions, and the complement of every element of H belongs to G. We say that a capacity $m : \Sigma \to R$ is regular iff for every $E \in \Sigma$ there are two sequences $(F_n)_n$ in H and $(G_n)_n$ in G, with

$$
F_n \subset F_{n+1} \subset E \subset G_{n+1} \subset G_n \quad \text{for any } n,
$$
\n⁽³⁾

and (O) $\lim_{n} m(G_n \setminus F_n) = \bigwedge$ n $m(G_n \setminus F_n) = 0.$

The next result links continuous from above at \emptyset and regularity of capacities.

Theorem 0.5 Let R be a Dedekind complete weakly σ -distributive lattice group, (G, d) be a compact metric space, Σ be the σ -algebra of all Borel sets of G, G and H be the lattices of all open and all compact subsets of G respectively. Then every k-subadditive regular capacity $m : \Sigma \to R$ is continuous from above at \emptyset .

Conversely, if R is also super Dedekind complete, then every k-subadditive capacity $m: \Sigma \to R$, continuous from above at \emptyset , is regular.

We now give the following limit theorems for non-additive lattice group-valued capacities with respect to filter convergence.

Theorem 0.6 Let F be a diagonal filter of N, $m_j : \Sigma \to R$, $j \in \mathbb{N}$, be an equibounded sequence of k-subadditive capacities, such that $m_0(E) := (O\mathcal{F}) \lim m_j(E)$ exists in R for every $E \in \Sigma$, m_0 is j continuous from above at \emptyset and m_j is (s)-bounded on Σ for every $j \geq 0$.

If $R \subset C_{\infty}(\Omega)$ is as in the Maeda-Ogasawara-Vulikh representation theorem, then for every $I \in \mathcal{F}^*$ and for each disjoint sequence $(C_h)_h$ in Σ there exist a set $J \subset I$, $J \in \mathcal{F}^*$, and a meager set $N \subset \Omega$ with

$$
(O)\lim_{h} \left(\bigvee_{j \in J} m_j(C_h)\right) = 0
$$
\n⁽⁴⁾

and

$$
\lim_{h} (\sup_{j \in J} m_j(C_h)(\omega)) = 0 \quad \text{for each } \omega \in \Omega \setminus N. \tag{5}
$$

Theorem 0.7 Let R, Ω , F be as in Theorem 0.6, $m_j : \Sigma \to R$, $j \in \mathbb{N}$, be an equibounded sequence of k-subadditive capacities. Assume that $m_0(E) := (O\mathcal{F}) \lim_j m_j(E)$ exists in R for every $E \in \Sigma$.

Then for every $I \in \mathcal{F}^*$ and for each decreasing sequence $(H_n)_n$ in Σ with

$$
(O) \lim_{n} m_j(H_n) = \bigwedge_{n} m_j(H_n) = 0 \quad \text{for every } j \ge 0
$$
 (6)

there are a set $J \subset I$, $J \in \mathcal{F}^*$, and a meager set $N^* \subset \Omega$ with

$$
\lim_{n} \left(\sup_{j \in J} m_j(H_n)(\omega) \right) = \inf_{n} \left(\sup_{j \in J} m_j(H_n)(\omega) \right) = 0 \tag{7}
$$

and

$$
(O) \lim_{n} \left(\bigvee_{j \in J} m_j(H_n)\right) = \bigwedge_{n} \left(\bigvee_{j \in J} m_j(H_n)\right) = 0.
$$
 (8)

Theorem 0.8 Let F, R, Ω , k, G, Σ be as in Theorem 0.7, τ be a Fréchet-Nikodým topology on $\Sigma, m_j : \Sigma \to R$, $j \in \mathbb{N}$, be an equibounded sequence of k-subadditive capacities, τ -continuous (resp. continuous from above at \emptyset) on Σ . Let $m_0(E) := (O\mathcal{F}) \lim_j m_j(E)$ exist in R for every $E \in \Sigma$, and suppose that m_0 is τ -continuous (resp. continuous from above at \emptyset) on Σ .

Then for every $I \in \mathcal{F}^*$ and for each decreasing sequence $(H_n)_n$ in Σ , with $\tau \cdot \lim_n H_n = \emptyset$ (resp. $\bigcap^{\infty} H_n = \emptyset$), there exist a set $J \subset I$, $J \in \mathcal{F}^*$, and a meager set $N \subset \Omega$, satisfying (7) and (8). $n=1$

Theorem 0.9 Let F, R, Ω , G, Σ be as in Theorem 0.7, G, $\mathcal{H} \subset \Sigma$ be two lattices, such that the complement of every subset of H belongs to G, and H is closed under countable unions. Let $m_i : \Sigma \to$ $R, j \in \mathbb{N}$, be a sequence of k-subadditive regular capacities, such that $m_0(E) = (O\mathcal{F}) \lim_j m_j(E)$ for

any $E \in \Sigma$ and m_0 is regular. Then we get:

(R3) for every $E \in \Sigma$ and $I \in \mathcal{F}^*$ there are $J \in \mathcal{F}^*$, $J \subset I$, and two sequences $(F_n)_n$ in \mathcal{H} , $(G_n)_n$ in G , satisfying (3) and with

$$
(O) \lim_{n} \left(\bigvee_{j \in J} m_j(G_n \setminus F_n) \right) = \bigwedge_{n} \left(\bigvee_{j \in J} m_j(G_n \setminus F_n) \right) = 0,
$$

and furthermore there exists a meager set $N\subset \Omega$ with

(O)
$$
\lim_{n} (\sup_{j \in J} m_j(G_n \setminus F_n)(\omega)) = \inf_{n} (\sup_{j \in J} m_j(G_n \setminus F_n)(\omega)) = 0
$$

for each $\omega \in \Omega \setminus N$.