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Abstract: Let {Xn, n ≥ 1} be independent and identically distributed random variables

with each Xn following skew normal distribution. Let Mn = max{Xk, 1 ≤ k ≤ n} denote the

partial maximum of {Xn, n ≥ 1}. Liao et al. (2014) considered the convergence rate of the dis-

tribution of the maxima for random variables obeying the skew normal distribution under linear

normalization. In this paper, we obtain the asymptotic distribution of the maximum under power

normalization and normalizing constants as well as the associated pointwise convergence rate under

power normalization.
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1 Introduction

The skew normal distribution is introduced by Azzalini[1]. Because of being able to

model skew data, it has more widely applied areas than normal distribution. The probability

density function (pdf) of the standard skew normal distribution is

fλ(x) = 2ϕ(x)Φ(λx), −∞ < x < +∞,

where ϕ(·) stands for the standard normal pdf and Φ(·) stands for the standard normal

cumulative distribution function (cdf). It is well-known that if λ = 0, the the standard skew

normal distribution deduces to the standard normal distribution.

One interesting problem in extreme value theory is to investigate the rate of uniform

convergence of Fn(·) to its extreme value distribution function. For the uniform convergence
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rate under linear normalization, see Hall[2], Peng et al.[3], Liao and Peng[4], Liao et al[5]. and

Chen and Huang[6]. For the uniform convergence rate under power/nonlinear normalization,

see Chen et al[7]. and Chen and Feng[8]. For the rate of convergence under second regular

condition, see Peng and Nadarajah[9] and Liu and Peng[10].

The aim of this paper is to derive the asymptotic distribution of the distribution of the

maxima for random variables following the skew normal distribution with parameter λ under

power normalization and the associated pointwise convergence rate under power normaliza-

tion. Our main result could be used to measuring the error committed by substituting the

exact distribution of the maximum with the asymptotic distribution in analytical studies.

2 Preliminary Lemmas and Main results

In this section, we give some lemmas which need to prove our main results.

Let Fλ(x) and fλ(x) denote the cdf and pdf of the skew normal distribution, respectively.

Liao et al.[5] obtained the Mills ratios of the skew normal distribution as following lemma:

Lemma 2.1 For all x > 0, we have

(a) if λ < 0,
1− Fλ(x)

fλ(x)
∼ 1

(1 + λ2)x
, (2.1)

as x → +∞;

(b) if λ > 0,
1− Fλ(x)

fλ(x)
∼ 1

x
. (2.2)

as x → +∞.

Liao et al.[5] also established the distributional tail representation of the skew normal

distribution as following lemma:

Lemma 2.2 Let Fλ(x) denote the cdf of the skew normal distribution. Then

1− Fλ(x) = c(x) exp(−
∫ x

1

g(t)

f(t)
dt), (2.3)

where

(a) if λ < 0,

c(x) → exp{−(1 + λ2)/2}
(−λ)(1 + λ2)π

, as x → +∞,

f(x) =
1

(1 + λ2)x
, g(x) = 1 +

2

(1 + λ2)x2
; (2.4)

(b) if λ > 0,

c(x) →
(

2

πe

) 1
2

, as x → +∞,

f(x) =
1

x
, g(x) = 1 +

1

x2
. (2.5)



Remark 2.1 By Lemma 2.2 combining with Corollary 1.7 of Resnik[11] we have Fλ ∈
Dl(Λ) and the associated linear norming constants an and bn.

Next we cite some results which come fromMohan and Ravi[12]. Let r(F ) = sup{x|F (x) <

1} represent the right end point of a distribution F .

Lemma 2.3 Let F be one distribution function. If F ∈ Dl(Λ) and r(F ) = +∞, then

F ∈ Dp(Φ1)

with the power normalizing constants αn and βn are defined by

αn = bn, βn = an/bn, (2.6)

where Φ1(x) = exp(−1/x).

Lemma 2.4 Let F be a distribution function, then F ∈ Dp(Φ1) if and only if

(i)r(F ) > 0, and

(ii) limt→r(F )
1−F (t exp(yf(t)))

1−F (t)
= exp(−y), for some positive valued function f .

If (ii) holds for some f then −
∫ r(F )

a
(1−F (x))/xdx < ∞ for 0 < a < r(F ) and (ii) holds

with the choice f(t) = 1/(1−F (t))
∫ r(F )

t
(1−F (x))/x dx. The power normalization constants

may be chosen as αn = F←(1−1/n) and βn = f(αn), where F
←(x) = inf{y : 1−F (y) ≥ x}.

Now we give the asymptotic distribution of the distribution of the maxima for indepen-

dent and identically distributed random variables obeying the skew normal distribution.

Theorem 2.1 Let {Xn, n ≥ 1} be a sequence of independent and identically distributed

random variables with common distribution F which follows the skew normal distribution.

Then F ∈ Dp(Φ1), i.e.

lim
n→∞

P

(∣∣∣∣Mn

αn

∣∣∣∣ 1
βn

sign(Mn) ≤ x

)
= lim

n→∞
Fn(αn|x|βn sign(x)) = Φ1(x),

and the normalizing constants can be chosen as αn = bn, βn = an/bn, where

(i) for λ < 0,

αn =

(
2 log n

1 + λ2

) 1
2

− log log n+ log(−2λπ)

(1 + λ2)
1
2 (2 log n)

1
2

+ o((log n)−
1
2 )

βn =
1

(1 + λ2)α2
n

∼ 1

2 log n
. (2.7)

(ii) for λ > 0,

αn = (2 log n)
1
2 − log log n+ log π

2(2 log n)
1
2

+ o((log n)−
1
2 )

βn =
1

α2
n

∼ 1

2 log n
. (2.8)



We provide another main result. Theorem 2.2 shows the convergence rate of Fn(αnx
βn)

to its limit is proportional to 1/ log n.

Theorem 2.2 Let {Xn, n ≥ 1} be a sequence of independent identically distributed

random variables with common distribution F following skew normal distribution. For λ ∈
R, x > 0 and sufficiently large n,

|Fn(αnx
βn)− Φ1(x)| ∼ exp (−x−1)x−1βn, (2.9)

where power norming constants αn and βn are defined by (2.7) and (2.8).

3 Proofs

Proof of Theorem 2.1. We just prove the case of λ < 0, as for the case of λ > 0 is similar.

By Remark 2.1 and Lemma 2.3, we have F ∈ Dp(Φ1). By (2.1) and Lemma 2.4, we can

choose the power noming constant αn that make it satisfy the equation 1 − Fλ(αn) = 1/n.

Let
2ϕ(αn)Φ(λαn)

(1 + λ2)αn

=
1

n
. (3.1)

By some elementary calculations similar to the of proof Proposition 3 of Liao et al., we have

αn =

(
2 log n

1 + λ2

) 1
2

− log log n+ log(−2λπ)

(1 + λ2)
1
2 (2 log n)

1
2

+ o((log n)−
1
2 ).

By (2.4) and Lemma 2.4, we have

βn =
f(αn)

αn

=
1

(1 + λ2)α2
n

∼ 1

2 log n
. (3.2)

The proof of the result is complete.

Proof of Theorem 2.2. In this we just give the proof of the case of λ < 0, as for the proof

of the case of λ > 0 is similar.

Noting the following Mills ratio concerning the standard normal distribution provided

by Mills[13]: for all x > 0, as x → +∞,

1− Φ(x)

ϕ(x)
∼ 1

x
,

and utilizing the symmetric property of Φ(−x) = 1− Φ(−x), and (2.1), we have

1− Fλ(x) = x−2(1 + λ2)−1(−λπ)−1 exp

(
−1 + λ2

2
x2

)
(1 +O(x−2)).

So,

1− Fλ(αnx
βn) = (αnx

βn)−2(1 + λ2)−1(−λπ)−1 exp

(
−1 + λ2

2
(αnx

βn)2
)
(1 +O((αnx

βn)−2))

= α−2n (1 + λ2)−1(−λπ)−1 exp

(
−1 + λ2

2
α2
n

)
x−2βn

× exp

(
−(1 + λ2)α2

n

2
(x2βn − 1)

)
(1 +O((αnx

βn)−2)). (3.3)



Noting that ex = 1 + x+O(x2), as x → 0, and by (3.2), we have

1 + (αnx
βn)−2 = 1 + (1 + λ2)βnx

−2βn

= 1 + (1 + λ2)βn(1− 2βn log x+O(β2
n))

= 1 +O(βn). (3.4)

Substituting (3.4) into (3.3) and combining (3.1) with (3.2), we have

1− F (αnx
βn) =

1

n
x−2βn exp

{
− (1 + λ2)α2

nβn

2

x2βn − 1

βn

}
(1 +O(βn))

=
1

n
x−2βn exp

{
−x2βn − 1

2βn

}
(1 +O(βn)).

Observe that
x2βn − 1

βn

= 2 log x+ 2βn log
2 x+O(β2

n).

Hence, we have

1− F (αnx
βn) =

1

n
x−2βn exp(− log x− βn log

2 x+O(β2
n))(1 +O(βn))

=
1

nx
exp(−2βn log x− βn log

2 x+O(β2
n))(1 +O(βn))

=
1

nx
(1− βn(2 log x+ log2 x) +O(βn)).

Noting log(1− x) = −x+O(x2) and ex = 1 + x+O(x2) as x → 0, thus, we have

Fn(αnx
βn)− exp(−1

x
) =

{
1− 1

nx
(1− βn(2 log x+ log2 x) +O(βn))

}n

− exp(−1

x
)

= exp

(
−1

x
+

1

x
βn(2 log x+ log2 x) +O(βn)

)
− exp(−1

x
)

= exp(−1

x
)(
1

x
βn(2 log x+ log2 x) +O(βn)).

Our desired result follows.
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幂赋范下偏正态分布极值的收敛速度
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摘要: 令{Xn, n ≥ 1}是独立同分布随机变量序列并且每个变量均服从偏正态分布. 再令Mn =

max{Xk, 1 ≤ k ≤ n}表示{Xn, n ≥ 1}的部分最大值. 廖昕等人(2014)考虑了线性赋范下随机变量序列同服

从偏正态分布最大值分布的收敛速. 在这篇文章中, 我们得到了幂赋范下最大值分布的渐近分布和赋范常数

以及幂赋范下相应的逐点收敛速度

.

关键词: 渐近分布; 最大值; 收敛速度; 偏正态分布
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