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Abstract:   
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I.Introduction 
 
A number of experiments on trapped single ions or atoms have been performed in recent years [1,2,3,4]. 
Monitoring the intensity of scattered laser light off of such systems has shown abrupt changes that have been 
cited as evidence of "quantum jumps" between states of the scattered ion or atom . The existence of such 
jumps was required by Bohr in his theory of the atom. Bohr‟s quantum jumps between atomic states [5] were 
the first form of quantum dynamics to be postulated. He assumed that an atom remained in an atomic 
eigenstate until it made an instantaneous jump to another state with the emission or absorption of a photon. 
Since these jumps do not appear to occur in solutions of the Schrodinger equation, something similar to 
Bohr's idea has been added as an extra postulate in modern quantum mechanics. 
Stochastic quantum jump equations [6], [7],[8]were introduced as a tool for simulating the dynamics of a 
dissipative system with a large Hilbert space and their links with quantum measurement the or were also 
noted [9],[10],[11],[12],[13].This measurement interpretation is generally known as quantum trajectory 
theory [14].By adding filter cavities as part of the apparatus, even the quantum jumps in the dressed state 
model can be interpreted as approximations to measurement-induced jumps [15]. 
The question arises whether an explanation of these jumps can be found to result from an Colombeau 
solution [16]-[18](  (         of the Schrödinger equation alone without additional postulates. We found 
exact quasi-classical asymptotic of the quantum averages with position variable with localized initial data. 
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i.e. we found the limiting Colombeau quantum averages (limiting Colombeau quantum trajectories) such that 
[18]: 
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and limiting quantum trajectories such that 
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The physical interpretation of these asymptotic given below, shows that the answer is "yes" for the  
limiting quantum trajectories with localized initial data. 

 
II. Colombeau solutions of the Schrödinger equation and corresponding path integral 
representation 
 
Let H be a complex infinite dimensional separable Hilbert space, with inner product       and norm      
Let us consider Schrödinger equation: 
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Here operator H(         is essentially self-adjoint,  ̂(  is the closure of H(  . 
Theorem 2.1. [19],[20].Assume that:(1)  ₀(x) L₂(  ),(2)   (     is continuous and      
          [   ]  (          Then corresponding solution of the Schrödinger equation (2.1)-(2.2) 

exist and can be represented via formulae 
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where we have set       and 
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   Let   (  be a trajectory; that is, a function from[   ]     with   (     and set  (    

               We rewrite Eq.(2.3) for a future application symbolically for short of the following form 
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where we have set (i)  (  (         (                   and (ii) [  (  ]that is, a 
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Trotter and Kato well known classical results give a precise meaning to the Feynman integral when the 
potential V(    is sufficiently regular [18]-[19]. However if potential V(     is a non-regular this is well 
known problem to represent solution of the Schrödinger equation (2.1)-(2.2) via formulae (2.3), see [19]. 
We avoided this difficulty using contemporary Colombeau framework [16]-[18]. Using  

replacement    
  

          
   (   ]    we obtain from potential V(    regularized  

potential   (       (   ]  such that     (      (    and 
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Here  (       Colombeau algebra of Colombeau generalized functions [16]-[18]. 
 
Finally we obtain regularized Schrödinger equation of Colombeau form [16]-[18]: 
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Using the inequality (2.7) Theorem 2.1 asserts again that corresponding solution of the Schrödinger  
equation (2.8)-(2.9)exist and can be represented via formulae [18]:  
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where we have set        and 
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where we have set    
  

 
   

 
We rewrite Eq.(2.10) for a future application symbolically of the following form 
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For the limit in RHS of (2.12) and (2.13) we will be used canonical path integral notation 
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Substitution        into RHS of the Eq.(2.10) gives 
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We rewrite Eq.(2.15) for a future application symbolically of the following form 
 

(  (    )  (         [  (  ]  (  (  )  (    
   *

 

 
  (  (     +)

 
   (2.16) 
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For the limit in RHS of (2.16) and (2.17) we will be used following path integral notation 
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Let us consider now regularized oscillatory integral 
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Lemma2.1. (Localization Principle [25]-[26]) Let   be a domain in      and     

 (    
be a smooth function of compact support,      (     (   ] be a real valued smooth function  
without stationary points in     (  , i.e.     (     for      Let   be a differential operator 
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Lemma2.2. (Generalized Localization Principle) Let    be a domain in      and      
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be a real valued smooth function without stationary points in     (  , i.e.     (     for      
and let (  (    )  be infinite sequence      
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Then there exist infinite sequence {  }               such that  
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Proof. Equality (2.23) immediately follows from (2.21). 
 
Remark2.1. From Lemma2.2 follows that stationary phase approximation is not a valid asymptotic  
approximation in the limit      for a path-integral (2.14) and (2.18). 
 

 
III. Exact quasi-classical asymptotic beyond Maslov canonical operator. 
 
Theorem3.1. Let us consider Cauchy problem (2.8) with initial data   (   is given via formula 
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(1) We assume now that: (i) (  (    )   (   , (ii)    (      (             and  

(iii)     function (     is a polynomial on variable   (        , i.e. 
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(2) Let  (           (  (               (          )be the solution of the boundary problem 

 
    (          

   
     [ (    ]  (           [  (    ]  (3.3) 

 
 (              (             (3.4) 
 

Here   (              (           (  (               (          )
 
  

 

  (     (*
  (    

   
+
   

   *
  (    

   
+
   

)and     [ (    ]  [
   (    

      
]
   

  (3.5) 

 
(3) Let (         be the master action given via formula 
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where master Lagrangian  ( ̇      are 
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Let        (          be solution of the linear system of the algebraic equations 
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(4) Let  ̂   ̂(           be solution of the linear system of the algebraic equations 
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Assume that: for a given values of the parameters       the point  ̂   ̂(       is not a focal point on a 
corresponding trajectory is given by corresponding solution of the boundary problem (3.3).Then for the 
limiting quantum average given via formulae (1.1) the inequalities is satisfied: 
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Thus one can to calculate the limiting quantum trajectory corresponding to  
potential  (    by using transcendental master equation 
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Proof. From inequality (A.15) and Theorem A1, using inequalities (A.53.a) and (A.53.b) we obtain 
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We note that 
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From Eq.(3.18) one obtain  
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Let us calculate now path integral  ̆   (         and path integral  ̆   (           

using stationary phase approximation. From Eq.(A.23) follows directly that action            
  ( ̇        coincide with master action  (            given via formulae (3.6)-(3.8)  
and therefore from Eq.(3.22) and Eq.(3.23) one obtain 
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From Eq.(3.17) and Eq.(3.24) we obtain 
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Substitution Eq.(3.25) into Eq.(3.26) gives 
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Let us calculate now integral  ̆   (       and integral  ̆   (       using stationary  

phase approximation. Let        (          be the stationary point of master  
action  (         and therefore Eq.(3.9) is satisfied. Having applied stationary phase  
approximation one obtain 
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Substitution Eq.(3.28)-Eq.(3.29) into Eq.(3.21) gives  
 

          ̆ (     (            
 

 
[ ̆   (     (             ̆   (     (           ]     

 

                  [|          
(         (      )|]

 
 

 [    ]
 

   (   (      )   

 

                ,   *
 

 
 (         (      )+     * 

 

 
 (         (      )+-     

 

   [|          
(         (      )|]

 
 

 [    ]
 

   (   (      )   *
 

 
 (         (      )+   (3.30) 

 
Substitution Eq.(3.30) into Eq.(3.16) gives 
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Similarly one obtain 
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Substitution Eq.(3.1) into Eq.(3.33) gives 
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Let us calculate now integral (3.34) using Laplace‟s approximation. It is easy to see that  
corresponding stationary point  ̂   ̂(           is the solution of the linear system of the  
algebraic equations (3.10). Therefore finally we obtain  
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Substitution Eq.(3.35) into inequality (3.13) gives the inequality (3.11). The inequality (3.11) 
completed the proof. 
 
 

IV. Quantum anharmonic oscillator with a cubic potential supplemented by additive 
sinusoidal driving. 
 
In this subsection we calculate exact quasi-classical asymptotic for quantum anharmonic oscillator with a 
cubic potential supplemented by additive sinusoidal driving. Using Theorem3.1 we obtain corresponding 
limiting quantum trajectories given via Eq.(1.3). 
 
Let us consider quantum anharmonic oscillator with a cubic potential 
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supplemented by an additive sinusoidal driving. Thus 
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The corresponding master Lagrangian given by (3.7), are 
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We assume now that: 
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The corresponding master action (        given by Eq.(3.6), are 
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The linear system of the algebraic equations (3.9) are 
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The linear system of the algebraic equations (3.10) are 
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Therefore the solution of the linear system of the algebraic equations (3.10) are 
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Transcendental master equation (3.11) are 
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Finally from Eq.(4.10) one obtain 
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Numerical Examples. 
 
Example1.  ₀                              
 

   

 
Pic.1. Limiting quantum trajectory  (      Pic.2. Limiting quantum trajectory  (               
with a jump.                       with a jump. 
           
 

 V. Comparison exact quasi-classical asymptotic with stationary-point approximation.  
 
 
We set now      Let us consider now path integral (2.14) with   ( ̇(    (      given via formula 
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Note that for corresponding propagator   (         the time discretized path-integral representation  
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Here the initial- ₀ and end-points    are fixed by the prescribed  ₀ and by the additional constraint 
       
Let us calculate now integral (5.2) using stationary-point approximation. Denoting an critical points of the 
discrete-time action (5.3) by      (                 ) it follows that      satisfies the critical point 

conditions are 
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From Eq.(5.2) in the limit     using formally stationary-point approximation one obtain 
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Here the pre-factor     (    ) is given via N-dimensional Gaussian integral of the canonical form as 
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The Gaussian integral in (5.6) is given via canonical formula 
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Here    (    ) denote the determinant of an             matrix with elements       

Let us consider now Cauchy problem (2.8) with initial data   (   is given via formula 
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Note that for corresponding Colombeau solution   (     given via path-integral (2.14) the time discretized 
path-integral representation     (     are  
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Let us calculate now integrals in RHS of Eq.(5.8) using stationary-point approximation. Corresponding critical 
point conditions are 
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From (5.8) we obtain 
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Let as denote      (                        )  (      (         (             (  ) the critical  

point for which the critical point conditions (5.4) are 
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Therefore the time discretized path-integral representation of the Colombeau quantum averages  
given by Eq. (1.1) are 
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where       (   ]      Let us calculate now integrals in RHS of Eq.(5.13) using stationary-point 
approximation. Corresponding critical point conditions are 
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Here        can be calculated using linear recursion (5.12) with initial data          . 
From Eq.(5.13)-Eq.(5.14) one obtain     
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As demonstrated in [24] the determinant appearing in (5.11) can be calculated using second  
order linear recursion: 
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with initial data                             ((      (5.19) 

 
from which the pre-factor     (                  ) in (5.16) follows as 
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In the limit      from critical point conditions (5.12) and (5.14) one obtain     
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In the limit      from a second order linear recursion (5.18) one obtain   
the second order linear differential equation 
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By integration Eq.(5.22) one obtain the first order linear differential equation 
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In the limit      from Eq.(5.16), Eq.(5.20)-Eq.(5.21) and Eq.(5.24) one obtain   
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We set now in Eq.(5.1) 
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Corresponding differential master equation are 
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From Eq.(5.27) one obtain that corresponding transcendental master equation are 
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Numerical  Examples. 
Comparison of the: (1) classical dynamics calculated by using Eq.(5.1) (red curve), (2) limiting quantum 
trajectory  (  calculated by using master equation Eq.(5.28) (blue curve) and (3) limiting quantum 
trajectory calculated by using stationary-point approximation given by Eq.(5.25) (green curve).           

      
                                                                  
 
  Pic.3. Limiting quantum trajectory  (        Pic.4. Limiting quantum trajectory  (   
  without jumps.                       with a jump.                    
 
 
Appendix  
 



Let us consider now regularized Feynman-Colombeau propagator(  (        )   

given by Feynman path integral: 
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(3)   [ (  ]is a positive Feynman “measure”. 
 
Therefore regularized Colombeau solution of the Schrödinger equation corresponding to  
regularized propagator (A.1) are 
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Let us consider now regularized quantum average 
 

(〈 ̂           〉   (         (           
  

  
)
 
  (A.11) 

 
From (A.5) and (A.11) one obtain  
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From Eq.(A.5)-(A.13) one obtain  
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Using replacement   (        (           into RHS of the Eq.(A.9) one obtain 
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Let us rewrite a function   ( (        in the following equivalent form: 
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where       ( (          (           ( (          (             ( (          (      
Let us evaluate now path integral   (         given via Eq.(A.17). Substitution Eq.(A.19) into RHS of the 
Eq.(A.17) gives 
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Let us evaluate now  -dimensional path integral     
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From Eq.(A.27) one obtain the inequality  
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From Inq.(A.28) one obtain the inequality  
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Using replacement   (    
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From (A.29)-(A.35) one obtain 
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Proposition A.1. [21]-[23] Let {    }
     

     
 be a double sequence        . Let                  

Then the iterated limit:       (          ) exist and equal to   if and only if             
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Proposition A.2. Let   
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We note that from (ii) follows that: perturbative expansion  
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vanishes in the limit        From (A.36) and Schwarz's inequality using Proposition A.1, one obtain 
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Let us to choose now an subsequence {   
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From (A.39) and Proposition A.1 one obtain 
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From (A.39), (A.40) and (A.38) one obtain 
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The inequality (A.41) completed the proof of the statement (1). 
 
(II) Let us estimate now  -dimensional path integral  
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From Eq. (A.42) one obtain the inequality  
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Using replacement   (    
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From (A.43)-(A.48) one obtain 
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We note that from (ii) follows that: perturbative expansion  
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From (A.51) and Proposition A.1 one obtain 
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From (A.50), (A.51) and (A.52) one obtain 
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Proof of the statements (3)-(6) is similarly to the proof of the statements (1)-(2). 
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where   (             is given via Eq.(A.22a)- Eq.(A.22b). Then  
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From Eq.(A.56) we obtain 
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Let us to choose now an sequences {  }   
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Therefore from inequality (A.57), Eq.(A.58) and inequality (A.59) we obtain 
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