Proof of 2^e is irrational

Shekh Mohammed Zahid

Email- smz2513@gmail.com

Abstract

 2^{e} is rational or irrational number is not known. It is unsolved problem in analysis [1] .We proved that 2^{e} as irrational number.

Introduction

Irrationality measure is not defined. In this research we proved that 2^{e} is irrational number.

We attack the proof by method of contradiction. We assume that 2^e be rational number. Then we use some logarithms properties and simplification to get a relation between 'e' and assumed rational number, since we known that 'e' is irrational number, we use some further simplification and method to prove that 2^e is irrational number.

Mathematical Proof

Let 2^e be rational number then,

$$2^e = \frac{p}{q}$$
, where $gcd(p,q) = 1$ and $p,q \in Z^+$, $q \neq 1,0$

The reason that $q \neq 1$, because if q = 1 then there exist no 'p' integer for which $p^{1/e}$ is equal to 2. [2]

$$2^e = \frac{p}{q}$$

Taking \log_i on both sides, where j > 0

$$\log_{j}2^{e} = \log_{j}\frac{p}{q}$$

$$e = \log_{2}\frac{p}{q}$$
[3]
using $\log_{h}h^{w} = w$ [4]

So, $\log_2 \frac{p}{q}$ should be irrational number since 'e' is irrational number.

Let us check whether $\log_2 \frac{p}{q}$ is rational, irrational or have conditional properties.

Let $\log_2 \frac{p}{q}$ be rational number then,

 $\log_2 \frac{p}{q} = \frac{m}{n} , \text{ gcd } (m,n) = 1 \text{ and } n \neq 0 \text{ where } m, n \in \mathbb{Z}^+$ $\frac{p}{q} = 2^{\frac{m}{n}}$

Raising both sides by power of 'n'

$$\left(\frac{p}{q}\right)^{n} = 2^{m}$$

$$\therefore \left(\frac{p}{q}\right)^{n} \text{ is always a even number i.e. } \left(\frac{p}{q}\right)^{n} = 2k, \text{ where } k \in Z^{+}.$$

$$\therefore \frac{p}{q} \text{ is also even number i.e. } \frac{p}{q} = 2d \text{ , where } d \in Z^{+}.$$
[5]

Classifying even number

1. Pure even number – The even number that can written as 2^a form where $a \in Z^+$.

Example - 2^3 , 2^5 , 2^{100}

2. Pseudo even number – The even number that can be written as product of even and odd number i.e. in form of $2t \cdot (2u-1)$, where t and $u \in Z^+$ and u > 1.

Example- $12 = 4 \cdot 3$, $82 = 2 \cdot 41$, $20 = 4 \cdot 5$

Proof strategy

So in order to know 2^e is irrational or rational number, we first let that 2^e be rational number .Then we get a relation that $e = \log_2 \frac{p}{q}$. This help us to analyse that the further steps because we know that 'e' as irrational number. After this we try to analyse whether $\log_2 \frac{p}{q}$ is rational or irrational, this is done by again letting $\log_2 \frac{p}{q}$ as rational. By simplification we get that $\frac{p}{q}$ is even number (Using [5]) and we classified $\frac{p}{q}$ as pure even number and pseudo even number, because further we get that both gives different result of rationality measure (whether rational or irrational). Then we take the log₂ of both case, we see that $\log_2 2^a$ is always rational number (using theorem 1.0) and $\log_2 2t$ (2u-1) is always irrational number (using theorem 1.1). But the both cases give that 2^e is irrational number. Since, the $\log_2 2^a$ is rational number but the 'e' is irrational number so this disproves the assumed fact (using [6]) , the next case is that $\log_2 2t$ (2u-1) is irrational number but we see that by expansion of 2^e that 2^e can never be in form of 2t (2u-1) (using [8]). But there is also one case when $\frac{p}{q}$ is equal to 2^{e} but we also disprove this (using [9]). So the all cases disprove our assumption of 2^{e} as rational number, therefore 2^{e} is irrational number.

Cases arise for values of $\frac{p}{q}$:

1.
$$\frac{p}{q} = 2^a$$
, where $a \in Z^+$.

Then $\log_2 2^a$ is a rational number (using theorem 1.0), but 'e' is equal to $\log_2 \frac{p}{q}$ i.e. $\log_2 2^a$, but 'e' is irrational number so it cannot be equal to rational number so $\frac{p}{q} \neq 2^a$. [6]

2.
$$\frac{p}{q} = 2t \cdot (2u-1)$$
, where t and $u \in Z^+$ and $u > 1$.

In this case $\log_2 2t$ (2u-1) is irrational (using theorem 1.1), but $\frac{p}{q} = 2t$ (2u-1) and $\frac{p}{q} = 2^e$

So,
$$2^{e} = 2t \cdot (2u-1)$$

 $2^{1} \cdot 2^{1} \cdot 2^{1/2!} \cdot 2^{1/3!} \cdot 2^{1/4!} \dots = 2t \cdot (2u-1)$
Using $2^{e} = 2^{1} \cdot 2^{1} \cdot 2^{1/2!} \cdot 2^{1/3!} \cdot 2^{1/4!} \dots$, by Taylor expansion of 'e' [7]

This is an absurd result because in the LHS there are only '2' as factors having different powers but in RHS there is a odd factor (2u-1), so by comparing factors of both sides we can claim that LHS \neq RHS are not equal. [8]

But there is one way also which make the $\frac{p}{q}$ as irrational, when $\frac{p}{q}$ is equal to 2^{e} , so in this case $\log_2 2^{e}$ is equal to 'e' But there are three cases arises for certain values of p and q for which $\frac{p}{q} = 2^{e}$: [9]

1.
$$p = 2^e$$
, $q=1$

But both values are impossible because $q \neq 1$ (Using [2]).

2.
$$p=2^c$$
 and $q=2^d$, where $c - d = e$

But in this case c - d $\neq e$, because 'e' is irrational number.

3. p and q be the distinct pseudo even number. So p = 2m(2f-1) and q = 2r(2v-1), where $m, f, r, v \in Z^+$ and f > 1, v > 1.

But in this case $gcd(p,q) \neq 1$, since p and q are even number.

So, all the possible cases does not satisfy the condition of rationality of 2^e . Therefore it contradicts our assumption of 2^e as rational number and so 2^e is irrational number.

Theorems used

<u>Theorem 1.0</u>: $\log_2 2^a$ is rational or irrational number according to the 'a' as rational or irrational number respectively.

<u>Proof</u>: Using base changing properties of logarithm (using [4]) we get $log_2 2^a = a$. Therefore as 'a' is rational or irrational number, it decides whether $log_2 2^a$ as rational or irrational number respectively.

<u>Theorem 1.1</u>: $\log_2 2t$ (2u-1) is always a irrational number, where t and $u \in Z^+$ and u > 1.

<u>Proof</u>: Let $\log_2 2t$ (2u-1) be a rational number

$$\therefore \log_2 2t \cdot (2u-1) = \frac{x}{y} , \text{ where } \gcd(x,y) = 1 , x \text{ and } y \in Z^+ \text{ and } y \neq 0$$
$$2t \cdot (2u-1) = 2^{\frac{x}{y}}$$

Raising both side by power of y

$$(2t)^{y} \cdot (2u-1)^{y} = 2^{x}$$

So, this is an absurd result as the RHS is always a even number, but in LHS there is odd factor i.e. $(2u-1)^y$ is present .By comparing factors of both sides we can claim that LHS is not equal to RHS. Therefore our assumption of $\log_2 2t$ (2u-1) as rational number is wrong, so $\log_2 2t$ (2u-1) is irrational number.

Reference

[1] http://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics

[4] H.S. Hall and S.R. Knight , Higher Algebra , Fourth Edition, London : Macmillan ; New York : Martin's Press ,page no. 177

[7] H.S. Hall and S.R. Knight , Higher Algebra , Fourth Edition , London : Macmillan ; New York : Martin's Press ,page no.188