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1. Introduction

This paper divide some complexity class by using �xpoint and �xpointless area
of Decidable Universal Turing Machine (UTM). Decidable Deterministic Turing
Machine (DTM) have �xpointless combinator that add no extra resources (like
Negation), but UTM makes some �xpoint in the combinator. This means that
we can jump out of the �xpointless combinator system by making more complex
problem from diagonalisation argument of UTM.

As a concrete example, we proof L is not P . We can make Polynomial time UTM
that emulate all Logarithm space DTM (LDTM). LDTM set close under Negation,
therefore UTM does not close under LDTM set. (We can proof this theorem like
halting problem and time/space hierarchy theorem, and also we can extend this
proof to divide time/space limited DTM set.) In the same way, we proof P is not
NP. These are new hierarchy that use UTM and Negation.

2. L is not P

De�nition 1. �DTM � is de�ned as Decidable Deterministic Turing Machine set.
�LDTM � is de�ned as logarithmic space DTM . �pDTM � is de�ned as polynomial
timeDTM . �©DTM � is de�ned asDTM that some resource (time, space) limited.

�UTM � is de�ned as Universal Turing Machine set. �UTM (C)� is de�ned as
minimum UTM that can emulate all M ∈ C. 〈M〉 is de�ned as code number of
a M ∈ DTM that U ∈ UTM emulate. That is, ∀w [U (〈M〉 , w) = M (w)] and
U (〈M〉) = M .

�Negate (C)� is de�ned as minimum Negation system that include C. That is,
∀C [(C ⊂ Negate (C)) ∧ (∀c ∈ Negate (C) [¬c ∈ Negate (C)])].

Theorem 2. ∀r ∈ ©DTM (¬r ∈ ©DTM)

Proof. It is trivial from DTM structure.
If DTM is
M = (Q,Σ,Γ, δ, q0, q1, q2)
then this dual machine
M = (Q,Σ,Γ, δ, q0, q2, q1)
compute ¬M without extra resources.
Therefore negation of ©DTM is also in ©DTM . �

Theorem 3. ∃U ∈ UTM (LDTM) [U ∈ pDTM ]

Proof. It is trivial because some U ′ ∈ UTM can emulate all LDTM in polynomial
time. Therefore, we can make U ∈ pDTM by limiting at polynomial time (if U ′

compute over polynomial time, U reject these input). �
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Theorem 4. L ( P

Proof. We can proof this theorem like halting problem and time/space hierarchy
theorem.

Because of
∀U ∈ UTM (LDTM) ,M ∈ LDTM [U (〈M〉) = M ] 1
all M ∈ LDTM have index 〈M〉. Therefore we can make H which is diagonal-

ization of U .
H (〈M〉) = U (〈M〉 , 〈M〉)

〈M0〉 〈M1〉 〈M2〉 〈M3〉 · · ·
M0 = { > > ⊥ > · · ·
M1 = { ⊥ ⊥ > ⊥ · · ·
M2 = { ⊥ ⊥ ⊥ > · · ·
M3 = { > > ⊥ ⊥ · · ·
...

...
...

...
...

H = { > ⊥ ⊥ ⊥ · · ·
H ∈ pDTM because U ∈ pDTM 2 and H input size is at least half of U .
Mentioned above 2,
∀r ∈ LDTM (¬r ∈ LDTM)
we can make G which is Negation of diagonalization.
G (〈M〉) = ¬H (〈M〉) = ¬U (〈M〉 , 〈M〉)

〈M0〉 〈M1〉 〈M2〉 〈M3〉 · · ·
M0 = { > > ⊥ > · · ·
M1 = { ⊥ ⊥ > ⊥ · · ·
M2 = { ⊥ ⊥ ⊥ > · · ·
M3 = { > > ⊥ ⊥ · · ·
...

...
...

...
...

H = { > ⊥ ⊥ ⊥ · · ·
G = { ⊥ > > > · · ·

G /∈ LDTM because ∀M ∈ LDTM [G (〈M〉) 6= M (〈M〉)]. On the other hand,
G ∈ pDTM because H ∈ pDTM .

Therefore, G ∈ pDTM (G /∈ LDTM) and L ( P . �

We can expand above result to general DTM.

Theorem 5. ∀CC ⊂ DTM [Negate (UTM (Negate (CC))) * Negate (CC)]

Proof. We omit the proof because this proof is same as previous. �

Corollary 6. Negate (UTM (©DTM)) * ©DTM

3. P is not NP

Theorem 7. ∃U ∈ UTM (pDTM) [U ∈ pNTM ]

Proof. We can make some oracle TM which oracle emulate transition function.
npp | np ∈ NP, p ∈ P
p (〈t〉 , w) = t (w)
t ∈ P : transition function
〈t〉:code number of transition function t
w: t's input (state and symbol)
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p (〈t〉 , w) accept if and only if t (w) accept and output t (w).
Oracle TM npp ∈ pNTM and npp can emulate all pDTM . Therefore npp ∈

UTM (pDTM). �

Note 8. npp can change transition function more �exible than pDTM in less time.
In fact, npp can increase transition function with logarithm time (by computing
these transition functions in parallel). Therefore, npp have more chance to compute
more complex problems.

Theorem 9. P ( NP

Proof. (Proof by contradiction.) Assume to the contrary that P = NP .
P = NP means that P = NP = coNP = PH, therefore NP close under

Nagation.
In the same way as mentioned above 4, we get P ( NP . This result contradicting

assumption P = NP .
Therefore P ( NP . �

Corollary 10. P ( coNP

4. Trampoline Hierarchy between Negation and UTM

This result shows that we can jump over border of asymptotic analysis by using
Negation (�xpointless combinator) and UTM (�xpoint creator). Therefore, combi-
nation of UTM and Negation make new complexity class. That is, there are some
Hierarchy of UTM and Negation.
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