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Gravitational waves cause the curvature of space. The curvatures of space lead to the conclusion that

the nature of cosmological redshift and time dilation, is the same effect as the gravitational redshift and time

dilation in a gravitational field. This is confirmed by the fact that the ratio between redshift and time dilation

is the same for both gravitational and cosmological redshifts.

The article Redshift and the Curvature of Space [1] states that if the space is curved, then the nature of

the cosmological redshift and time dilation is the same effect as the gravitational redshift and time dilation in a

gravitational field. However, the nature of the curvature of space is not discussed.

It is known that gravitational waves cause space curvature. However, there is currently no commonly held

opinion on whether the space around us is curved, and in what way. The most detailed study of the curvature of

space by gravitational waves is done by C.W. Misner, K.S. Thorne and J.A. Wheeler in Gravitation [2]. Equation

(35.60) shows how the stress-energy in the waves creates the background curvature.
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Where 𝑇 (𝐺𝑊 )
𝜇𝜈 is the stress-energy tensor for the gravitational waves. In approximating a plane wave, within a

few wavelengths (𝜆) relative to the observer, at 𝑅 >> 𝜆, the stress-energy tensor (equation (35.27)) equals (in

the 𝑧 direction)
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For two bodies of mass 𝑚1,𝑚2 , revolving around a common centre of mass, the amplitude of the radiating

gravitational wave can be described using polar coordinates
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Where the angle 𝜃 - is the angle between the perpendicular to the surface of the orbit and the observer’s line of

vision and 𝜔 - the angular velocity. The observer is outside of the system at a distance 𝑅 from the centre-of-

mass-system. Moreover 𝑅 >> 𝑟 and 𝑅 >> 𝜆 where 𝜆 is the wavelength.

Averaging-out across all direction and time, the sum of squares of the amplitude will equal
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I.e. for the source of the gravitational waves, the sum of squares of the wave amplitude, radiating in any

direction, is on average inversely proportional to the square of the distance from the source.

And, the average gravitational potential at a distance 𝑅 from the source can be written as
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where 𝜙00 is an equivalent to the gravitational potential of the source, conditioned by radiation.

Suppose that all space is uniformly filled with identical sources of gravitational waves.

The gravitational potential relative to the observer at a distance 𝑅 :

𝜙𝑅 =

∫︁ 𝑅

0

𝜙𝑒(𝑟)𝜌𝑑𝑉 (7)

where 𝜌 is the density of sources

I.e. the task is reduced to the classic determination of the gravitational potential of a sphere, only in the

classic task the potential of a unit volume relative to the observer is the same for every point in space.

As a result of solving the equation (7) we get the distribution of the gravitational potential relative to the

observer

𝜙𝑅 = 𝑅𝜙0 (8)

where 𝜙0 proportional to 𝜙00 and the density (amount within the unit of volume) of the sources.

As the gravitational waves influence matter and fields, it will experience attenuation and 𝜙𝑅 will not reach

infinity. Notably, the attenuation, i.e. the conversion of the energy of the wave into other forms, is not necessarily

linearly dependant from the distance (for instance as a result of the accumulation of nonlinearities).

Every theory of a stationary universe must preview the attenuation of gravitational waves for the provision

of stability of the universe, and a uniform distribution of matter in it. This is pertinent to every other theory,

otherwise almost all the energy in the universe will in the end transform into gravitational waves, which would

escape into infinity, and the end of such a universe will be a small amount of stationary pieces of stone.

The gravitational redshift, conditioned by the change in the gravitational potential, with a removal of a photon

from the massive object of mass 𝑀 equals to:

𝑍𝐺 = (𝜆− 𝜆0)/𝜆0 = 𝐺𝑀/𝑐2𝑟𝑔 −𝐺𝑀/𝑐2𝑅𝑔 = (∆𝜙)/𝑐2 (9)

Where 𝑍𝐺 is the gravitational redshift, 𝜆 is the photon wavelength at the point of observation, 𝜆0 is the photon

wavelength at the point of radiation, 𝑟𝑔 is the radial distance from the centre of mass of the body to the point of

radiation, 𝑅𝑔 is the radial distance from the centre of mass of the body to the point of observation.

Let us introduce two points in space: We are point 𝐴. We observe the photons from point 𝐵. Point 𝐵,

according to (8) has the gravitational potential of 𝜙𝑏 = 𝜙0𝑅. Point A has the gravitational potential of 𝜙𝑎 = 0 .

The gravitational potential for the photon that travelled from 𝐵(𝜙𝑏) to 𝐴(𝜙𝑎) from the point of view of point 𝐴

will decrease. As a result of this, we get the gravitational redshift

𝑍 = (∆𝜙)/𝑐2 = 𝜙0𝑅/𝑐2 (10)

And time dilation in point 𝐵 relative to point 𝐴

𝑡1 = 𝑡0(1 + 𝜙0𝑅/𝑐2) (11)

which completely aligns with the present correlation between the cosmological red 𝑍 and time dilation

∆𝑡1 = (1 + 𝑍)∆𝑡0 (12)

for far-away galaxies.

From Hubble’s law

𝑐𝑍 = 𝐻0𝐷 (13)
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where 𝑍 is the redshift of the galaxy, 𝐷is the distance to the galaxy, 𝐻0 isHubble’s constant and with the equation

(10) we get a coefficient 𝜙0 (taking into account that 𝑅 = 𝐷)

𝜙0 = 𝑐𝐻0 (14)
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