Compositeness Tests for Specific Classes of $k \cdot 3^n - 2$

Predrag Terzić

Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

September 12, 2014

Abstract: Conjectured polynomial time compositeness tests for specific classes of numbers of the form $k \cdot 3^n - 2$ are introduced.

Keywords: Compositeness test, Polynomial time, Prime numbers.

AMS Classification: 11A51.

1 Introduction

In 1969 Hans Riesel provided polynomial time primality test for numbers of the form $k \cdot 2^n - 1$ with k odd, $k < 2^n$ and n > 2, see Theorem 5 in [1]. In this note I present polynomial time compositeness tests for specific classes of numbers of the form $k \cdot 3^n - 2$.

2 The Main Result

Definition 2.1. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers .

Conjecture 2.1. Let $N=k\cdot 3^n-2$ such that $n\equiv 0\pmod 2$, n>2, $k\equiv 1\pmod 4$ and $k<3^n$.

Let
$$S_i = P_3(S_{i-1})$$
 with $S_0 = P_{3k}(4)$, thus If N is prime then $S_{n-1} \equiv P_1(4) \pmod{N}$

Conjecture 2.2. Let $N=k\cdot 3^n-2$ such that $n\equiv 1\pmod 2$, n>2, $k\equiv 1\pmod 4$ and $k<3^n$.

Let
$$S_i = P_3(S_{i-1})$$
 with $S_0 = P_{3k}(4)$, thus If N is prime then $S_{n-1} \equiv P_3(4) \pmod{N}$

References

[1] Riesel, Hans (1969), "Lucasian Criteria for the Primality of $k \cdot 2^n - 1$ ", Mathematics of Computation (American Mathematical Society), 23 (108): 869-875.