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Introduction: The Beal’s Conjecture was discovered by Andreew Beal 

in 1993. Later the conjecture plus the prize which solve it was announced 

in December 1997 issue of the Notices of the American Mathematical 

Society. Yet it is still an unsolved problem at number theory hitherto.  

Abstract   

In this article, we first have proven a lemma of EP+FV
≠2M. Successively 

have proven the Beal’s conjecture by mathematical analyses with the aid 

of the lemma, such that enable the Beal’s conjecture holds water.   
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 A Lemma and the Proof thereof  

In order to lay a foundation for the proof of the conjecture, let us first 

prove a lemma of EP+FV
≠2M, where E and F are positive odd numbers 

without any common prime factor >1, and P, V and M are integers ≥3.  

To start with, let smaller one within EP and FV is S1, and greater one is W1, 

so there is EP+FV=2S1+ (W1-S1). Manifestly W1-S1 is a positive even 
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number, and let W1-S1=2H1, where H1 is a positive integer. Then, divide 

2S1+ (W1-S1) by 2, and we get S1+H1. Also divide 2M on the right of the 

expression by 2 synchronously, and we get 2M-1.  

If H1 is a positive even number, then there is only S1+H1≠2
M-1 because 

S1+H1 is an odd number, yet 2M-1 is an even number. So we backed up 

EP+FV
≠2

M from S1+H1≠2
M-1.  

If H1 is a positive odd number, then let smaller one within S1
 and H1 is S2, 

and greater one is W2, so there is S1+H1=2S2+ (W2-S2). Likewise W2-S2 is 

a positive even number, and let W2-S2 =2H2, where H2 is a positive 

integer. Then, divide 2S2+ (W2-S2) by 2, and we get S2+H2. Also divide 

2M-1 on the right of the expression by 2 synchronously, and we get 2M-2.   

If H2 is a positive even number, then there is only S2+H2 ≠2
M-2 because 

S2+H2 is an odd number, yet 2M-2 is an even number. So we backed up 

EP+FV
≠2

M from S2+H2≠2
M-2.    

If H2 is a positive odd number, and so on and so forth …  

 

Overall, in the process which compares SY+HY with 2M-Y seriatim, where 

1≤Y≤M-1, SY is always a smaller positive odd number, if HY is a positive 

even number, then there is only SY+HY≠2
M-Y because SY+HY is an odd 

number, yet 2M-Y is an even number. So we backed up EP+FV
≠2

M from 

SY+HY≠2
M-Y.   

In order to make an orderly concrete comparison among EP, FV and 2M, 
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we first divide all positive odd numbers into two kinds, i.e. A and B. Or 

rather, the form of A is 1+4n, and the form of B is 3+4n, where n is a 

positive integer plus 0. Odd numbers of A plus B from small to great are 

respectively arranged below.    

A: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61…1+4n …  

B: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63…3+4n …  

Judging from above two ranks of odd numbers, a difference between two 

odd numbers of A divided by 2 is an even number, and a difference 

between two odd numbers of B divided by 2 is an even number too. 

Namely operations of aforementioned H1 are respectively (1+4n1)-(1+4n2) 

=4(n1-n2), H1=4(n1-n2)/2=2(n1-n2), and (3+4n1)-(3+4n2) =4(n1-n2), H1= 

4(n1-n2)/2 =2(n1-n2), where n1∊n, n2∊n, and n1>n2. Because of this, if EP 

and FV belong either in A or in B together, then S1+H1 on the left of the 

expression is an odd number, yet 2M-1 on the right is an even number, thus 

S1+H1≠2
M-1. So we backed up EP+FV

≠2
M from S1+H1≠2

M-1.     

We divide again odd numbers of A into two kinds, i.e. A1 and A2, and 

divide again odd numbers of B into two kinds, i.e. B1 and B2. Well then 

the form of A1 is 1+8n; the form of B1 is 3+8n; the form of A2 is 5+8n; 

and the form of B2 is 7+8n, where n≥0. Four kinds of odd numbers are all 

positive odd numbers. They are arranged as follows respectively.  

A1: 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105…1+8n …    

B1: 3, 11, 19, 27, 35, 43, 51, 59, 67, 75, 83, 91, 99, 107…3+8n …   
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A2: 5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, 109…5+8n …  

B2: 7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111…7+8n …  

Thus it can seen, a difference of A1-B1 divided by 2 is B1 or B2; a 

difference of A2-B2 divided by 2 is B1or B2; a difference of B1-A1 divided 

by 2 is A1or A2; and a difference of B2-A2 divided by 2 is A1or A2. We 

shall further analyze them thereinafter.   

(1) On the supposition that A1+B1=2M and A1>B1, let H1= (A1-B1)/2, well 

then it has: A1-B1= (1+8n1)-(3+8n2) =6+8(n1-1-n2) or 14+8(n1-2-k2), 

where n1∊n, n2 ∊n, and n1> n2, similarly hereinafter.  

For H1= [6+8(n1-1-n2)]/2=3+4(n1-1-n2):  

If n1-1-n2 is an even number, then H1=3+4(n1-1-n2)=3+8[(n1-1-n2)/2] ∊B1;  

If n1-1-n2 is an odd number, then H1=3+4(n1-1-n2)=7+8[(n1-2-n2)/2] ∊B2.  

For H1= [14+8(n1-2-n2)]/2= 7+4(n1-2-n2):   

If n1-2-n2 is an even number, then H1=7+4(n1-2-n2)=7+8[(n1-2-n2)/2] ∊B2;  

If n1-2-n2 is an odd number, then H1=7+4(n1-2-n2)=3+8[(n1-1-n2)/2] ∊B1.   

(2) On the supposition that A2+B2=2M and A2>B2, let H1= (A2-B2)/2, well 

then it has: A2-B2= (5+8n1)-(7+8n2) =6+8(n1-1-n2) or 14+8(n1-2-n2).  

For H1= [6+8(n1-1-n2)]/2 = 3+4(n1-1-n2):  

If n1-1-n2 is an even number, then H1=3+4(n1-1-n2)=3+8[(n1-1-n2)/2] ∊B1;  

If n1-1-n2 is an odd number, then H1=3+4(n1-1-n2)=7+8[(n1-2-n2)/2] ∊B2.  

For H1= [14+8(n1-2-n2)]/2 =7+4(n1-2-n2):  

If n1-2-n2 is an even number, then H1=7+4(n1-2-n2)=7+8[(n1-2-n2)/2] ∊B2;  
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If n1-2-n2 is an odd number, then H1=7+4(n1-2-n2)=3+8[(n1-1-n2)/2] ∊B1.  

(3) On the supposition that A1+B1=2M and B1>A1, let H1= (B1-A1)/2, well 

then it has: B1-A1 = (3+8n1)-(1+8n2) =2+8(n1-n2) or 10+8(n1-1-n2).  

For H1= [2+8(n1-n2)]/2 =1+4(n1-n2):   

If n1-n2 is an even number, then H1=1+4(n1-n2) = 1+8[(n1-n2)/2] ∊ A1;  

If n1-n2 is an odd number, then H1=1+4(n1-n2) =5+8[(n1-1-n2)/2] ∊ A2. 

For H1= [10+8(n1-1-n2)]/2=5+4(n1-1-n2):  

If n1-1-n2 is an even number, then H1=5+4(n1-1-n2)=5+8[(n1-1-n2)/2] ∊A2;  

If n1-1-n2 is an odd number, then H1=5+4(n1-1-n2) = 1+8[(n1-n2)/2] ∊ A1.  

(4) On the supposition that A2+B2=2M and B2>A2, let H1= (B2-A2)/2, well 

then it has: B2 - A2 = (7+8n1)-(5+8n2) =2+8(n1-n2) or 10+8(n1-1-n2).  

For H1= [2+8(n1-n2)]/2 = 1+4(n1-n2):  

If n1-n2 is an even number, then H1= 1+4(n1-n2) =1+8[(n1-n2)/2] ∊ A1;  

If n1-n2 is an odd number, then H1=1+4(n1-n2) =5+8[(n1-1-n2)/2] ∊ A2.  

For H1= [10+8(n1-1-n2)]/2 = 5+4(n1-1-n2):  

If n1-1-n2 is an even number, then H1=5+4(n1-1-n2)=5+8[(n1-1-n2)/2]∊A2;  

If n1-1-n2 is an odd number, then H1=5+4(n1-1-n2) =1+8[(n1-n2)/2] ∊ A1.  

So we get B1+ B2 (or B1) =2M-1; B2+ B1 (or B2) =2M-1; A1+ A2 (or A1) =2M-1 

and A2+ A1 (or A2) =2M-1.  

Followed a step after the above-mentioned four results is to operate 

respectively a difference between B1 and B2 (or B1) divided by 2, a 

difference between B2 and B1 (or B2) divided by 2, a difference between 
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A1 and A2 (or A1) divided by 2, and a difference between A2 and A1 (or A2) 

divided by 2. Obviously every result of the four operations is an even 

number according to the preceding result operated between either two B 

or two A. Each of these results is exactly aforementioned H2, yet smaller 

one in each expression of the step is odd number S2. Undoubtedly, S2+H2 

on the left of each of the four expressions is an odd number, yet 2M-2 on 

the right of each of them is an even number, so S2+H2 ≠2
M-2. 

Consequently we backed up A1+B1≠2M and A2+B2≠2M from S2+H2 ≠2
M-2.  

 

Thereinafter, we shall prove remainder four kinds, i.e. a difference of 

A1-B2 divided by 2 where A1>B2, a difference of B1-A2 divided by 2 

where B1>A2, a difference of A2-B1 divided by 2 where A2>B1 and a 

difference of B2-A1 divided by 2 where B2>A1, because each result of the 

four operations is an odd number. Judging from this, we are very hard to 

come to conclusions, if use successively the aforementioned way of doing. 

Such being the case, we shall further analyze permutations of four kinds 

of odd numbers, so as to discover some law to prove them.  

Since E and F have not any common prime factor>1, so EP
≠F

V according 

to the unique factorization theorem of natural number, so let FV>EP. If 

EP+FV=2M, then FV is greater than 2M-1, yet EP is smaller than 2M-1. We list 

from small to great odd numbers and label a kind of each itself of them, 

well then you would discover that Permutations of seriate odd numbers 
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just showed the law of permutations of four kinds of odd numbers:  

1k, A1; 3, B1; 5, A 2; 7, B2; (2
3); 9, A 1; 11, B1; 13, A 2; 15, B2; (2

4);  

17, A1; 19, B1; 21, A 2; 23, B2; 25, A 1; 3
3, B1; 29, A 2; 31, B2; (2

5);  

33, A1; 35, B1; 37, A 2; 39, B2; 41, A 1; 43, B1; 45, A2; 47, B2;  

49, A1; 51, B1; 53, A 2; 55, B2; 57, A 1; 59, B1; 61, A 2; 63, B2; (2
6);  

65, A1; 67, B1; 69, A 2; 71, B2; 73, A 1; 75, B1; 77, A 2; 79, B2;  

34, A1; 83, B1; 85, A 2; 87, b2; 89, A 1; 91, B1; 93, A 2; 95, B2;  

97, A1;99, B1;101, A 2;103, B2; 105, A 1;107, B1;109, A 2;111, B2;   

113,A1;115, B1;117, A 2;119, B2; 121, A 1;123, B1; 5
3, A 2; 127, B2; (2

7);  

129, A1;131, B1;133,A2;135,B2; 137, A 1;139, B1;141, A 2;143, B2;  

145, A1;147, B1;149,A2;151,B2;153, A 1;155, B1;157, A 2;159, B2…→  

 

Overall, permutations of seriate odd numbers from small to great are 

infinitely many cycles of A1B1A2B2 from left to right.   

If we regard 2M-1 as a center of symmetry, then 2M-1-1 ∊ B2 on the left of 

2M-1, 2M-1-3 ∊ A2 on the left of B2, 2
M-1-5 ∊ B1 on the left of A2, 2

M-1-7 ∊ A1 

on the left of B1 … Yet 2M-1+1 ∊ A1 on the right of 2M-1, 2M-1+3 ∊ B1 on 

the right of A1, 2
M-1+5 ∊ A2 on the right of B1, 2

M-1+7 ∊ B2 on the right of 

A2… But also B2 and A1where A1>B2; A2 and B1 where B1>A2; B1 and A2 

where A2>B1; A1 and B2 where B2>A1 are respectively one-to-one 

bilateral symmetries whereby 2M-1 to act as the center of the symmetry, 

where M-1≥3, similarly hereinafter.  
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In other words, there are B2+(1+8n)=2M-1 with A1-(1+8n)=2M-1, A2+(3+8n) 

=2M-1with B1-(3+8n)=2M-1, B1+(5+8n)=2M-1 with A2-(5+8n)=2M-1, and A1+ 

(7+8n)=2M-1 with B2-(7+8n)=2M-1, where n≥0. Please, see a series below.  

A1B1A2B2…A1B1A2B2A1B1A2B2 (2
M-1) A1B1A2B2A1B1A2B2…A1B1A2B2→  

After regard 2M-1 as a symmetric center, if leave from 2M-1, then there are 

finite cycles of B2A2B1A1 leftwards until 7(B2)5(A2)3(B1)1(A1), and there 

are infinitely many cycles of A1B1A2B2 rightwards. We consider such 

symmetric permutations among four kinds of odd numbers for symmetric 

center 2M-1 as the symmetric law of permutations among the four kinds of 

odd numbers, or the symmetric law of odd numbers for short.    

Under the symmetric law of odd numbers, not only two distances from 

symmetric two odd numbers to 2M-1 are each other’s equivalent, but also 

all odd numbers on an identical distance on the either direction belong 

within a kind and the same, no matter 2M-1 is what a great value.  

So the sum of two symmetric odd numbers is equal to 2×2M-1, i.e. A1+B2 

=2M where A1>B2; B1+A2=2M where B1>A2; A2+B1=2M where A2>B1; and 

B2+A1=2M where B2 >A1.   

Provided we now return to understand proven inequalities A1+B1≠2M and 

A2+B2≠2M by the symmetric law of odd numbers. Why both of them are 

inequalities? Since A1 and B1 are not bilateral symmetry whereby 2M-1 to 

act as the center of the symmetry, like that A2 and B2 as well.  

By now, we analyze odd numbers which have a common base number, 
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and label the belongingness of each of them.   

11, A1;       31=3, B1;          51=5, A2;         71=7, B2; (2
3);          

12, A1;       32=9, A1;          52=25, A1;        72=49, A1;         

13, A1;       33=27, B1;         53=125, A2;       73=343, B2;        

14, A1;       34=81, A1;         54=625, A1;       74=2481, A1;       

15, A1;       35=243, B1;        55=3125, A2;      75=16807, B2;      

16, A1;       36=729, A1;        56=15625, A1;     76=117609, A1;     

…          …               …               …  

91=9, A1;    111=11, B1;      131=13, A2;      151=15, B2; (2
4);   

92=81, A1;   112=121, A1;     132=169, A1;     152=225, A1;    

93=729, A1;   113=1331, B1;    133=2197, A2;    153=3375, B2;    

94=6561, A1; 114=14641, A1;   134=28561, A1;   154=50625, A1;   

95=59049, A1; 115=161051, B1; 135=371293, A2;   155=759375, B2;   

96=531441, A1; 116=1771561, A1; 136=4826809, A1; 156=11390625, A1;  

…          …              …              …       

171=17, A1;     191=19, B1;     211=21, A2;    231=23; B2…  

172=289, A1;    192=361, A1;    212=441, A1;   232=529; A1…  

173=4193, A1;   193=6859, B1;   213=9261, A2;   233=12167; B2… 

174=83521, A1; 194=130321, A1; 214=194481, A1; 234=279841; A1… 

175=1419857, A1; 195=2476099, B1; 215=4084101, A2; 235=6436343, B2…  

176=24137569,A1;196=47045881,A1;216=85766121,A1;236=148035889,A1..  

…            …             …             …   
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From the above listed odd numbers, we are not difficult to sum up, all 

odd numbers whereby A1 to act as a base number belong still within A1; 

all odd numbers whereby B1 to act as a base number belong within B1 

plus A1, and one B1 alternates with one A1; all odd numbers whereby A2 to 

act as a base number belong within A2 plus A1, and one A2 alternates with 

one A1; and all odd numbers whereby B2 to act as a base number belong 

within B2 plus A1, and one B2 alternates with one A1. Moreover, classify 

them into four kinds according to respective belongingness, namely all 

odd numbers of even exponents and odd numbers 1+8n of odd exponents 

belong within A1; odd numbers 3+8n of odd exponents belong within B1; 

odd numbers 5+8n of odd exponents belong within A2; and odd numbers 

7+8n of odd exponents belong within B2, where n ≥ 0.  

Excepting odd number 1, two adjacent odd numbers which have a 

common base number are an even number ≥6 apart, but also such even 

numbers are getting greater and greater along which exponents of them 

are getting greater and greater.   

At all events, whether odd numbers of odd exponents or odd numbers of 

even exponents, all of them are included and dispersed within 

aforementioned four kinds of odd numbers, thus they entirely conform to 

the symmetric law of odd numbers.  

First we need to get rid of these circumstances, namely EP and FV in 

EP+FV
≠2M can not be two such odd numbers which have a common base 
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number because the prerequisite stipulates that EP and FV have not any 

common prime factor >1. After that, we start to prove EP+FV
≠2M by 

mathematical induction under these circumstances that EP∊B2, FV∊A1, 

A1+B2 =2M; EP∊A1, F
V∊B2, B2+A1=2M; EP∊A2, F

V∊B1, A2+B1=2M; and EP

∊B1, FV∊A2, B1+A2 =2M, where A1, B2, A2, and B1 under respective 

definiendum are one another’s- different odd numbers.    

(1)*When M=3, symmetric odd numbers on two sides of 23 are listed as 

the follows.  

13, 3, 5, 7, (23), 9, 11, 13, 15…→   

To wit: A1B1A2 B2 (2
3) A1 B1 A2 B2 …→   

It is clear at a glance, there are not two odd numbers of higher exponents 

on two places of every bilateral symmetry whereby 23 to act as the center 

of the symmetry, where higher exponents ≥3, similarly hereinafter.  

When M=4, symmetric odd numbers on two sides of 24 are listed as the 

follows.  

14, 3, 5, 7, 9, 11, 13, 15, (24) 17, 19, 21, 23, 25, 27, 29, 31…→   

To wit: A1B1A2 B2 A1B1A2 B2 (2
4) A1B1A2 B2 A1B1A2 B2…→    

Evidently, there are not two odd numbers of higher exponents on two 

places of every bilateral symmetry whereby 24 to act as the center of the 

symmetry.  

When M=5 and M=6, symmetric odd numbers on two sides of 26 

including 25 are listed as the follows.   
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16, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 33, 29, 31, (25), 33, 35, 37, 39, 

41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, (26), 65, 67, 69, 71, 73, 75, 

77, 79, 34, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 

113, 115, 117, 119, 121, 123, 53, 127…→  

To wit: A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2B2 (2
5) A1B1A2B2A1B1A2B2 

A1B1A2B2A1B1A2B2 (2
6) A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2 

B2 A1B1A2B2A1B1A2B2A1B1A2B2…→   

Likewise, there are not two odd numbers of higher exponents on two 

places of every bilateral symmetry whereby 26 including 25 to act as the 

center of the symmetry.  

From above several initial cases, we can get EP+FV
≠24, EP+FV

≠25, 

EP+FV
≠26 and EP+FV

≠27 such being the case P≥3 and V≥3.  

(2)*Suppose that when M=X and X≥6, there are not two odd numbers of 

higher exponents on two places of every bilateral symmetry whereby 2X 

to act as the center of the symmetry. Namely, there is EP+FV
≠2X+1 such 

being the case P≥ 3 and V≥ 3.  

(3)*Prove that when M=X+1, there are not two odd numbers of higher 

exponents either on two places of every bilateral symmetry whereby 2X+1 

to act as the center of the symmetry. That is to say, this needs us to prove 

EP+FV
≠2X+2 such being the case P≥ 3 and V≥ 3.   

Proof * We know that permutations of odd numbers on two sides of 2M 

conform to the symmetric law of odd numbers, including odd numbers on 



 

 13 

two sides of 2X and of 2X+1, where M≥3 and X≥6. Please, see symmetric 

permutations of odd numbers on two sides of 2X and of 2X+1 below.   

A1B1A2B2…B1A2B2A1B1A2B2 (2
X) A1B1A2B2A1B1A2…A1B1A2B2 →  

A1B1A2B2…B1A2B2A1B1A2B2 (2
X+1) A1B1A2B2A1B1A2…A1B1A2B2→  

From EP
≠FV, let FV >EP, get FV >2M and EP <2M in EP+FV=2M+1, then each 

of A1B1A2B2…B1A2B2A1B1A2B2 on the left of 2M expresses EP, and each 

of symmetry with EP expresses FV, where E and F are positive odd 

numbers without any common prime factor>1, and P, V and M are 

positive integers, and M≥3. Special emphasis is to regard not P and V 

here as integers which must be not less than 3.   

We also know that all odd numbers on the left of 2M+1 are exactly all odd 

numbers of bilateral symmetry whereby 2M to act as the center of the 

symmetry. Thereby, we divide all odd numbers of bilateral symmetry 

whereby 2M+1 to act as the center of the symmetry into four equivalent 

segments per 2M-1 odd numbers by 2M, 2M+1 and 3×2M. And number the 

ordinal of each segment from left to right as №1, №2, №3 and №4. Well 

then odd numbers at №1 segment and odd numbers at №4 segment are 

one-to-one bilateral symmetry whereby 2M+1 to act as the center of the 

symmetry; also odd numbers at №2 segment and odd numbers at №3 

segment as well.   

When M≤X, there are not two odd numbers of higher exponents on two 

places of every bilateral symmetry whereby 2M to act as the center of the 
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symmetry. Under these circumstances there are four kinds of symmetric 

odd numbers, i.e. A1 and B2, where A1>B2; B1 and A2, where B1>A2; A2 

and B1, where A2>B1; and B2 and A1, where B2>A1.  

A1 and B2 away from 2M is respectively 1+8n, where A1>B2, and n ≥ 0 

and the same below; B1 and A2 away from 2M is respectively 3+8n, where 

B1>A2; A2 and B1 away from 2M is respectively 5+8n, where A2>B1; B2 

and A1 away from 2M is respectively 7+8n, where B2>A1.   

Since when M≤X, there are not two odd numbers of higher exponents on 

two places of every bilateral symmetry whereby 2X to act as the center of 

the symmetry, i.e. there is EP+FV
≠2X+1 such being the case P≥3 and V≥3.   

When M=X+1, likewise there are such four kinds of symmetric odd 

numbers. In addition, all odd numbers of bilateral symmetries whereby 2X 

to act as the center of the symmetry are turned into all odd numbers on 

the left of 2X+1, yet the right odd numbers of symmetries with left odd 

numbers are formed from 2X+1 plus each and every odd number of 

bilateral symmetries whereby 2X to act as the center of these symmetries.    

Thus, odd numbers of bilateral symmetries from whereby 2X to whereby 

2X+1 to act as a center of symmetries, a half of them retained still original 

places, and the half lies on the left of 2X+1, yet another half is formed 

from 2X+1 plus each and every odd number of bilateral symmetries 

whereby 2X to act as the center of symmetries.   

If any odd number EP on the left of 2X and an odd number FV on the right 
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of 2X are bilateral symmetry whereby 2X to act as the center of the 

symmetry, then FV plus 2X+1 is FV+2X+1, moreover EP and FV+2X+1 are 

bilateral symmetry whereby 2X+1 to act as the center of the symmetry. 

Besides, 0 and 2X+2 are bilateral symmetry for symmetric center 2X+1, so 

there is FV+2X+1=2X+2-EP, and from this to get EP+FV=2X+1.    

Like that, EP plus 2X+1 is EP+2X+1, also FV and EP+2X+1 are bilateral 

symmetry whereby 2X+1 to act as the center of the symmetry. In addition, 

0 and 2X+2 are bilateral symmetry for symmetric center 2X+1, so there is 

EP+2X+1=2X+2-FV, and from this to get EP+FV=2X+1. Please, see a general 

simple illustration as the follows.   

                                        EP+2X+1               FV+2X+1          

1, 3...    EP      2X      FV      2X+1      2X+2-FV      3ⅹ2X        2X+2-EP      2X+2    

 

However, there is only EP+FV
≠2X+1 such being the case P≥3 and V≥3 in 

line with the known prerequisite that there are not two odd numbers of 

higher exponents on two places of every bilateral symmetry whereby 2X 

to act as the center of the symmetry.  

Now that conclusively exist to EP+FV
≠2X+1 such being the case P≥3 and 

V≥3, so deduce FV+2X+1
≠2X+2-EP and EP+2X+1

≠2X+2-FV from EP+FV
≠2X+1.  

Since exist to FV+2X+1
≠2X+2-EP such being the case P≥3 and V≥3, if let 

FV+2X+1=2X+2-EP, then precisely speak that at least one in “FV+2X+1
” and 

“2X+2-EP
” is not an odd numbers of higher exponent according to the 

successive inference. But FV+2X+1 and 2X+2-EP share a place and the same, 

so both of them are an identical odd number in reality. Consequently 



 

 16 

FV+2X+1 and 2X+2-EP all are not odd numbers of higher exponent.  

Like that, we deduce that EP+2X+1 and 2X+2-FV all are not odd numbers of 

higher exponent either from the existence of EP+2X+1=2X+2-FV on the basis 

of EP+2X+1
≠2X+2-FV where P≥3 and V≥3.   

Thus it can seen, if EP is an odd number of higher exponent, then FV of 

symmetry with EP is an odd number of no high exponent, additionally, 

whether FV+2X+1 or 2X+2-EP is not an odd number of higher exponent, 

therefore there are EP+ (FV+2X+1) ≠2X+2 or EP+ (2X+2-EP) ≠2X+2 such being 

the case P≥3 and V≥3.  

If FV is an odd number of higher exponent, then EP is an odd number of 

no high exponent, additionally, whether EP+2X+1 or 2X+2-FV is not an odd 

number of higher exponent, therefore there are FV+ (EP+2X+1) ≠2X+2 or 

FV+ (2X+2-FV) ≠2X+2 such being the case P≥3 and V≥3.   

To sum up, on the one hand, odd numbers of higher exponents on the left 

of 2X+1 and odd numbers of no high exponents on the right of 2X+1 are 

one-to-one bilateral symmetry whereby 2X+1 to act as the center of the 

symmetry. On the other hand, for odd numbers of no high exponents on 

the left of 2X+1, no matter each of them and what odd number on the right 

of 2X+1 are bilateral symmetry, there are not two odd numbers of higher 

exponents on two places of the bilateral symmetry whereby 2X+1 to act as 

the center of the symmetry. Consequently when M=X+1, there is only 

EP+FV
≠2X+2 such being the case P≥3 and V≥3.  
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Apply the above-mentioned way of doing, we can continue to prove that 

when M=X+2, M=X+3…up to M=every positive integer≥3, there are all 

EP+FV
≠2X+3, EP+FV

≠2X+4
…EP+FV

≠2W such being the case P≥3 and V≥3.  

A Proof of the Conjecture  

The Beal’s Conjecture states that if AX+BY=CZ, where A, B, C, X, Y and 

Z are all positive integers, and X, Y and Z are greater than 2, then A, B 

and C must have a common prime factor.  

We consider limits of values of above-mentioned A, B, C, X, Y and Z as 

known requirements hereinafter.  

First, we must remove following two kinds from AX+BY=CZ under the 

known requirements.  

1. If A, B and C all are positive odd numbers, then AX+BY is an even 

number, yet CZ is an odd number, evidently there is only AX+BY
≠CZ under 

the known requirements according to an odd number ≠ an even number.   

2. If any two in A, B and C are positive even numbers, and another is a 

positive odd number, then when AX+BY is an even number, CZ is an odd 

number, yet when AX+BY is an odd number, CZ is an even number, so 

there is only AX+BY
≠CZ under the known requirements according to an 

odd number ≠ an even number.  

Thus, we merely continue to have two kinds of AX+BY=CZ under the 

known requirements as listed below.  

1. A, B and C all are positive even numbers.   
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2. A, B and C are two positive odd numbers and a positive even number.  

For indefinite equation AX+BY=CZ under the known requirements plus 

aforementioned either qualification, in fact, it is able to have many sets of 

solutions of positive integers. Let us instance following four concrete 

equations to prove such a viewpoint.   

When A, B and C all are positive even numbers, if let A=B=C=2, X=Y=3, 

and Z=4, then indefinite equation AX+BY=CZ is exactly equality 23+23=24. 

Evidently AX+BY=CZ has a set of solutions of positive integers (2, 2, 2) 

here, and A, B and C have common even prime factor 2.  

In addition, if let A=B=162, C=54, X=Y=3, and Z=4, then indefinite 

equation AX+BY=CZ is exactly equality 1623+1623=544. Evidently 

AX+BY=CZ has a set of solutions of positive integers (162, 162, 54) here, 

and A, B and C have two common prime factors, i.e. even 2 and odd 3.  

When A, B and C are two positive odd numbers and a positive even 

number, if let A=C=3, B=6, X=Y=3, and Z=5, then indefinite equation 

AX+BY=CZ is exactly equality 33+63=35. Manifestly AX+BY=CZ has a set 

of solutions of positive integers (3, 6, 3) here, and A, B and C have 

common prime factor 3.  

In addition, if let A=B=7, C=98, X=6, Y=7, and Z=3, then indefinite 

equation AX+BY=CZ is exactly equality 76+77=983. Manifestly AX+BY=CZ 

has a set of solutions of positive integers (7, 7, 98) here, and A, B and C 

have common prime factor 7.  
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Thus it can seen, indefinite equation AX+BY=CZ under the known 

requirements plus aforementioned either qualification can hold water 

according to above-mentioned four concrete examples, but A, B and C 

have at least one common prime factor >1.   

If we can prove that there is only AX+BY
≠C

Z under the known 

requirements plus the qualification that A, B and C have not any common 

prime factor, then we completely proved that there is only AX+BY=CZ 

under the known requirements plus the qualification that A, B and C must 

have a common prime factor >1.   

Since A, B and C have common prime factor 2 where A, B and C all are 

positive even numbers, so these circumstances that A, B and C have not 

any common prime factor can only occur under the prerequisite that A, B 

and C are two positive odd numbers and a positive even number.  

If A, B and C have not any common prime factor, then any two of them 

have not any common prime factor either. Because on the supposition that 

any two of them have a common prime factor, namely AX+BY or CZ-AX 

or CZ-BY have a common prime factor, yet another has not it, then from 

this lead to AX+BY
≠C

Z or CZ-AX
≠BY or CZ-BY

≠AX according to the 

unique factorization theorem of natural number.  

Since it is so, if we can prove that there is only inequality AX+BY
≠C

Z 

under the known requirements plus the qualification that A, B and C have 

not any common prime factor, then the Beal’s conjecture is surely tenable, 
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otherwise it will be negated.  

Unquestionably, let following two inequalities add together, they can 

completely replace AX+BY
≠CZ under the known requirements plus the 

qualification that A, B and C have not any common prime factor.    

1. AX+BY
≠2ZGZ under the known requirements plus the qualification that 

A, B and 2G have not any common prime factor, where 2G=C.   

2. AX+2YDY
≠CZ under the known requirements plus the qualification that 

A, 2D and C have not any common prime factor, where 2D=B.  

We again divide AX+BY
≠2ZGZ into two kinds, i.e. (1) AX+BY

≠2Z, when 

G=1, and (2) AX+BY
≠ 2ZGZ, where G has at least an odd prime factor >1.  

Likewise divide AX+2YDY
≠CZ into two kinds, i.e. (3) AX+2Y

≠CZ, when 

D=1, and (4) AX+2YDY
≠CZ, where D has at least an odd prime factor >1.  

On the basis of proven EP+FV
≠2

M at the preceding chapter, we shall set to 

prove aforesaid four inequalities, one by one, thereinafter.  

    

Firstly, let AX=EP, BY=FV, and 2Z=2M for EP+FV
≠2

M, we get AX+BY
≠2Z 

under the known requirements plus the qualification that A and B are two 

positive odd numbers without any common prime factor >1.  

   

Secondly, let us successively prove AX+BY
≠2ZGZ under the known 

requirements plus the qualifications that A and B are two positive odd 

numbers, and G has at least an odd prime factor >1, and A, B and 2G 

have not any common prime factor >1.  
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To begin with, multiply each term of proven EP+FV
≠2

M by GM, then we 

obtain EPGM+FVGM
≠2

MGM.   

For any positive even number, either it is able to be expressed as AX+BY, 

or it is unable. Undoubtedly EPGM+FVGM is a positive even number.  

If EPGM+FVGM is able to be expressed as AX+BY, then there is 

AX+BY
≠2

MGM.   

If EPGM+FVGM is unable to be expressed as AX+BY, then the even number 

has nothing to do with proving AX+BY
≠2

MGM.   

Under these circumstances, there are still EPGM+FVGM
≠AX+BY and 

EPGM+FVGM 
≠2

MGM, so let EPGM+FVGM equals AX+BY+2b or AX+BY-2b, 

where b is a positive integer. Also use sign “±” to denote signs “+” and 

“-” hereinafter, then obtain AX+BY±2b≠2MGM, i.e. AX+BY
≠2MGM ± 2b.  

Since 2b can express every positive even number, then 2MGM±2b can 

express all positive even numbers except for 2MGM.   

For a positive even number, either it is able to be expressed as 2KN K, or it 

is unable, where K is an integer >2, and N is a positive integer which has 

at least an odd prime factor >1.   

On the one hand, there is AX+BY
≠2

KNK where 2MGM±2b=2KNK. On the 

other hand, 2MGM±2b have nothing to do with proving AX+BY
≠2

KNK 

where 2MGM±2b≠2
KNK.   

That is to say, for EPGM+FVGM
≠2

MGM, if EPGM+FVGM is unable to be 

expressed as AX+BY, we can deduce AX+BY
≠2

KNK elsewhere too.   
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Hereto, we have proven AX+BY
≠2

MGM or AX+BY
≠2

KNK on the existence.  

Since either M or K is to express an integer >2, also either G or N is a 

positive integer which has at least an odd prime factor >1, therefore 

AX+BY
≠2

MGM and AX+BY
≠2

KNK are of the same meaning.  

 

Thirdly, we proceed to prove AX+2Y
≠CZ under the known requirements 

plus the qualification that A and C are two positive odd numbers without 

any common prime factor >1.   

In the former chapter, we have proven EP+FV
≠2

M, and supposed FV>EP, 

so let FV=CZ, then there is EP+CZ
≠2

M.   

Moreover, let 2M>23, then there is 2M=2M-1+2M-1.  

So there is EP+CZ > 2M-1+2M-1 or EP+CZ < 2M-1+2M-1.  

Namely there is CZ-2M-1>2M-1-EP or CZ-2M-1<2M-1-EP.    

In addition, there is AX+EP
≠2

M-1 according to the same reason of proven 

EP+FV
≠2

M.  

Then, we deduce 2M-1-EP>AX or 2M-1-EP<AX from AX+EP
≠2

M-1.     

Therefore, there is CZ-2M-1>2M-1-EP>AX or CZ-2M-1<2M-1-EP<AX.  

Consequently, there is CZ-2M-1>AX or CZ-2M-1 < AX.   

In a word, there is CZ-2M-1
≠ AX, i.e. AX+2M-1

≠C
Z.  

For AX+2M-1
≠C

Z, let 2M-1=2Y, we obtain AX+2Y
≠C

Z.  

  

Fourthly, let us last prove AX+2YDY
≠CZ under the known requirements 

plus the qualifications that A and C are two positive odd numbers, and D 



 

 23 

has at least an odd prime factor >1, and A, 2D and C have not any 

common prime factor >1.  

In order to distinguish between two differing cases, let us use another 

inequality HU+2Y
≠KT according to the same reason of proven AX+2Y

≠CZ, 

where H and K are two positive odd numbers without any common prime 

factor >1, and U, Y and T are integers >2.  

We obtain KT-HU
≠2

Y from HU+2Y
≠KT. Like that, multiply each term of 

KT-HU
≠2

Y by DY, then obtain KTDY-HUDY
≠2

YDY.   

For any positive even number, either it is able to be expressed as CZ-AX, 

or it is unable. Unquestionably KTDY-HUDY is a positive even number.  

If KTDY-HUDY is able to be expressed as CZ-AX, then there is 

CZ-AX
≠2

YDY, i.e. AX+2YDY
≠CZ.  

If KTDY-HUDY is unable to be expressed as CZ-AX, then the even number 

has nothing to do with proving AX+2YDY
≠CZ. Under these circumstances, 

there are still KTDY-HUDY
≠CZ-AX and KTDY-HUDY

≠2
YDY.    

Let KTDY-HUDY equals CZ-AX±2d, where d is a positive integer.  

Well then, there is CZ-AX±2d≠2
YDY, i.e. CZ-AX

≠2
YDY±2d. 

Since 2d can express every positive even number, then 2YDY±2d can 

express all positive even numbers except for 2YDY.   

For a positive even number, either it is able to be expressed as 2SRS, or it 

is unable, where S is an integer>2, and R is a positive integer which has 

at least an odd prime factor >1.  
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On the one hand, there is CZ-AX
≠2SRS where 2YDY±2d=2SRS, i.e. 

AX+2SRS
≠CZ. On the other hand, 2YDY±2d have nothing to do with 

proving AX+2SRS
≠CZ where 2YDY±2d ≠2SRS.  

That is to say, for KTDY-HUDY
≠2

YDY, if KTDY-HUDY is unable to be 

expressed as CZ-AX, we can deduce AX+2SRS
≠CZ elsewhere too.   

Thus far, we have proven AX+2YDY
≠CZ or AX+2SRS

≠CZ on the existence.  

Since either Y or S is to express an integer >2, also either D or R is a 

positive integer which has at least an odd prime factor >1, therefore 

AX+2YDY
≠CZ and AX+2SRS

≠CZ are of the same meaning.  

To sun up, we have proven every kind of AX+BY
≠CZ under the known 

requirements plus the qualification that A, B and C have not any common 

prime factor.  

Previous, we have proven that AX+BY=CZ has certain sets of solutions of 

positive integers under the known requirements plus the qualification that 

A, B and C have at least a common prime factor.   

After the compare between AX+BY=CZ under the known requirements 

and AX+BY
≠CZ under the known requirements, we have reached such a 

conclusion inevitably, namely an indispensable prerequisite of the 

existence of AX+BY=CZ under the known requirements is that A, B and C 

must have a common prime factor. The proof was thus brought to a close. 

As a consequence, the Beal conjecture is tenable.  


