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Abstract

Let m(n) denote the prime-counting function and let

[n/[logn — 1]] [logn — 1JJ |

n

f(n) = |[logn — [logn] — 0.1]] [

In this paper we prove that if n is an integer > 60184 and f(n) = 0,
then m(n) does not divide n. We also show that if n > 60184 and 7(n)
divides n, then f(n) = 1. In addition, we prove that if n > 60184 and
n/m(n) is an integer, then n is a multiple of [logn — 1] located in the
interval [ellogn—1]+1 cllogn—1J+1.1] " This allows us to show that if ¢ is
any fixed integer > 12, then in the interval [e¢, e“t%!] there is always
an integer n such that m(n) divides n.

Let S denote the sequence of integers generated by the function
d(n) = n/m(n) (where n € Z and n > 1) and let Sy denote the
kth term of sequence S. Here we ask the question whether there are
infinitely many positive integers k such that Si = Sk41.
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0 Notation

Throughout this paper the number n is always a positive integer. Moreover,
we use the following notation:

e |- | (absolute value)

e [-] (ceiling function)

|

e | (divides)

e 1 (does not divide)
-]

(floor function)

frac(-) (fractional part)

log (natural logarithm)

1 Introduction

Determining how prime numbers are distributed among natural numbers is
one of the most difficult mathematical problems. This explains why the
prime-counting function 7(n) (which counts the number of primes less than
or equal to a given number n) has been one of the main objects of study in
Mathematics for centuries.

In [2] Gaitanas obtains an explicit formula for 7(n) that holds infinitely
often. His proof is based on the fact that the function d(n) = n/m(n) takes
on every integer value greater than 1 (as proved by Golomb [3]) and on the
fact that z/(logz — 0.5) < w(z) < z/(logz — 1.5) for x > 67 (as shown by
Rosser and Schoenfeld [1]). In this paper we find alternative expressions that
are valid for infinitely many positive integers n, and we also prove, among
other results, that if n > 60184 and

1 — 1|1 -1
|[logn — |logn| — 0.1]] M”/Log” n“ [logn JJ
equals 0, then 7(n) does not divide n.

We will place emphasis on the following three theorems, which were

proved by Golomb, Dusart, and Gaitanas respectively:
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Theorem 1.1 [3]. The function d(n) = n/m(n) takes on every integer value
greater than 1. [ |

Theorem 1.2 [1]. If n is an integer > 60184, then

n n

S L— m
™) < en T 11

— <
logn — 1

Remark 1.3. Dusart’s paper states that for x > 60184 we have x/(logx —
1) <m(z) <z/(logz —1.1), but since logn is always irrational when n is an
integer > 1, we can state his theorem the way we did. <

Theorem 1.4 [2]. The formula

m(n) =

o
|logn — 0.5]

is valid for infinitely many positive integers n. |

2 Main results

We are now ready to prove our main results:

Theorem 2.1. The formula

(n) = 7—
m(n) = ——
|logn — 1]
holds for infinitely many positive integers n. [

Proof. According to Theorem 1.2, for n > 60184 we have

n n logn — 1.1 1 logn — 1
——— <7(n) < = < < :
logn — 1 logn — 1.1 n m(n) n

If we multiply by n, we get

logn—1.1<i<logn—1. (1)

m(n)

Since logn — 1.1 and logn — 1 are both irrational (for n > 1), inequality (1)
implies that when n/7(n) is an integer we must have

) = |logn—1| = |logn—1.1]+1 = [logn—1.1] = [logn—1| —1. (2)



Taking Theorem 1.2 and equality (2) into account, we can say that for every
n > 60184 when n/7(n) is an integer we must have
n n
— =11 -1 = =0
m(n) Llogn = 1] = m(n) |logn — 1]
Since Theorem 1.1 implies that n/m(n) is an integer infinitely often, it follows

that there are infinitely many positive integers n such that m(n) = n/|logn—
1]. |

In fact, the following theorem follows from Theorems 1.1, from Gaitana’s
proof of Theorem 1.4, and from the proof of Theorem 2.1:

Theorem 2.2. For every n > 60184 when n/7(n) is an integer we must have

—— = [logn —1.5] = [logn — 0.5] = |logn — 1| =
m(n) (3)
= |logn —1.1] +1 = [logn — 1.1] = [logn — 1] — 1.

In other words, for n > 60184 when n/7(n) is an integer we must have

n . n . n . n .
logn —1.5]  |logn —0.5] [logn—1] |logn—1.1]+1
n . n n
logn —1.1]  [logn —1] —1°

m(n) =

Theorem 2.3. Let n be an integer > 60184. If frac(logn) = logn—|logn| >
0.1, then 7(n)  n (that is to say, n/m(n) is not an integer). |

Proof. According to Theorem 2.2, if n > 60184 and n/w(n) is an integer,
then

W = |logn — 1] = [logn — 1.1].

In other words, for n > 60184 when n/7(n) is an integer we have

|logn — 1] = [logn — 1.1]
|logn — 1] = [logn —1—0.1]
frac(logn — 1) < 0.1
logn —1— [logn —1] <0.1
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logn — [logn — 1] < 1.1
frac(logn) < 0.1
logn — |logn] <0.1.

Suppose that P is the statement ‘n/m(n) is an integer’ and @ is the statement
‘logn—|logn| < 0.1’. According to propositional logic, the fact that P — @
implies that =) — —P. [ |

Similar theorems can be proved by using Theorem 2.2 and equality (3).

Remark 2.4. We can also say that if n > 60184 and

n> eO.l—&—LlognJ’

then 7(n) { n. <

Remark 2.5. Because logn is irrational for n > 1, another way of stating
Theorem 2.3 is by saying that if n > 60184 and the first digit to the right
of the decimal point of logn is 1, 2, 3, 4, 5, 6, 7, 8, or 9, then m(n) { n.
Example:

log 103 = 71.38...

The first digit after the decimal point of log 10*! (in red) is 3. This implies
that m(10%!) does not divide 103!. We can also say that if n > 60184 and
m(n) divides n, then the first digit after the decimal point of logn can only
be 0.

Now, if y is a positive noninteger, then the first digit after the decimal
point of y is equal to |10frac(y)] = [10y — 10|y]]. So, we can say that if
n > 60184 and |10logn — 10[logn] | # 0, then 7(n) { n. On the other hand,
if n > 60184 and m(n) divides n, then |10logn — 10|logn|| = 0. <

The following theorem follows from Theorem 2.3:

Theorem 2.6. Let e be the base of the natural logarithm. If a is any integer
> 11 and n is any integer contained in the interval [e2T0! eT!] then m(n) { n.

(The number €" is irrational when r is a rational number # 0.) |
Example 2.7. Take a = 18. If n is any integer in the interval [e!®! 9],
then 7(n) 1 n. <
Corollary 2.8. If a is any positive integer > 1, then 7([e®]) 1 [e”]. |

Proof. For a > 12 the proof follows from Theorem 2.6. On the other hand,
le*|/m(|e]) is not an integer whenever 2 < a < 11, as shown in the following
table:



-
Dla|©o|w N ok w v e

| Le)/m(let]) ]
2

1.75
25
3.37...
4.35...
5.10...
5.98...
6.94...
7.95...
8.93...
9.89...

In other words, if a € Z*, then w(|e*]) | |e*] only when a = 1. |

Theorem 2.9. Let n be an integer > 60184 and let

0.1]] [n/|logn —1]] [logn — 1JJ '

f(n) = |llogn — [logn] - .

If f(n) =0, then 7(n) {n. On the other hand, if 7(n) | n, then f(n) =1. A

Proof.
e Part 1
Suppose that

where
g(n) = |[logn — [logn| — 0.1]

In/[logn —1]] [logn — 1JJ .

n

and

h(n) = {

To begin with, if n > 60184, then logn — [logn| can never be equal
to 0.1. Now, when logn — |logn]| < 0.1 we have —1 < logn — [logn]| —
0.1 < 0 and hence ||logn — |logn] —0.1]| = 1. On the other hand, when
logn — |logn| > 0.1 we have 0 < logn — |logn| — 0.1 < 1 and hence
|[logn — |logn| — 0.1]] = 0. This means that if n is any integer > 60184,



then g(n) equals either 0 or 1. We can also say that if n > 60184 and
g(n) = 0, then logn — |logn| > 0.1, which implies that m(n) { n (according
to Theorem 2.3). (This means that if n > 60184 and 7(n) | n, then g(n) = 1.)

e Part 2
If n > 60184, then

n < n
llogn —1] ] = [logn — 1]’
which means that

H n J/ n J:wn/[logn—ljjtlogn—ljJ:h(n)

llogn —1]]" |logn —1]| n

equals either 0 or 1. If h(n) = 0, then n is not divisible by [logn — 1],
which implies that m(n) 1 n (according to Theorem 2.2). In other words, if
n > 60184 and h(n) = 0, then m(n) f n. (This means that if n > 60184 and
7w(n) | n, then h(n) =1.)

e Part 3

There are two possible outputs for g(n) (0 or 1) as well as two possible
outputs for ~A(n) (0 or 1). This means that for n > 60184 we have either

g(n)h(n) =0-1=0,
g(n)h(n) =1-0=0,

If f(n) = g(n)h(n) = 0, then at least one of the factors g(n) and h(n)
equals 0, which implies that m(n) { n (see Part 1 and Part 2). This means
that if n > 60184 and f(n) = 0, then 7(n) { n. Consequently, if n > 60184
and 7(n) | n, then f(n) = 1. [

Theorem 2.10. If n > 60184 and n/m(n) is an integer, then n is a multiple
of |logn — 1] located in the interval [ellosn—1+1 cllogn=1]+1.1} |



Proof. According to Theorems 2.2 and 2.3, if n > 60184 and n/m(n) is an
integer, then
% = [logn — 1] = n=mn(n)|logn — 1|
and
frac(logn) =logn — |logn] < 0.1.
The fact that frac(logn) < 0.1 implies that n is located in the interval

[ek’ €k+0.1]

for some positive integer k. In other words, we have

k+0.1

e <n<e = k<logn<k+0l=k—1<logn—1<k—-0.9,

which means that

k—1=|logn—1]|
k= |logn —1] + 1. |
Remark 2.11. Suppose that b is any fixed integer > 12. Theorem 2.10
implies that if n is an integer in the interval [e?, e?*%1] and at the same time
n is not a multiple of b — 1, then 7(n) { n. This means that if n > 60184 and

7(n) divides n, then n is located in the interval [e, e?*%1] for some positive
integer b and n is a multiple of b — 1. <

The following theorem follows from Theorems 1.1 and 2.10 and from the
fact that n/m(n) < 11 for n < 60183 (this fact can be checked using software):

Theorem 2.12. Let ¢ be any fixed integer > 12. In the interval [e¢, e¢t0!]
there is always an integer n such that 7(n) divides n. In other words, in the
interval [e¢, e“t9!] there is always an integer n such that 7(n) =n/(c—1).1

3 Conclusion and Further Discussion

The following are the main theorems of this paper:

Theorem 2.9. Let n be an integer > 60184 and let

[n/llogn— 1] [logn — IJJ |

n

f(n) = |[logn — [logn] — 0.1]|




If f(n) =0, then 7(n) {n. On the other hand, if 7(n) | n, then f(n) =1. A

Theorem 2.10. If n > 60184 and n/7(n) is an integer, then n is a multiple
of |logn — 1] located in the interval [ellosn=1+1 ellogn=1]+1.1} |

Theorem 2.12. Let ¢ be any fixed integer > 12. In the interval [e¢, et
there is always an integer n such that 7(n) divides n. In other words, in the
interval [e¢, eT01] there is always an integer n such that 7(n) =n/(c—1).1

We recall that Golomb [3] proved that for every integer n > 1 there exists
a positive integer m such that m/7(m) = n. Suppose now that R is the
sequence of numbers generated by the function d(n) = n/w(n) (n € Z and
n > 1). In other words,

R=(2, 15, 2, 166.., 2, 175 2, 225 25 ...).

Suppose also that S is the sequence of integers generated by the function
d(n) = n/m(n). In other words,

S=(2, 2 2, 2 3, 3 3 4 4, ..

Motivated by Golomb’s result and Theorem 2.12 we ask the following
question:

Question 3.1. Are there infinitely many positive integers a such that in the
interval [e?, e*T0!] there are at least two distinct positive integers n; and ny
such that m(ny) | ny and 7(ng) | n2? In other words, are there infinitely many
positive integers n that can be expressed as m/m(m) in more than one way?
<

Now, let S; denote the kth term of sequence S. Clearly, Question 3.1 is
equivalent to the following question:

Question 3.2. Are there infinitely many positive integers k such that Sy =
Sk—i—l? |
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