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Abstract 
 
   New equations for the motions of bodies are derived  from non-instantaneous forces, some 
equations of special relativity (but derived from Newtonian Physics), Galilean transformations and 
a preferred frame (the cosmic microwave background). 
 
1. Introduction 
 
  In the new Newtonian physics discussed herein, we use the following: 
a) some special relativity equations (Table 1), 
b) non-instantaneous forces (Sections 5 and 6), 

  c)  Galilean transformations and a preferred frame (cosmic microwave background), (Section 4). 
  Below, we compare the basic equations from special relativity and our new Newtonian physics. 
 
Experiment Special Relat. New Newton. Phys. 
Mass variation γ0mm =  γ0mm =                 (1) 
Kinetic energy ( )12

0 −= γcmk  ( )12
0 −= γcmk      (2) 

Relation mass-energy 2mcE =  2mcE =                (3) 
Time dilation γ0tt Δ=Δ  See section 6.2 

Michelson-Morley 0=δ  See section 7             
 
Table 1 - Equations of special relativity and new Newtonian physics 
 
  Using the concepts of  Newtonian physics, Lewis (who received 35 nominations for the Nobel 
prize in chemistry) [1] derived the equations for mass variation, kinetic energy and mass-energy.  
  Equations (1), (2) and (3) are, respectively, equations  (15), (16) and (18) in [1]. In these 
equations, , v , c  are respectively, particle rest mass, particle velocity, velocity of light,0m cv=β  

and 2β11γ −= . 
  The following is from [1]: “Recent publications of Einstein and Comstock on the relation of mass 
to energy has emboldened me to publish certain views which I have entertained on the subject and 
which a fews years ago appeared purely speculative, but which have been so far corroborated by 
recent advances in experimental and theoretical physics… In the following pages I shall attempt to 
show that we may construct a simples system of mechanics which is consistent with all known 
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experimental facts, and which rests upon the assumption of the truth of the three great conservation 
laws, namely, the law of conservation of energy, the law of conservation of mass, and the law of 
conservation of momentum”. 
 
2.  Inertial and non-inertial frames 
 
  New equations for the motions of bodies  in inertial and non-inertial frames are deduced in 
Sections 5 and 6. 
  The need for new equations is discussed by Novello [2], the original of which is in Portuguese, 
but our translation follows:   
  " Four of the principal criticisms of  relativity are in the territory of astrophysics and cosmology,  
namely, singularity, dark matter, dark energy and quantization…Scientists then began to search for 
a new theory of gravitation that is the relativistic version  of the Newtonian formulation and 
describes  the gravitational field as a scalar, that is, via a single function (similar in this respect, to 
the Newtonian version)..."   
 
3. Force 
 
    From equations (1), (2) and (3), we derive the equation of force: 
 

2
).()(

cdt
dm

dt
md vFvvvF +== ,                                                             (4) 
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dt
dvmF xxx

x += ,                                                                             (5) 

2

2

c
Fv

dt
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mF yyy
y += , 

 
  Substituting (1), we have: 
 

dt
dvmF x

xox 2γγ=                                                                                   (6) 

dt
dv

mF y
yoy 2γγ= ,                                             

 
  where 211 βγ −= , 211 xx βγ −= and 211 yy βγ −= .  

 
4. Basic equations 
 
 From (6), Galilean transformations, non-instantaneous force, preferred frame  (cosmic 
microwave- background) and frame , we can obtain the equations for the motions of bodies. 

S
'S

    From Newtonian physics: 
a) The velocity of light is a constant  with respect to the preferred frame, independent of the 
direction of propagation, and of the velocity of the emitter. 

c
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b) An observer in motion with respect to the preferred frame  will measure a different velocity of 
light, according to Galilean velocity addition. 
c) The preferred frame is the cosmic microwave background (CMB), and the velocity of the earth 
with respect to the CMB is approximately 390 km/s (0.0013c).  
d) According to Zeldovich, at every point in the Universe, there is an observer in relation to which 
microwave radiation appears to be isotropic. 
     From new Newtonian physics: 
e) A Coulomb force is generated by an electric wave. A gravitational force is generated by a 
gravitational wave. The electric and gravitational waves have constant velocities  with respect to 
the preferred frame, independent of the direction of propagation, and of the velocity of the emitter.  

c

 
5.  Inertial frames and non-instantaneous force 
 
  Suppose two inertial frames (  and ), one particle without acceleration (charge Q , mass S 'S M )  
and one particle with acceleration (charge , mass ). q m
  S  is the preferred frame (CMB) and  has constant velocity V  in relation to  and parallel to 
the 

'S S
x  axis. The velocity of  is v in relation to . q S

  Charge  is at rest in  (it is an approach for Q 'S mM >>  and  or  andqQ ≥ qQ >> mM ≥  ); 
the frames and particles are illustrated in Figure 1. 
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Figure 1 – Inertial frames S ,  and particles . 'S Qq,
 
  At time , charge  emits an electric wave front that reaches charge  at time .  At time , 

charge Q  emits an electric wave front that reaches charge  at time , and so forth. The electric 
wave has velocity c  in relation to . 

0t Q q 1t 1t
q 2t

S
  For constant 0>V , from Galilean transformations, we have: 
 

'xVtx +=                                                                                             
'yy =                                                                                                           (7) 

 'tt =     (see discussion of time dilation in Section 6.2, Equation (25)), 
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'xtVRx +Δ= ,                                                                                    (8)                                                                   

 
where tΔ  is the time interval in which the force travels distance  and R tcR Δ= , 
 

'yyRy ==                                                                                        (9) 

'' xBRx
c
RVRx +=+= , 

 
and 
 

2

222

1
)1('''

B
ByxBx

R
−

−+±
= ,                                                           (10)                                    

 
  where . cVB /=
 
  The non-instantaneous Coulomb force in  is: q
 

3R
RKqQF x

x =                                                                                      (11) 

3R
R

KqQF y
y = .                                                                                      

 
Equating (6) and (11) yields the folowing differential equations: 
 

3
20 R

R
KqQ

dt
dv

m xx
x =γγ                                                                        (12)       

3
20 R

R
KqQ

dt
dv

m yy
y =γγ                                                                   

 
  Multiplying and dividing the first term of (12) for , and from 'dx 'xx dvdv = , we have: 
 

∫∫ ±= '
3''20 dx

R
RKqQdvvm x

xxxγγ                                                        (13) 

∫∫ ±= '
3''20 dy

R
R

KqQdvvm y
yyyγγ ,                                                         

where (+) is a repulsive force and (-) is an attractive force.  

  The differential  equation is second-order and requires two integrations.  

  In the first integration, we have: 
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)'(' xfvx =                                                                                        (14) 

)'(' yfvy = .   

  In the second integration, we have: 

( )tfx ='                                                                                             (15) 

( )tfyy ==' . 
 
5.1 -  Gravitation 

  The non-instantaneous gravitational force in q , is: 

300
2

0 R
R

MGm
dt

dv
m x

M
x

x γγγγ =                                                       (16) 

and                                                  

30
2

R
R

GM
dt

dv x
M

x
x γγ =                                                                    (17) 

where 2211 cVM −=γ .  
 
   For 0=V , we have an instantaneous force ( rR = ). From (9) and (10), we have: 
 

'xxRx ==                                                             

2'2' yxR +=                                                                              (18) 

30
2

R
R

GM
dt

dv xx
x =γ . 

 
6.  Non-inertial frame and non-instantaneous forces 
 
 a) We have one preferred frame ( ) and one non-inertial frame ( ). Particle Q  is at rest in , 
and  is accelerating in relation to . 

S 'S 'S
q 'S

 b) Let us suppose the particular case of repulsive forces between equal particles (mass Mm = and 
charge ). We can make a mathematical construct with: two inertial frames (Qq = ',SS ) and two 
particles ( ,Q ) with acceleration between them that is, equal in modulus but with inverse  
directions. 

q y

  Thus, cases a) and b) are similar and mathematically equal; the calculated values of tFvR ,,,  and 
others are the same when calculated in relation to .  S
  The velocity of 'S  in relation to S  is constant, and 0>V . We consider only the Coulomb force. 
(Fig. 2). 
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Figure 2 – Non inertial frame - Mathematical construct using two inertial frames ( , ) and 
particles ,Q  with acceleration between them that is equal in modulus but with inverse y 
directions. For  to , the particles haves no acceleration; for , the particles accelerate in 
relation to  and . 

S 'S
q

ot 1t 1tt >
S 'S

 
6.1  From  to  - First sequence ot 1t
 
  In this time interval, the particles have no acceleration, and the trajectories are parallel.  
This is an approach, see Fig. 3. 
 

 q

t t  
 
Figure 3 – Trajectories of particles q and . In the time interval time  to , the trajectories are  
approximately parallel. 

Q ot 1t

 
  The initial velocity of  and  is q Q V , which is parallel to x , 'x . 
  From Galilean transformations, we have: 
 

Vtx =                                                                                             
'yy =                                                                                               (19) 

'tt =          (see discussion of time dilation in Section 6.2, Equation (25)). 
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From Fig. 1, we have: 
 

tcR Δ= ,                                                                                            (20) 
 
where  is the time interval in which the force travels distance . ottt −=Δ 1 R
 

tVRx Δ=                                                                                           (21) 
'yyRy == , 

 

2

'

1 B
yR
−

=                                                                                     (22) 

 

2

'
1

1 1 B

y
R

−
= , 

 
and 
 

11 BRRx =                                                                                        (23)                                                             

 . 11 yRy =

 
6.2  Time dilation 
 
  From (22) and dividing both terms by , we have: c
 

2

'
11

1
1

Bc
y

c
R

−
=                                                                            (24) 

 
and 
 

21
1

1 B

t
tt

c
R a

o −
=−= .                                                                  (25) 

 
  Equation (25) expresses time dilation, where cyta

'
1=  (for 0=V ). The equation is only 

applicable to the first sequence. For the others sequences, the time dilation differs from equation 
(25). This subject should be further explored. Thus, time dilation in new Newtonian physics is due 
to the variation of forces (inside the atom) in relation to the velocity of the atom ( v ). For the 
example above, we have 2

1 1 β−=− ao ttt  and cv=β . 
 
6.3   From  to  - Second sequence 1t 2t
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'xVtx +=                                                                                             
'yy =                                                                                                (26) 

'tt =  
 
  From Fig. 1, we have: 
 

tcR Δ= ,                                                                                           (27) 
 

'xtVRx +Δ=                                                                                  (28)                                                                  
'yyRy == , 

 
where , and 12 ttt −=Δ
 

2

222

1
)1('''

B
ByxBx

R
−

−+±
= .                                                        (29)                                              

  From (29) and differential equation (13), in the first integration, we have: 

12
)'(' ttx xfv −=                                                                             (30) 

    
12

)'(' tty yfv −=

  In the second integration, we have: 

                                                                               (31) 
12

)(' ttx tfx −=

 ,    
12

)(' tty tfy −=

  and, at time , we have:  2t

                                                     
12

)( 2
'
2 ttx tfx −=

          
12

)( 2
'
2 tty tfy −=

                                                                              (32) '
222 xVtx +=

                          '
22 yy =

   '
222 xBRRx +=

 .                   22 yRy =
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6.4  From  to  - Third sequence 2t 3t
 

'xVtx +=                                                                                             
'yy =                                                                                                (33) 

'tt =  
   
From Fig. 1, we have: 
 

tcR Δ= ,                                                                                            (34) 
 
where , 23 ttt −=Δ
  

'2' xxtVRx −+Δ=                                                                           (35) 

112
)( y

c
RtfyR ttyy −−+= − . 

 
  For example, for  (Figure 4), we have:  1.2R
 

11.11.21.11.21.2 yyyyyRy −+=Δ+= ,                                          (36) 

 

where  
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Figure 4 -  Function ( )
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(37) 

From (37) and differential equation (13), in the first integration, we have: 
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23
)'(' ttx xfv −=                                                                                (38) 

23
)'(' tty yfv −= ,   

  In the second integration, we have: 

23
)(' ttx tfx −=                                                                                  (39) 

 , 
23

)(' tty tfy −=

  and, at time , we have:  3t

23
)( 3

'
3 ttx tfx −=   

23
)( 3

'
3 tty tfy −=         

                                                                                   (40) '
333 xVtx +=

'
33 yy =                         

  '
2

'
333 xxBRRx −+=

1233 yyyRy −+= .    

6.5  From  to  - Fourth sequence 3t 4t
 

'
3

' xxtVRx −+Δ=                                                                         (41) 

123
)( ycRtfyR ttyy −−+= − , 

and, at time , we have:  4t

34
)( 4

'
4 ttx tfx −=   

34
)( 4

'
4 tty tfy −=         

                                                                                (42) '
444 xVtx +=
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'
44 yy =                         

'
3

'
444 xxBRRx −+=  

1344 yyyRy −+= .     

The same calculations can be repeated for the following sequences.  
 
7.  Michelson-Morley experiment and new Newtonian physics 
 
  The Michelson-Morley experiment [3] involves one semi-transparent mirror (half-silvered) in 
which the incident ray is refracted, reflected and divided into two rays ( and ), as shown in 
Fig. 5. 

ar br dr

ar br

dr

glass

M

v
ϕ

 
 
Figure 5 - Semitransparent mirror M with velocity V  as well as, incident ray ( ), the refracted-
reflected-refracted ray ( ) and refracted-refracted ray ( ). 

ar

dr br
 
   For complete calculations of the trajectory and displacement of the interference fringes, we must 
study the equations of refraction and reflection in vacuum and in glass. 
  The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a 
telescope.  
 
7.1  Reflection in vacuum 
 
 In the Supplement of the MM paper [3], the equations of ray reflections in a moving  
mirror are shown in relation to a preferred frame. The equations in relation to the CMB are the same. 
  From [3]:  
“Let  (Fig. 6) be a plane wave falling on the mirror at an incidence of . If the mirror is at 
rest, the wave front after reflection will be . Now suppose the mirror to move in a direction which 
makes an angle 

ab m o45
ae

ϕ  with its normal, with velocity V . Let c  be the velocity of light in the ether 
supposed stationary, and let ed  be the increase in the distance the light has to travel to reach d .” 
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Fig. 6 – Reflection in vacuum. Incident and reflection plane waves 
 
  Michelson and Morley also demonstrated the following equation: 
 

c
V

ad
ae ϕθ cos21

2
45tan −==⎟

⎠
⎞

⎜
⎝
⎛ −o  .                                      (43) 

 
  Below, we have an equivalent and more general equation for any angle of incident rays. From 
Equations (5) and (6) in the work of Kohl [4], we have: 
 

i
iBB

Br ˆtanˆseccos2cos1
cos1ˆtan

22

22

ϕϕ
ϕ

±+
−

= ,                                 (44) 

 
where andî r̂ are respectively, the angles of incidence and reflection in relation to the normal of the 
mirror. Additionally, , where V  is the velocity of the mirror in relation to the CMB, and cVB /= ϕ  is 
the angle of V with respect to the normal of the mirror. 
    The sign is negative (positive) when the mirror is moving away from (towards) the incident ray. 

     
7.2  Reflection in glass 
 
  For : 0=V
 

ccu 658.0
52.1

== ,                                                                         (45) 

 
 where u  is the velocity of light inside the glass in relation to the CMB and glass with 0=V .  
 
   For : 0>V
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= 2

2
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and                                                                (46) 
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where  is the velocity of light inside the glass in relation to the CMB, V is the velocity of 

glass in relation to the CMB and 
CMBu

( )221 cuV −  is the Fresnel drag.  
  In addition, 
 

Vuu −= CMBglass ,                                                                       (48) 

 
 where  is the velocity of light inside the glass in relation to glass. glassu
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Figure 7 – Reflection in glass. Incident plane wave and reflected non-plane wave. 
 
  As shown in Fig. 7, after reflection, we have a non-plane wave.   
  The equations of reflection in glass must be further developed. 
 
7.3  Refraction in vacuum-glass for V = 0 
 
   From Snell’s law of refraction we have: 
 

00 sin52.1sinsin
∧∧∧

== ff
u
ci .                                                           (49) 

 
7.4  Refraction in vacuum-glass for V > 0 
 
  Additionally, 
 

∧∧

= f
u

ci
CMB

sinsin ,                                                                           (50) 

 
  where i , and  are the angles, respectively, of incidence, refraction for  and refraction 
for . The angles are in relation to the normal of the glass (Fig. 4). 

ˆ
0f̂ f̂ 0=V

0>V
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7.5  The Michelson-Morley experiment 
 
  The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a 
telescope. In Fig. 8, we substitute 2 mirrors for 16 mirrors. 
 

M

M1

M2

S

l

T
 

 
Figure 8 – Michelson-Morley experiment with one semi-transparent mirror, 2 mirrors, a lens and a 
telescope. 
 
  In Fig. 8, S, l, M, M1, M2 and T are, the light source, lens, semi-transparent mirror, mirror 1, 
mirror 2 and telescope, respectively. 
  For calculus simplification, we substitute for lens l the sun or star light, which has wave front that 
is practically planare when reaching the earth. The interchange between sun or star lights and 
laboratory sources in no way alters the results [5-7]. 
  For the telescope, we substitute screen B, as shown in Fig. 9. 
 

 
 
Figure 9 – Michelson-Morley experiment with sun light and secreen B. Panel (a) shows the x-z 
plane, while (b) shows the x-y plane. 
 
   M3 is a mirror to capture sun or star light. 
   The displacement of interference fringes must be calculated using the equations above. 
 
Conclusion 
 
  New equations for the motions of bodies are derived for inertial and non-inertial frames using: 
a) some special relativity equations (but derived from Newtonian physics) 
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b) non-instantaneous forces 
c) Galilean transformations and a preferred frame (the cosmic microwave background). 

  The same special relativity equations of mass variation, kinetic energy and mass-energy relations 
are derived by Newtonian physics using the laws of conservation of mass, energy and momentum. 
  Time dilation by our new Newtonian physics is shown in the initial equations, although further 
development is required to derive the complete equations. 
  For the Michelson-Morley experiment, equations for refraction and reflection in glass are derived 
(the MM experiment uses a semi-transparent mirror, lens and telescope), although, again, further  
development of the complete equations is needed. 
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