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Abstract 

In contrast to the non-relativistic Schrodinger equation, there is no true two-body formulation using the relativistic Dirac 

equation for the case of a hydrogenlike atom.  Instead, the relativistic Dirac equation treats the atom as a single particle in a 

Coulomb field asserted by a static nucleus of infinite mass located at its core, which fails to take into account the nuclear mass 

and recoil.  A new simple and elegant approach is presented that allows for the formulation of a true two-body relativistic 

equation, as well as for the reduction of the formula into an equivalent one-body equation with a readily known solution. 

A special and important case of a two-body system is the case of two particles of mass 𝑚 and 𝑀 

interacting via a potential 𝑉 𝑟 1 − 𝑟 2  that depends on the relative coordinate 𝑟 = 𝑟 1 − 𝑟 2, rather than on their 

individual positions 𝑟 1  and 𝑟 2.   It is well established that in the case of the non-relativistic Schrodinger equation, 

the problem of two mutually interacting particles can be formulated and easily transformed into a problem of a 

single particle of reduced mass 𝜇 =
𝑚𝑀

𝑚+𝑀
 and position 𝑟  when viewing the particles within the inertial frame where 

their center of momentum  𝐶𝑀  is at rest [1].  In the relativistic approach, however, a simple extension of the 

Schrodinger equation for a two-body hydrogenlike system is not yet available.  Instead, the relativistic Dirac 

equation treats the atom as a single particle of mass 𝑚 and charge -𝑒 in a Coulomb field asserted by a static 

nucleus of infinite mass and charge 𝑍𝑒 located at its core, providing the following energy solutions [2,3,4]: 

Equation 1 

𝐸𝑛 ,𝑗 = 𝑚𝑐2 𝑓 𝑛, 𝑗 − 1 , with 𝑓 𝑛, 𝑗 =  1 +
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where 𝛼 is the fine-structure constant,  𝑛 is the principal quantum number and 𝑗 is the total angular momentum of 

the state. 

Consequently, unlike the non-relativistic Schrodinger equation, the relativistic theory fails to take into account the 

mass of the nucleus, and thus provides the same energy levels for the hydrogen atom as for the deuterium atom, 

contrary to experimental results.  In addition, measurements of various hydrogenlike atoms reveal that the 

measured energy levels associated with photons emitted or absorbed in transition between various atomic energy 

levels are smaller than the values predicted by the one-body Dirac equation by almost precisely a factor of 
1

1+𝑚 𝑀 
 

[2,3].  Since the electron motion in the case of a hydrogen atom is essentially non-relativistic, several articles have 

suggested to resolve these shortcomings by substituting the reduced mass 𝜇 in place of the mass 𝑚 in equation 1 

[2,3,5].  However, theoretical derivation that supports such a substitution has never been obtained.  Therefore, 

while the relativistic Dirac equation provides the correct description of the atom’s fine structure, it does not 

provide the proper mass dependence for a nucleus of finite mass.  This problem has been sidestepped in QED by 

forming a new effective Hamiltonian 𝐻 = 𝐻0 + 𝑉𝐶 , where 𝐻0 =
𝑝𝑚

2

2𝑚
+

𝑝𝑀
2

2𝑀
−

𝑍𝑒2

4𝜋𝑟
 is the original Schrodinger 



Hamiltonian and where 𝑉𝐶  is a correction potential that includes the first order relativistic correction terms
1
.  Thus, 

in essence, the finite nuclear mass problem was sidestepped by retreating back to the non-relativistic Schrodinger 

equation, where the need to replace the mass 𝑚 by the reduced mass 𝜇 has been established on solid theoretical 

grounds, and by reinforcing the Hamiltonian.  

The goal of this article is to generalize and apply the Dirac equation to hydrogenlike atoms, while taking into 

account both the finite masses of their nuclei as well as the full effect of nuclear recoil.   

To begin, a well-known relativistic equation often used for analyzing collisions between two interacting particles of 

mass 𝑚 and 𝑀 provides
2
 

Equation 2 

𝑊2 = 𝑚2𝑐4 + 𝑀2𝑐4 + 2𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀 𝑀𝑐2 

where 𝑊 is the energy of the two-body system when viewed in the 𝐶𝑀 inertial frame, and where  𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀  is the 

energy of the particle of mass 𝑚 when viewed in the inertial frame in which the particle of mass 𝑀 is momentarily 

at rest.  Consequently,  

Equation 3 

𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀 =
𝑊2 −  𝑚2𝑐4 + 𝑀2𝑐4 

2𝑀𝑐2 
 

Note that since the 𝐶𝑀 is an inertial frame, and since the two particles are interacting only with each other, 

conservation of energy dictates that 𝑊 is a constant of motion.  Due to nuclear recoil, in order to constantly view 

the particle of mass 𝑚 from an inertial frame where the nucleus is at rest, a periodic change of reference frame is 

required.  However, as 𝑊 is a constant of motion, equation 3 dictates that 𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀  must also be a constant of 

motion in spite of the periodic change of frame.  

Our goal is to formulate an equation in which the energy levels 𝑊 of the two-body system can be calculated.  Since 

𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀  is the energy of a single particle in a momentarily static Coulomb field, it can be described by the 

following one-body Dirac equation [4]: 

 

                                                           
1
 Note that aside from first order relativistic corrections, which are naturally provided by the Dirac equation, the potential 𝑉𝑐  is 

also comprised of additional terms that aim to resolve more subtle discrepancies with the observed spectrums of atoms, such 
as hyperfine structure, the Lamb shift, radiative-recoil effects, as well as corrections due to the strong and the weak 
interactions [3,4,5].   
2 Equation 2 can be proven as follows:  The four-momentum vectors of the particles of mass 𝑚 and 𝑀 in the frame where the 

particle of mass 𝑀 is momentarily at rest are 𝑃𝑚 ,𝑟𝑒𝑠𝑡𝑀 =  𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀 , 𝑝𝑚𝑟𝑒𝑠𝑡𝑀 ,𝑥 , 𝑝𝑚𝑟𝑒𝑠𝑡𝑀 ,𝑦 , 𝑝𝑚𝑟𝑒𝑠𝑡𝑀 ,𝑧  and  𝑃𝑀,𝑟𝑒𝑠𝑡𝑀 =

 𝑀𝑐2, 0,0,0 , while in the inertial frame 𝐶𝑀, 𝑃𝑀𝑐 =  𝐸𝑀𝑐 ,𝑝𝑐 ,𝑥 , 𝑝𝑐 ,𝑦 ,𝑝𝑐 ,𝑧  and 𝑃𝑚𝑐 =  𝐸𝑚𝑐,−𝑝𝑐 ,𝑥 , −𝑝𝑐 ,𝑦 ,−𝑝𝑐 ,𝑧 .  Conservation of 

energy in the CM inertial frame dictates that the total energy W= 𝐸𝑀𝑐 + 𝐸𝑚𝑐  must be conserved.  Adding the two four-

momentum vectors within the CM frame yields 𝑃𝑐 = 𝑃𝑚𝑐 + 𝑃𝑀𝑐 =  𝑊, 0,0,0 , and thus, 𝑃𝑐
2 = 𝑊2 =  𝑃𝑚𝑐 + 𝑃𝑀𝑐 

2 = 𝑃𝑚𝑐
2 +

2𝑃𝑚𝑐 ∙ 𝑃𝑀𝑐 + 𝑃𝑀𝑐
2.   It is given that 𝑃𝑚𝑐

2 = 𝑚2𝑐4 and 𝑃𝑀𝑐
2 = 𝑀2𝑐4.  Since 𝑃𝑚𝑐 ∙ 𝑃𝑀𝑐  is Lorenz invariant, it can be calculated in 

the inertial frame where particle 𝑀 is momentarily at rest, where 𝑃𝑚 ,𝑟𝑒𝑠𝑡𝑀 𝑃𝑀,𝑟𝑒𝑠𝑡𝑀 = 𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀 𝑀𝑐2. Therefore  𝑊2 = 𝑚2𝑐4 +

𝑀2𝑐4 + 2𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀 𝑀𝑐2.  



Equation 4 
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In equation 4, p  =
ℏ

𝑖
∇r  is the momentum operator of the particle of mass 𝑚 and 𝜎 =  𝜎1 , 𝜎2, 𝜎3  provides the Pauli 

matrices collected into a vector.  Furthermore,  𝐴0, A     denotes the 4-potential of the electromagnetic field 

asserted by the nucleus on the particle of mass 𝑚 when viewed within the frame where the particle of mass 𝑀 is 

momentarily at rest, while ΨmA  and ΨmB  are the two component spinors of that particle.  Substituting the energy 

𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀  from equation 3 into equation 4 yields 

Equation 5 
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Thus, combining equation 3 with equation 4 produced an equation from which, in principle, the energy levels 𝑊 of 

the two-body system within the CM frame of reference can be calculated via a single-particle Dirac equation.  

Consequently, a relativistic equation for the two-body system of finite mass can be formulated and reduced to a 

one-body equation that takes into account the masses of both particles. 

Further note that equation 4 is identical to the equation initially used to solve the spectrum of the hydrogen atom 

for the case of a nucleus with infinite mass and with charge 𝑍𝑒 .  The same equation was shown at the non-

relativistic limit to reduce to equation 1 given above.  Substituting the energy 𝐸𝑚 ,𝑟𝑒𝑠𝑡𝑀 = 𝐸𝑛 ,𝑗 + 𝑚𝑐2  from 

equation 1 into equation 2 provides 

Equation 6 

 𝑊2 = 𝑚2𝑐4 + 𝑀2𝑐4 + 2𝑀𝑚𝑐4 𝑓 𝑛, 𝑗  =  𝑚 + 𝑀 2𝑐4 + 2𝑀𝑚𝑐4 𝑓 𝑛, 𝑗 − 1  

or 

Equation 7 

𝑊 = ± 𝑚 + 𝑀 𝑐2  1 +
2𝑀𝑚𝑐4 𝑓 𝑛, 𝑗 − 1 

 𝑚 + 𝑀 2𝑐4
 

1 2 

 

where positive values of 𝑊 represent the energy levels of hydrogenlike atoms, while negative values of 𝑊 indicate 

the energy levels of anti-hydrogenlike atoms.  For simplicity, and without loss of generality, the minus sign will be 

dropped and only the special case of an actual hydrogen atom will be discussed. 

 In the case of the hydrogen atom,  𝐸𝑛 ,𝑗  =  𝑚𝑐2 𝑓 𝑛, 𝑗 − 1  ≤ 13.6 𝑒𝑣 (the ground level energy), thus defining   

𝑥 =
2𝑀𝑚𝑐4 𝑓 𝑛 ,𝑗  −1 

 𝑚+𝑀 2𝑐4   and using the relations  
𝑀

𝑚+𝑀
< 1 and  𝑚 + 𝑀 𝑐2 ≈ 9.385 ∗ 108𝑒𝑣  leads to 



  𝑥 ≤
27.2𝑒𝑣∗ 

𝑀
 𝑚 +𝑀 

 𝑚+𝑀 𝑐2 <
27.2𝑒𝑣

9.385∗108𝑒𝑣  
< 3 ∗ 10−8 

and to  

Equation 8 

𝑊 =  𝑚 + 𝑀 𝑐2 1 + 𝑥 1 2  

Defining the function 𝑔 𝑥 =  1 + 𝑥, the Taylor expansion around 𝑥 = 0 provides 

𝑔 𝑥 =  
𝑔 𝑛  0 

𝑛!
𝑥𝑛

∞

𝑛=0

 

where 𝑔 0  0 = 1, 𝑔 1  0 =  
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8
 and 𝑔 𝑛  0 =  −1 𝑛+1  

2𝑛−3

2𝑛   for any integer 𝑛 ≥ 1. 

Therefore,  𝑔 𝑥 = 1 +   −1 𝑛+1𝑎𝑛
∞
𝑛=1 , where 𝑎𝑛 =  

2𝑛−3

2𝑛  𝑥𝑛  

The series  𝑎𝑛   converges monotonically to 0 for all 0 < 𝑥 < 1.  Thus according to the Leibniz test for alternating 

series, the series  1 +   −1 𝑛+1𝑎𝑛
∞
𝑛=1  is convergent and its tail, starting with the 𝑚 + 1 term, is bounded by 

  1 +   −1 𝑛+1𝑎𝑛

∞
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𝑚
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Consequently, the Taylor series of   1 + 𝑥 1 2  is convergent, and the absolute value of the ratio between its tail 

starting at the 𝑚 = 2 term divided by 𝑎1  is bounded by  
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∞
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𝑥2

1
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𝑥
 < 7.5 ∗ 10−9 

Note that the first term of the expansion (= 1) was not included in the denominator, as we are only interested in 

the spectrum energies and not in the rest mass of the hydrogen atom. 

Therefore, replacing the term  1 + 𝑥 1 2  in equation 8 by the term 1 + 0.5𝑥 will result in negligible error. Thus, 

Equation 9 

𝑊𝑛 ,𝑗 =  𝑚 + 𝑀 𝑐2  1 +
2𝑀𝑚𝑐4 𝑓 𝑛, 𝑗 − 1 

 𝑚 + 𝑀 2𝑐4
 

1 2 

=   𝑚 + 𝑀 𝑐2 +
𝑀𝑚

 𝑀 + 𝑚 
𝑐2 𝑓 𝑛, 𝑗 − 1  

=  𝑚 + 𝑀 𝑐2 + 𝜇𝑐2 𝑓 𝑛, 𝑗 − 1  

Defining  𝑊𝑛 ,𝑗
𝑁𝑅  and 𝐸𝑛 ,𝑗

𝑁𝑅  as the non-relativistic energy levels of the hydrogen atom when calculated for the cases of 

finite and infinite nuclear mass respectively will lead to 

𝑊𝑛 ,𝑗
𝑁𝑅 = 𝑊𝑛 ,𝑗 −  𝑚 + 𝑀 𝑐2 = 𝜇𝑐2 𝑓 𝑛, 𝑗 − 1 =

𝑀

𝑀 + 𝑚
𝑚𝑐2 𝑓 𝑛, 𝑗 − 1 =

1

1 + 𝑚 𝑀 
𝐸𝑛 ,𝑗

𝑁𝑅  



Note that the equality 𝑊𝑛 ,𝑗
𝑁𝑅 =

1

1+𝑚 𝑀 
𝐸𝑛 ,𝑗

𝑁𝑅   is in complete agreement with the experimental results referenced 

above, while 𝑊𝑛 ,𝑗
𝑁𝑅 = 𝜇𝑐2 𝑓 𝑛, 𝑗 − 1  confirms, from the theoretical point of view, the suggested substitution of 

the reduced mass 𝜇 in place of the mass 𝑚 in the hydrogenlike energy equation 𝐸𝑛 ,𝑗 = 𝑚𝑐2 𝑓 𝑛, 𝑗 − 1 .
 3

 

In summary, as demonstrated by equation 5, we were able to formulate a true two-body Dirac equation that 

transforms into an equivalent one-body particle equation for both relativistic and non-relativistic cases.  This 

equation was solved for the case of the nearly non-relativistic hydrogenlike atom, and was shown to provide the 

expected solution of 𝑊𝑛 ,𝑗
𝑁𝑅 = 𝜇𝑐2 𝑓 𝑛, 𝑗 − 1 .  
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3
 Note, however, that there is no reason to assume that the mass 𝑚 should also simply be replaced by the reduced mass 𝜇 in 

higher-order corrections such as those associated with the hyperfine structure, radiative-recoil effects, or corrections due to 

the strong and the weak interactions.  As stated in Eides et al., the dependence of these corrections on the masses of all of the 

constituents is expected to be more complicated [3].  
 


