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Abstract

This paper reviews the well-known fact that nilpotent Hermitian operators
on physical state spaces are zero, thereby indicating that the supersymmetries
and “Grassmann numbers” are also zero on these spaces. Next, a positive
definite inner product of a Grassmann algebra is demonstrated, constructed
using a Hodge dual operator which is similar to that of differential forms.
From this example, it is shown that the Hermitian conjugates of the basis
do not anticommute with the basis and, therefore, the property that “Grass-
mann numbers” commute with “bosonic quantities” and anticommute with
“fermionic quantities”, must be revised. Hence, the fundamental principles of
supersymmetry must be called into question.
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1 Introduction

In physics, materials in the universe are classified into bosons and fermions, which
are described by quantum fields on the space-time. In order to explain fermions
with classical theories, physicists use the ideal quantities “Grassmann numbers”.
However, few textbooks explain the domain of “Grassmann numbers”. Nevertheless,
these “Grassmann numbers” are treated as well-established mathematical objects
in modern theoretical physics.

It is difficult to find a discussion on the domain of the “Grassmann numbers”.
The book “Supermanifolds” by de Witt [1] begins with a description of (infinite-
dimensional) Grassmann algebras. According to his definition, a scalar field in
a supersymmetric theory consists of infinitely many real scalar fields in the same
sense as ordinary field theories, which sounds somewhat strange. As regards Lie
algebra, commutation relations between bases, L, include all the information on the
Lie algebra. Hence, physicists believe that the anti-commutation relations between
θi define the algebra. However, in the case of “Grassmann numbers”, θi are not
described as forming a basis but are instead referred to as “parameters” or “vari-
ables”. In contrast, for a Lie algebra, su(2), typically σ1, σ2, σ3 are not referred to
as “Lie parameters”. They are not parameters but invariable bases of the algebra.
Thus, components and bases are confused here.

The commutation relations between the generators of a Grassmann algebra and
their Hermitian conjugates show that the appearance of Clifford algebras is nat-
ural in the unitary extension of Grassmann algebras. In addition, supersymme-
tries are imagined as symmetries whose “parameters” are “Grassmann numbers”.
The Grassmann algebra generated by an n-dimensional complex vector space has∑n

k=0 nCk = 2n dimensions. Therefore, elements of the Grassmann algebra can be
explained using these 2n components. In addition, any vector spaces over a com-
plex number field, C, are vector spaces over a real number field, R. For instance,
Cn ≃ R2n are vector spaces over R. Clearly, this statement is trivial, because R
is a subfield of C. Hence, elements of a Grassmann algebra generated by an n-
dimensional complex vector space can be explained by 2n+1 real components. Such
a realization tells us that if “Grassmann numbers” are elements of a Grassmann
algebra, the combination, ϵQ, of the “Grassmann numbers”, ϵ, and “infinitesimal
generators of supersymmetries”, Q, satisfy ordinary commutation relations without
anti-commutation relations, and can be explained as a linear combination with real
coefficients.

In addition, many physicists hesitate to treat the “Grassmann numbers” in terms
of Grassmann algebra directly, which may be because of the confusion of compo-
nents with bases. The author believes that the solid construction of theories is the
most important aspect of theoretical physics, and therefore a comprehensive under-
standing of the “Grassmann numbers” is required in order to accurately make use
of this theory.

As will be described below, through examination of the properties of Grassmann
algebras and “Grassmann numbers”, the author suggests that the undefined tool
“Grassmann numbers” should be reconsidered. In the next section, it is proven that
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supersymmetries and “Grassmann numbers” vanish on physical state spaces. Then,
in the third section, an example of commutation relations between the generators of a
Grassmann algebra and their Hermitian conjugates is shown. Reconsideration of the
property of the anti-commutation relations of “Grassmann numbers” is proposed.
In addition, doubt is cast on the basic construction of supersymmetry.

2 Nilpotent Hermitian Operators on Physical State

Spaces

Hilbert spaces are complete vector spaces over C endowed with a Hermitian
inner product. ‘Completeness’ relates to the Cauchy sequence convergence property,
however, this is not a central topic in this paper. A positive definite Hermitian
inner product, represented by ⟨·|·⟩, is a Hermitian inner product which satisfies the
following conditions: (i) ⟨ψ|ψ⟩ ≥ 0 for all ψ ∈ H, and (ii) ⟨ψ|ψ⟩ = 0 ⇒ ψ = 0.
Hilbert spaces with positive definite inner products are called physical state spaces.

Let us prove the nonexistence of nontrivial, nilpotent Hermitian operators on
physical state spaces.

Theorem 1 Let H be a vector space over C endowed with a positive definite inner
product, ⟨·|·⟩. Suppose that Y is a nilpotent Hermitian operator acting on H, i.e.
there is a natural number n, such that Y n−1 ̸= 0 and Y n = 0, and Y † = Y . Then,
Y = 0.

∵ Suppose that n ≥ 2. Y n−1 ̸= 0 and Y n = 0 implies that

⟨Y n−1ψ|Y n−1ψ⟩ = ⟨Y n−2ψ|Y †Y n−1ψ⟩ = ⟨Y n−2ψ|Y nψ⟩ = 0 , (1)

⇒ Y n−1ψ = 0 (∀ψ ∈ H) . (2)

Here, the first equality is obtained by taking the Hermitian conjugate and the second
equality is supported by the Hermitian property, Y † = Y . The third equality is
obtained from the expression Y n = 0, and the final statement, Y n−1ψ = 0, is
derived from the positive definite inner product. Because Y n−1ψ = 0 for every
state, ψ, Y n−1 must be zero. This contradicts the hypothesis and, therefore, we
obtain n = 1. Equivalently, Y = 0. □

Next, let us consider the operator X, where

X = ϵαQ
α + (ϵαQ

α)† , (3)

and α = 1, 2. This kind of operator appears in the exponents of supersymmetries
[2]. Suppose that ϵ1 and ϵ2 anticommute with each other, i.e., ϵ1ϵ2 = −ϵ2ϵ1, and
ϵ1ϵ1 = ϵ2ϵ2 = 0. Usually, so-called “Grassmann numbers” have the property that ϵα
commutes with “bosonic quantities” and anticommutes with “fermionic quantities”.
If we assume that the Hermitian conjugation transforms “bosonic quantities” to
“bosonic quantities” and “fermionic quantities” to “fermionic quantities” (otherwise
Hermitian conjugation is nothing but supersymmetry), then ϵα should commute with
(ϵαQ

α)†. From the ansatz of the anti-commutation, we can derive ϵαϵβϵγ = 0, which
indicates that X is nilpotent.
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Theorem 2 X = ϵαQ
α+(ϵαQ

α)† is nilpotent, where ϵαϵβ = −ϵβϵα, ϵαQβ = −Qβϵα,
and ϵβ(ϵαQ

α)† = (ϵαQ
α)†ϵβ.

∵

X5 = (ϵαQ
α + (ϵαQ

α)†)5 , (4)

= (ϵαQ
α)5 ,

+ (ϵαQ
α)4(ϵβQ

β)† + (ϵαQ
α)3(ϵβQ

β)†(ϵγQ
γ) + · · ·+ (ϵαQ

α)†(ϵβQ
β)4 ,

+ · · · ,

+
{
(ϵαQ

α)5
}†

. (5)

Here, the term (ϵα1Q
α1)(ϵβ1Q

β1)†(ϵα2Q
α2)(ϵβ2Q

β2)†(ϵα3Q
α3) vanishes because it con-

tains three ϵ’s. Then

(ϵα1Q
α1)(ϵβ1Q

β1)†(ϵα2Q
α2)(ϵβ2Q

β2)†(ϵα3Q
α3)

= −ϵα1ϵα2ϵα3Q
α1(ϵβ1Q

β1)†Qα2(ϵβ2Q
β2)†Qα3 . (6)

In addition, each X5 term includes factors ϵαϵβϵγ or (ϵαϵβϵγ)
†, and therefore X5 = 0.

□

Theorem 2 is the direct conclusion of the property ‘ϵα commutes with “bosonic
quantities” and anticommutes with “fermionic quantities” ’.

Corollary 1 (i) X = 0. (ii) ϵQ = 0.

∵ (i) It is obvious from the definition that X = X†. Therefore, X is a nilpotent
Hermitian operator and, from theorem 1, we conclude that X = 0. (ii) X = 0
is equivalent to ϵQ = −(ϵQ)†. Again, iϵQ is a nilpotent Hermitian operator and
ϵQ = 0. □

Corollary 1 raises a question not only about supersymmetries but also concerning
“Grassmann numbers”.

Corollary 2 If ‘ϵ commutes with “bosonic quantities” and anticommutes with “fermionic
quantities”’, then ϵ = 0 on the physical state spaces.

∵ Assume that ϵ satisfies the condition; ‘ϵ commutes with “bosonic quantities”
and anticommutes with “fermionic quantities”’. Z = ϵ+ ϵ† is a nilpotent Hermitian
operator and we therefore obtain Z = 0, while ϵ† + ϵ = 0 shows that iϵ is nilpotent
and Hermitian. Hence, ϵ = 0 is required. □

Therefore, in order to treat “non-trivial Grassmann numbers”, ghost states,
which are defined as states whose existence probabilities are negative, are required.
As it is apparent that “Grassmann numbers” strongly depend on the representa-
tion H, the fundamental principles of supersymmetry are called into question. In
order to examine the difference between “Grassmann numbers” and elements in the
unitary extension of Grassmann algebras, a basic example of a Grassmann algebra
generated by a two-dimensional vector space over C is given in the next section.
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3 Hermitian conjugation of a Grassmann algebra

Let V be a two-dimensional vector space over C, V ≃ C2, and suppose that V
is endowed with a positive definite Hermitian inner product, ⟨·|·⟩. An orthonormal
basis, {e1, e2}, is fixed in this section, such that ⟨ei|ej⟩ = δij. Now, the Hermitian
inner product can be expressed using the expansion coefficients with respect to the
basis. Suppose that two vectors, v, w ∈ V , are expanded with respect to {e1, e2},
such that

v = v1e1 + v2e2 =
(
e1 e2

)(v1
v2

)
, w = w1e1 + w2e2 =

(
e1 e2

)(w1

w2

)
. (7)

Then, the inner product of v and w can be written as

⟨v|w⟩ = ⟨v1e1 + v2e2|w1e1 + w2e2⟩ , (8)

= v∗1w1⟨e1|e1⟩+ v∗1w2⟨e1|e2⟩+ v∗2w1⟨e2|e1⟩+ v∗2w2⟨e2|e2⟩ , (9)

= v∗1w1 + v∗2w2 =
(
v∗1 v∗2

)(w1

w2

)
. (10)

Next, we wish to examine the Grassmann algebra, A, generated by V . The algebra
A is a vector space over C. The product in A is denoted by the wedge product, ∧,
and, thus, the product of v, w ∈ A is represented by v ∧ w. The multiplication is
bilinear and satisfies the associative and distributive laws. In addition, the basis of
A can be constructed from the basis of V , so that {1, e1, e2, e1 ∧ e2} form a basis of
A. Note that ω = e1 ∧ e2 is called the volume form.

The multiplication relations between these bases can then be expressed as

1 ∧ ei = ei ∧ 1 = ei , 1 ∧ (e1 ∧ e2) = (e1 ∧ e2) ∧ 1 = e1 ∧ e2 , (11)

ei ∧ ej = −ej ∧ ei , ei ∧ (e1 ∧ e2) = (e1 ∧ e2) ∧ ei = 0 , (12)

and a positive definite inner product on A can be defined.
Let us consider the complex conjugation operator C with respect to the basis,

{1, e1, e2, e1∧e2}. C is a real linear operator and, for X = v0+v1e1+v2e2+v3e1∧e2 ∈
A,

C(X) = v∗0 + v∗1e1 + v∗2e2 + v∗3e1 ∧ e2 . (13)

The Hodge dual operator ∗ is a complex linear operator on A and the action on
the basis {1, e1, e2, e1 ∧ e2} is defined as

∗1 = e1 ∧ e2 , ∗e1 = e2 , ∗e2 = −e1 , ∗e1 ∧ e2 = 1 . (14)

Now, let X ∈ A and X = v0 + v1e1 + v2e2 + v3e1 ∧ e2. Then,

∗X = v0e1 ∧ e2 + v1e2 − v2e1 + v3 . (15)

If X, Y ∈ A are expanded with respect to the previous basis, we have

X = v0 + v1e1 + v2e2 + v3e1 ∧ e2 , (16)

Y = w0 + w1e1 + w2e2 + w3e1 ∧ e2 . (17)
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It is apparent that the term proportional to the volume form in C(X) ∧ ∗Y gives a
Hermitian form on A, and hence

C(X) ∧ ∗Y = v∗0w3 ,

+ v∗0w1e2 − v∗0w2e1 + w3v
∗
1e1 + w3v

∗
2e2 ,

+ (v∗0w0 + v∗1w1 + v∗2w2 + v∗3w3)e1 ∧ e2 , (18)

⟨X|Y ⟩ ≡ v∗0w0 + v∗1w1 + v∗2w2 + v∗3w3 . (19)

As an alternative explanation, ⟨X|Y ⟩ = ∗[ω ∧ ∗{C(X)∧ ∗Y }]. The definition given
above (Eq.19) is independent of the choice of orthonormal basis {e1, e2}, and every
unitary transformation represented by U yields a new orthonormal basis, (f1 f2) =
(e1 e2)U . Here U is a 2× 2 unitary matrix and U †U = UU † = 1. Of course, we now
have C(fi) ̸= fi in general and 1, a base of A, is invariant under the transformation
by U .

The determinant of U is a complex number with a unit norm, |U | = eiα, where
α is a real number. Let us rewrite X in terms of the new basis, with

X = v0 + v1e1 + v2e2 + v3e1 ∧ e2 , (20)

= v′0 + v′1f1 + v′2f2 + v′3f1 ∧ f2 . (21)

Then, the relationships between the coefficients can be expressed as

v′0 = v0 ,

(
v′1
v′2

)
= U−1

(
v1
v2

)
, v′3 = e−iαv3 . (22)

Here, Eq. 22 implies that the previous Hermitian inner product is preserved under
the transformation by U , and therefore

(w′
0)

∗v′0 + (w′
1)

∗v′1 + (w′
2)

∗v′2 + (w′
3)

∗v′3

= w∗
0v0 +

(
w∗

1 w∗
2

)
UU−1

(
v1
v2

)
+ w∗

3e
iαe−iαv3 , (23)

= w∗
0v0 + w∗

1v1 + w∗
2v2 + w∗

3v3 . (24)

Next, let us consider the representation of A on itself. Assume that the repre-
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sentation R : A→ EndC(A) is defined by R(X)Y := X ∧ Y . For instance,

R(1)X = 1 ∧X = X , (25)

=
(
1 e1 e2 e1 ∧ e2

)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



v0
v1
v2
v3

 , (26)

R(e1)X = e1 ∧X = v0e1 + v2e1 ∧ e2 , (27)

=
(
1 e1 e2 e1 ∧ e2

)
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0



v0
v1
v2
v3

 , (28)

R(e2)X = e2 ∧X = v0e2 − v1e1 ∧ e2 , (29)

=
(
1 e1 e2 e1 ∧ e2

)
0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0



v0
v1
v2
v3

 , (30)

R(e1 ∧ e2)X = e1 ∧ e2 ∧X = v0e1 ∧ e2 , (31)

=
(
1 e1 e2 e1 ∧ e2

)
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0



v0
v1
v2
v3

 . (32)

Here, two matrices

F1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , F2 =


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

 , (33)

are the representation matrices of the basis e1 and e2. The multiplication relations
of F1 and F2 are

F1F2 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , F1F2 + F2F1 = 0 . (34)

These indicate that F1 and F2 anticommute with each other, i.e., F1F2 = −F2F1,
and it can be easily confirmed that F 2

1 = F 2
2 = 0.

Moving on to the Hermitian conjugates of F1 and F2, it is apparent that the inner
product on the algebra A is equivalent to the standard Hermitian inner product on
C4. Therefore, the Hermitian conjugation of the linear transformation on A can be
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obtained by taking the complex conjugates and transpositions of F1 and F2. We
obtain

F †
1 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , F †
2 =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 . (35)

Analysis of the multiplicative relation between F1, F2, F
†
1 , and F †

2 reveals that the
algebra is not a Grassmann algebra but is actually a Clifford algebra, with

F1F
†
1 + F †

1F1 = F2F
†
2 + F †

2F2 = 1 . (36)

Equivalently, {F †
1 , F1} = {F †

2 , F2} = 1. F1, F2, F
†
1 , and F †

2 should be treated as
“Grassmann odd quantities”, but they do not simply anticommute with each other.
The remaining multiplication relations are F †

1F2 + F2F
†
1 = 0 and the Hermitian

conjugation. We obtain

{Fi, Fj} = {F †
i , F

†
j } = 0, {Fi, F

†
j } = δij . (37)

By taking linear combinations of F s, the generators γ†a = γa, (a = 1, 2, 3, 4) of the
Clifford algebra are obtained, with

γ1 = F1 + F †
1 , γ2 = i(F1 − F †

1 ), γ3 = F2 + F †
2 , γ4 = i(F2 − F †

2 ) , (38)

and the multiplication relations of the γ’s and their Hermitian conjugates are

{γa, γb} = 2δab , γ†a = γa . (39)

It has therefore been shown that the extension of a Grassmann algebra with its
Hermitian conjugates results in a Clifford algebra. Clearly, this result strongly
suggests that we reconsider the anti-commutation relations between “Grassmann
numbers” and their Hermitian conjugates.

4 Discussion

The construction of the inner product in the previous section is obtained using the
Hodge dual operator. As shown, the algebra closed under the Hermitian conjugation
is a Clifford algebra rather than a Grassmann algebra. As Clifford algebras are
closely related to rotations, fermions may be related to rotations of certain infinite
dimensional spaces, such as state spaces.

The Grassmann algebra, A = C ⊕ V ⊕ (V ∧ V ), constructed from a two-
dimensional vector space, V , over the complex number field, C, is split into two
parts: “the bosonic part”, A0 = C⊕(V ∧V ), and “the fermionic part”, A1 = V . For
v, w ∈ A1, v∧w = −w∧v. Let us consider n “Grassmann numbers”, (θ1, θ2, · · · , θn).
If all θi are elements of A1 and the multiplication of θi is identified with the wedge
product of the Grassmann algebra, all θi satisfy the condition that θiθj + θjθi = 0.
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Of course, one can consider various Grassmann algebras constructed from several
vector spaces, and certain properties of θi depend on the dimensions of the generat-
ing vector spaces. For example, in the case of dimCV = 2, the condition, θiθjθk = 0,
is satisfied for every “configuration (θ1, θ2, · · · , θn)”, whereas for dimCV = 3, config-
urations with θiθjθk ̸= 0 (n > 2) exist. An essential question is posed as to whether
“Grassmann numbers” are elements of any of these possible Grassmann algebras.
To answer this, we begin with the definition of a Grassmann algebra, as we know
that the dimension of the generating vector spaces is required.

It is an assumption that the algebra, A, acts on the Hilbert space H as, with-
out this condition, the multiplication of “Grassmann numbers” θ1, · · · , θn with any
states cannot be considered from the outset. In other words, it is conjectured that a
representation R : A→ gl(H) is given. The conjecture is appropriate. This conjec-
ture is equivarent to the assumption where supersymmetry is considered to be a sym-
metry of the Hilbert space. LetX = ϵQ+h.c. and U = exp(X) = 1+X+X2/2+· · · .
The action of U,X and Qα on any states |ψ⟩ should be considered under the as-
sumption; U |ψ⟩, X|ψ⟩, Qα|ψ⟩. X|ψ⟩ = ϵαQ

α|ψ⟩ implies that the multiplication of
“Grassmann numbers” ϵα on the state is performed in this expression. Otherwise
nobody can consider the transformation of states by those supersymmetries. Hence
people who claim that the multiplication of “Grassmann numbers” θ1, · · · , θn with
any states cannot be considered from the outset are also claiming that supersym-
metries are not symmetries of the Hilbert space.

Constructing spaces which have the action of a Grassmann algebra is easy. Let
us show that below. For any vector space H over C, by considering the extension of
the coefficients

Hθ = A⊗C H , (40)

we obtain a vector space Hθ, which has the action of A. The set, Hθ, is actually
a vector space over C, and it is easily shown that every finite-dimensional vector
space over C has a positive definite Hermitian inner product. If there is a positive
definite inner product on V which generates A, a positive definite inner product on
A can be defined using the Hodge dual operator. Thus, Hθ becomes a vector space
with a positive definite inner product.

5 Conclusion

This paper concludes that the property stating that a “Grassmann number”, ϵ,
commutes with “bosonic quantities” and anticommutes with “fermionic quantities”
is not appropriate to define the idea of “Grassmann numbers” and, as a result, doubt
is cast on all calculations involving Grassmann numbers. The property is different
from that of Grassmann algebra and, in particular, the foundation of supersymmetry
must be reconsidered.
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