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Abstract

The phenomenon of reflection from conducting surface is considered in terms of ex-
act solutions of Maxwell equations. Matching of waves and current density at the plane
is completed. Amplitudes of reflected and transmitted waves are found as functions
of incident wave and conductivity of the plane. This work is completed also for con-
ducting plane lying between two distinct media. It is shown that in case of conducting
interface waves with some certain parameters (polarization, incidence angle and fre-
quency) and transform completely into waves of current density whereas amplitude of
the reflected wave is equal to zero that is equivalent to total absorption.

1 Introduction

Conducting bodies are known to reflect electromagnetic waves. A limiting case of this
phenomenon with the body being infinitesimally thin, or at least, having negligibly small
thickness, which can be represented as a surface, is much simpler because in this case match-
ing procedure is needed only on the surface itself. A theory of reflection from conducting
surfaces would be an interesting and useful part of classical electrodynamics and mathemat-
ical physics. In this work we consider the simplest case of this phenomenon in which plane
wave propagates towards a uniform conducting plane. The task is to derive amplitudes of
reflected and transmitted waves as functions of polarization of the wave, angle of incidence
and conductivity of the plane which is assumed to be constant everywhere on it. The prob-
lem is considered in its general form which admits that the plane lies between two distinct
media. So, if their dielectric parameters are different, under some conditions transmitted
wave is evanescent, therefore waves of this kind are also to be in the scope and we present
our description of these waves at the very beginning.

In this work we propose an exact solution of the problem of reflection and transmission
of plane electromagnetic waves from a uniform conducting plane. The work is organized as
follows. We start with our representation of Maxwell equations in term of exterior calculus
and plane waves as their particular solution. Then we show how to match the field to surface
current density on the plane. Finally, we link this density to electric strength of the wave and
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conductivity of the plane and finally derive the values of amplitudes of incident, reflected
and transmitted waves for given angle of incidence and conductivity of the plane.

2 Surface densities of the source of the field on a plane

When considering interaction of electromagnetic wave with a conducting plane, some sources
of the field appear in the form of charge and current densities on it, therefore, the complete
version of Maxwell equations are also to be considered. In this case the 1-form A is strictly
real and the field equation for it reads

d ∗dA = −4πI. (1)

The right-hand side of this equation stands for the 3-form of 4-dimensional current density

I = ρdx ∧ dy ∧ dz + jxdt ∧ dy ∧ dz + jydt ∧ dz ∧ dx+ jzdt ∧ dx ∧ dy (2)

where ρ stands for the volume charge density and ja’s do for components of the spatial
current density. Surface densities of charge and current are limiting cases of these ones which
have δ-function singularity on the support. For example, the 2-form of surface charge density
σdx∧dy on the plane z = 0 can also be represented as an ordinary volume density σδ(z)dx∧
dy ∧ dz and so for the current. Since all the rest considerations are being carried in three
dimensions, below I employ only 3-dimensional exterior calculus, therefore the exterior factor
dt will not appear in the current density. Nevertheless, one important difference between
3-dimensional and (1+3)-dimensional version of exterior calculus must be mentioned. The
asterisk conjugations in these dimensions sometimes differs in sign. That is why the sign
“minus” appeared in the field equation (1). This sign agreement provides that the time
component of A called electrostatic potential Φ,

A = Φdt+ fdx+ gdy + hdz

satisfies Laplace equation with correct sign, however, one of Maxwell equations takes the
form

dH = −4πI (3)

(note the sign “minus” at the current density). Current density I appears under electric in-
duction ∆ of a electromagnetic wave incident at a conducting plane. Its value is proportional
to induction due to the relation

I = κ∆ (4)

where κ stands for conductivity of the plane.
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3 Plane and evanescent electromagnetic waves

Plane and evanescent waves have been discussed in our recent work [3]. The corresponding
strengths and inductions as they are derived there, have the form

E = −ω sin(ωt− px− qz) dy, (5)

H = − q

µ
sin(ωt− px− qz) dx+

p

µ
sin(ωt− px− qz) dz,

B = p sin(ωt− px− qz) dx ∧ dy − q sin(ωt− px− qz) dy ∧ dz,

∆ = −ωϵ sin(ωt− px− qz) dz ∧ dx

and

E =
q

ϵ
sin(ωt− px− qz) dx− p

ϵ
sin(ωt− px− qz) dz, (6)

H = −ω sin(ωt− px− qz) dy,

B = −ωµ sin(ωt− px− qz) dz ∧ dx,

∆ = q sin(ωt− px− qz) dy ∧ dz − p sin(ωt− px− qz) dx ∧ dy

for two orthogonal polarizations. Components p and q of the wave vector satisfy the well-
known dispersion equation

ϵµω2 = p2 + q2. (7)

If the conducting plane lies between two distinct media, it may happen that p > ωn. In this
case this equation is broken and it is convenient to introduce another constant q by

q2 = p2 − ϵµω2. (8)

Then the wave in the less optically dense medium is evanescent and its fields has strengths
and inductions of the form

E = aωe−q|z| sin(ωt− px) dy, (9)

H = −aq

µ
e−q|z| cos(ωt− px) dx− ap

µ
e−q|z| sin(ωt− px) dz,

B = −ape−q|z| sin(ωt− px) dx ∧ dy − aqe−q|z| cos(ωt− px) dy ∧ dz,

∆ = aωϵe−q|z| sin(ωt− px) dz ∧ dx

for one polarization and

E = −aq

µ
e−q|z| sin(ωt− px) dx+

ap

µ
e−q|z| cos(ωt− px) dz, (10)

H = ωe−q|z| cos(ωt− px)

B = aωµe−q|z| cos(ωt− px) dz ∧ dx

∆ = ape−q|z| cos(ωt− px) dx ∧ dy − aqe−q|z| sin(ωt− px) dy ∧ dz,

for another.

3



4 Plane waves from a conducting plane. The case of

divergence-free current density

Let a plane, put it as the coordinate plane z = 0, be conducting and carry a surface current
density which depends on t and x as cos(ωt− px), for example, I = j cos(ωt− px) dz ∧ dx.
In the simpler case of current orthogonal to the vector of propagation, electromagnetic field
produced by such a current density is a wave like those considered above and on the plane it
has a jump of the tangent component of the magnetic strength which is equal to the surface
current density on the plane z = 0:

I = j cos(ωt− px) dx = (H+ −H−)xdx, z = 0. (11)

Therefore the entire field can be represented in the form of plane wave as before, but in
this case the wave propagates outwards from the plane, thus, in positive direction of z in
the z > 0 half-space and in negative direction otherwise. The corresponding strengths and
inductions are as in the equations (5):

E = aω sin(ωt− px− q|z|) dy,
H = −ε(z)

aq

µ
sin(ωt− px− q|z|) dx− ε(z)

ap

µ
sin(ωt− px− q|z|) dz,

B = −ap sin(ωt− px− q|z|) dx ∧ dy − aq sin(ωt− px− q|z|) dy ∧ dz,

∆ = aωϵ sin(ωt− px− q|z|) dz ∧ dx

where ε is the well-known step function which stands for the sign of z. In this case the
boundary conditions are (11) and

(E+ − E−)y = (B+ −B−)xy = (∆+ −∆−)xy = 0, z = 0. (12)

These three conditions are completed trivially and the previous one, (11) equalizes current
density and discontinuity of the x-component of magnetic strength:

j = −2aq

µ
.

So, as soon as the surface current density, or actually, the coefficient j is specified, the waves
amplitude can be found from this equation. If the constant q (8) in the form of the current
density is real-valued, the wave is evanescent at both sides of the plane, hence, in this case we
have bilateral evanescent wave. The corresponding strengths and inductions have the form
(9). It is easy to verify that these expressions satisfy both the field equations and boundary
conditions (11,12).

5 Plane waves from a conducting plane. The case of

non-zero charge density

Consider a current density on a plane which has the same direction as the the vector of
propagation, I = j cos(ωt − px) dy. Since this current density accumulates electric charge,
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hence such a current density is obligatory accompanied with the corresponding 2-form of
surface charge density σdx ∧ dy linked to the 2-form I by the continuity equation

∂σ

∂t
+ dI = 0. (13)

Then, the surface charge density depends on t and spatial coordinates the same way and I
have them in the form

σ = s cos(ωt− px) dx ∧ dy, I = j cos(ωt− px) dy (14)

Substituting these forms into the equation (13) yields simple relation

jp = sω. (15)

The next task is to match plane waves using the surface densities in the boundary conditions.
These conditions read that discontinuity of the 2-form ∆ on the plane is equal to the surface
density and that the equation (11) is now to be used for the x-component of the magnetic
strength:

(E+ − E−)y = (B+ −B−)xy = 0, (∆+ −∆−)xy = σ, z = 0. (16)

It is seen that in this case the wave has another polarization than that considered above and
is given by the equations (6):

E =
aq

ϵ
sin(ωt− px− q|z|) dx+ ε(z)

ap

ϵ
sin(ωt− px− q|z|) dz, (17)

H = ε(z)aω sin(ωt− px− q|z|) dy,
B = ε(z)aωµ sin(ωt− px− q|z|) dz ∧ dx,

∆ = ε(z)ap sin(ωt− px− q|z|) dx ∧ dy + aq sin(ωt− px− q|z|) dy ∧ dz.

Substituting this into the boundary conditions (16) yields only two equalities,

2aω = j, 2ap = σ (18)

which are in full agreement with the consequence (15) of the continuity equation (13). Thus,
if surface current density on the plane has the form (14), then charge and current densi-
ties satisfy the equation (15) and the current produces electromagnetic wave given by the
equation (17) with amplitude found from the equations (18) and the component p of the
wave vector as in the equation (7). Again, if the constant q (8) in the form of the current
density is real-valued, the wave is evanescent at both sides of the plane, hence, in this case
we have bilateral evanescent wave. The corresponding strengths and inductions are given by
the equations (10). It is easy to verify that these expressions satisfy both the field equations
and boundary conditions (11,12).
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6 Reflection and transmission at a conducting plane.

E tangent to the plane

In this and the next sections I consider propagation of a plane wave from a dielectric onto
a conducting plane which again is specified by the coordinate plane z = 0. The total wave
in the z > 0 half-space is to be represented as the sum of incident and reflected waves and
that in the z < 0 is what the surface of the current density on the plane emits. In fact,
the reflected wave also is of this origin. Due to special role of the electric strength, which
produces the surface current density, reflection and refraction of waves with two different
polarizations are completely different and will be considered separately, so, in this section I
consider the case of E (co)-tangent to the plane.

Evidently, incident, transmitted and reflected waves can be represented by 1-forms (qi =
qt)

Ai = ai

(
ıq

µω
cosϕ+dx− cosϕ+dy +

ıp

µω
cosϕ+dz

)
Ar = ar

(
ıq

µω
cosϕrdx+ cosϕrdy −

ıp

µω
cosϕrdz

)
At = at

(
ıq

µω
cosϕ−dx− cosϕ−dy +

ıp

µω
cosϕ−dz

)
.

Again, as a result, I have strengths and inductions of the three waves in the form

Ei = aiω sin(ωt− px+ qz) dy,

Hi = −aq

µ
sin(ωt− px+ qz) dx− aip

µ
sin(ωt− px+ qz) dz,

Bi = −aip sin(ωt− px+ qz) dx ∧ dy − aiq sin(ωt− px+ qz) dy ∧ dz,

∆i = aiωϵ sin(ωt− px+ qz) dz ∧ dx

for the incident wave,

Er = −arω sin(ωt− px− qz) dy,

Hr = −arq

µ
sin(ωt− px− qz) dx+

arp

µ
sin(ωt− px− qz) dz,

Br = arp sin(ωt− px− qz) dx ∧ dy − arq sin(ωt− px− qz) dy ∧ dz,

∆r = −arωϵ sin(ωt− px− qz) dz ∧ dx

for the reflected wave and

Et = atω sin(ωt− px+ qtz) dy,

Ht = −atq

µ−
sin(ωt− px+ qz) dx− p

µ−
sin(ωt− px+ qz) dz,

Bt = −atp sin(ωt− px+ qz) dx ∧ dy − atq sin(ωt− px+ qz) dy ∧ dz,

∆t = atωϵ sin(ωt− px+ qz) dz ∧ dx
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for the refracted wave.
In this case boundary conditions have a more complicated form than (11) and (16)

because the total electric strength produces electric current density. Since ∆ has only zx-
component, according to specific notation of exterior calculus on a plane, according to the
equations (3,4), the current density produced by it also has only zx-component. Hence, the
complete boundary condition consists of five equations

(Ei + Er)y = (Et)y, (Bi +Br)xy = (Bt)xy, (19)

(∆i +∆r)xy − (∆t)xy = 0,

κ(∆i +∆r +∆t)zx = Izx, (Hi +Hr −Ht)x = −4πIzx

where I use the equation (4). Due to the equation (14) which expresses the surface charge
density through current density, these conditions yield only three non-coinciding equations
which are

ar + at = ai, ϵκω (ai − ar + at) = j
q

µ
(ai + ar − at) = 4πj.

If the amplitude ai is specified, three other unknowns come out of these equations after
excluding j:

ar =
4πaiϵµωκ

q + 4πϵµωκ
, at =

aiq

q + 4πϵµωκ
, j =

2aiqϵκω

q + 4πϵµωκ

or, in terms of incident angle,

ar =
4πainωκ

4πκn+ cos i
, at =

ai cos i

4πκn+ cos i
, j =

2aiϵκω cos i

4πκn+ cos i
(20)

The current surface density on the plane is given by

I = j sin(ωt− px) dz ∧ dx.

Now, let us consider another polarization.

7 Reflection and transmission at a conducting plane.

H tangent to the plane

In case of another polarization everything is as in the previous section, but now H is tangent
to the plane. The corresponding strengths and inductions of the three waves in the form

Ei =
aiq

ϵ
sin(ωt− px+ qz) dx+

aip

ϵ
sin(ωt− px+ qz) dz,

Hi = aiω sin(ωt− px+ qz) dy

Bi = aiωµ sin(ωt− px+ qz) dz ∧ dx,

∆i = aip sin(ωt− px+ qz) dx ∧ dy + aiq sin(ωt− px+ qz) dy ∧ dz
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for the incident wave,

Er = −arq

ϵ
sin(ωt− px− qz) dx+

arp

ϵ
sin(ωt− px− qz) dz,

Hr = arω sin(ωt− px− qz) dy,

Br = arωµ− sin(ωt− px− qz) dz ∧ dx

∆r = arp sin(ωt− px− qtz) dx ∧ dy − arqt sin(ωt− px− qtz) dy ∧ dz

for the reflected wave and

Et =
atq

ϵ
sin(ωt− px+ qz) dx+

atp

ϵ
sin(ωt− px+ qz) dz,

Ht = atω sin(ωt− px+ qz) dy,

Bt = atωµ− sin(ωt− px+ qz) dz ∧ dx,

∆t = atp sin(ωt− px+ qz) dx ∧ dy + atq sin(ωt− px+ qz) dy ∧ dz

for the refracted wave.
In this case boundary conditions have a more complicated form than (19) because charge

density σxy is non-zero and correspondingly, ∆ has non-zero xy-component. Hence, the
complete boundary condition consists of five equations

(Ei + Er)x = (Et)x, (Bi +Br)xy = (Bt)xy,

(∆i +∆r)xy − (∆t)xy = 4πσxy,

κ(∆i +∆r +∆t)yz = Iyz, (Hi +Hr −Ht)y = 4πIyz.

These conditions yield only three non-coinciding equations which are

ai − ar − at = 0, p(ai + ar − at) = 4πσ,

ω(ai + ar − at) = 4πj, qκ(ai − ar + at) = j.

The second equation of the first line and the first equation of the second line together
constitute the charge conservation law represented as the equation (15). Therefore one of
them can be ignored together with the unknown surface charge density σ which can be
obtained from this law if necessary. If the amplitude ai is specified, three other unknowns
come out of these equations after excluding j:

ar =
4πaiqϵκ

ω + 4πpϵκ
, at =

aiω

ω + 4πpϵκ
, j =

2aiqϵκω

ω + 4πpϵκ

or, in terms of incident angle,

at =
ai

4πnκ cos i+ 1
, ar =

4πaiκn cos i

4πnκ cos i+ 1
, j =

2aiκωn cos i

4πnκ cos i+ 1
(21)

The current surface density on the plane is given by

I = j sin(ωt− px) dz ∧ dx. (22)

Note that under straight incidence i = 0 amplitudes of reflected and transmitted waves for
both polarizations coincide as it should be geometrically. The corresponding surface charge
density can also be found if needed.
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8 Conducting interface

In this section we assume that the interface has non-zero conductivity κ and incident wave
produces a non-zero current density on it. The phenomenon to be studied is transformation
of an incident wave into an evanescent one that is equivalent to partial absorption of it by
the conducting layer between two media. The effect of absorption is stronger for waves with
electric strength parallel to the plane, therefore we consider only one polarization. Applying
boundary conditions (19) yields the following system of algebraic equations

ai − ar = at
qi
µ+

(ai + ar)−
qt
µ−

at = 4πj

4πκωϵ+(ai + ar)− 4πκωϵ−at = −4πj

Exclusion of j and denoting

P± =
qi
µ+

± 4πκωϵ+, Q =
qt
µ−

+ 4πκωϵ−

allows one to represent the remaining equations in the form

ai − ar − at = 0, P+ai + P−ar −Qat = 0

and solve them as

at = ai
P+ + P−

Q+ P−
, ar = ai

Q− P+

Q+ P−
(23)

and current density can also be obtained from one or another equation above.
If ϵ+µ+ where the wave propagates from, is greater than ϵ−µ− where it does to, then

under some angles of incidence, the Snell law reads that sin r ≥ 1 that is impossible. Under
these conditions, the wave in the less dense medium should be represented by

Et = atωe
−qtz sin(ωt− px) dy,

Ht = −atqt
µ+

e−qtz cos(ωt− px) dx− atp

µ+

e−qtz sin(ωt− px) dz,

Bt = −atpe
−qtz sin(ωt− px) dx ∧ dy − atqte

−qtz cos(ωt− px) dy ∧ dz,

∆t = atωϵ+e
−qtz sin(ωt− px) dz ∧ dx

where qt satisfies the equation (8).

9 Conclusion

Unlike an interface between two distinct media, conductors interact with electromagnetic
waves by currents which they carry. However, simplest problems of interactions of this
kind, in which both the wave and conductor have planar symmetry and besides, thickness
of the latter is much smaller than the wavelength, admit complete solution which provide
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amplitudes of reflected and transmitted waves, phase shifts and angles in case of jump of
dielectric factors on it. This solution is obtained in explicit form. Besides formal quantitative
results we have some qualitative ones which would make sense for practical applications. One
of them is well-known effect of polarization of waves when being reflected and refracted at
an interface, which now is accompanied by certain values of amplitudes (20,21) for each
polarization. Another quantitative results seems to be more interesting.

In case of total internal reflection at a conducting interface the value of amplitude of the
reflected wave as a function of all the rest parameters, shows that under to some special
conditions this amplitude may become equal to zero. In this case total internal reflection
actually yields no reflection and the wave is completely absorbed by the conducting plane.
This phenomenon exists if the difference Q − P+ in the equation (23) vanishes under some
angles of incidence. Existence of the phenomenon of total absorption of electromagnetic
wave is interesting by itself, but also can be interesting from practical point of view.
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