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Abstract 

   Using condition of relativistic covariance, group theory and Clifford algebra the 2(2 1)s  -

component Lorentz invariance generalized relativistic wave equation for a particle with 

arbitrary mass m  and spin s  is suggested, where 0m 
 
and 

1 3
0, ,1, ,2,...

2 2
s   It is shown that 

the charged scalar ( 0 0e and s  ) and noncharged scalar ( 0 0e and s  ) particles with 

0m   are described by two-component relativistic equations. Accordingly, the noncharged 

scalar fermi particles ( 0, 0 0m e and s   ) can be used as an elementary particle of the 

Standard Model of particle physics. In the case of arbitrary integral spin  1,2,...s  , the 

relativistic equation for 0m   leads to the equation of massless boson particles. For the 

solution of presented in this work generalized relativistic equation in the linear combination of 

atomic orbitals approximation, the 2(2s+1)-component orthogonal basis sets of spinor 

functions for the arbitrary mass and spin are suggested in position, momentum and four-

dimensional spaces. 

Keywords: Relativistic covariance, Clifford algebra, Lorentz invariance, Exponential type 

spinor orbitals, Slater type spinor orbitals 

I. Introduction 

        It is well known that the form of relativistic or nonrelativistic wave equations of motion 

depends on the spin of the particles. The usual Schrödinger equation describes the motion of 

the spin-0 particles in the nonrelativistic domain, while the Klein-Gordon equation is the 

relativistic equation appropriate for spin-0 particles. The spin-1/2 particles are governed by 

the relativistic Dirac equation which, in the nonrelativistic limit, leads to the Schrödinger-

Pauli equation [1-4]. For particles with spin-1 or higher, only relativistic equations are usually 

considered [5]. 

         The first higher spin equations have been proposed by Dirac in [6]. These equations in 

the presence of an external electromagnetic field, as was shown by Fierz and Pauli [7], led to 
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the inconsistencies. They have suggested the equations for the special cases of 
3

2
s   and 

2s  . Rarita and Schwinger [8] have developed theory of spin 
3

2
 free particles which 

contains many of the features of the Dirac theory. The theory of spin-s free particles has been 

also developed by Proca [9], Kemmer [10] and Bargmann and Wigner [11]. All of these 

formalisms for spin-s free particles have many intrinsic contradictions and difficulties when 

an electromagnetic field interaction is introduced (see [12] and references therein). It should 

be noted that the mathematical structure of our study, based on the case of new definition of 

Bose-Fermion theory (see [13] and references therein), is different from all of the approaches 

which are available in the literature. Therefore, the generalized relativistic equation presented 

in this work can not be reduced to them. By the use of group theory and Clifford algebra, we 

have shown in [14] that the generalized relativistic equation for the particles with arbitrary 

half-integral spin is consistent and causal in the presence of an electromagnetic field 

interaction. The aim of this work is, using the method set out in [14, 15], to establish the 

generalized relativistic equation for fermions and bosons with arbitrary values of parameters. 

For the solution of this equation by the use of linear combination of atomic orbitals (LCAO) 

approach, the orthogonal basis sets of spinor functions are presented in position, momentum 

and four-dimensional spaces.  

II. Generalized relativistic equation of arbitrary mass and spin 

   The arguments given for the solution of this problem are based on three completely different 

points of view, namely, the application of group theory, and making use of the conditions of 

relativistic covariance and Lorentz invariance. 

II-1. Use of group theory and Clifford algebra 

   For a single particle of charge e  and mass m the relativistic Hamilton operator is given by 

2 2 2 4

0
ˆˆ ( )e

c
H c p A m c eA    ,                   (II-1) 

where 
1 3

0 0, , ,...
2 2

m and s    for fermions, 0 1,2,...m and s    for bosons,
 0A

 
is the 

scalar potential, A  the vector potential and p̂
i

   the momentum operator. 
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      The new arguments in presented approach based on the use of group theory and Clifford 

algebra. It is well known, in accordance with the postulates of quantum mechanics the 

Hamilton operator Ĥ  has to be linear and Hermitian. One can immediately see that the 

condition of linearity cannot be fulfilled, since the square root is not a linear operator. 

Therefore, the relativistic problem for arbitrary mass and spin can be viewed in terms of a 

special polynomial algebra [16, 17]. In a previous work [14], for the linearization of the 

square root in the case of half-integral spin we have used the group theory and Clifford 

algebra. The generalized relativistic problem for arbitrary mass and spin can be solved in a 

similar way. Using the method set out in [14], we obtain for the order of the Clifford algebraic 

Dirac group the following relation: 

28(2 1)sg s  ,           (II-2) 

where 
1 3

0, ,1, ,2,...
2 2

s   This group has 
1

1
2

sg   classes, therefore, 
1

1
2

sg  irreducible 

representations. The dimensions in  for these representations are determined by 

1
1

2
2

1

sg

i s

i

n g





 ,            (II-3) 

where 

1
1 1

2
.

1
2(2 1) 1

2

s

i

s

for i g

n

s for i g


 

 
   


        (II-4) 

The one-dimensional representations do not satisfy the conditions of Clifford, therefore, only 

the 2(2 1)s   dimensional irreducible representations can be used. The results are presented in 

Table 1. 

II-2. Generalized relativistic equation 

   Making use of Table 1 obtained from the application of group theory and condition of 

relativistic covariance we introduce the following 2(2 1) 2(2 1)s s    Hermitian and unitary 

matrices: 
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0 0 . . . 0

0 0 . . . 0

. . . . 0 0

. . 0 . . .

. . 0 . . .

0 0 . . . .

0 . . . 0 0

s







 







 
 
 
 
 

  
 
 
 
 
 

        (II-5) 

and 

0 1 3
0, , ,... 0 ( 6)

2 20

0 0
1,2,... 0. ( 7)

0 0

s s

s s

s

s s

s s

I
for s and m II

I

for s and m II



 
   

 
 

 
   

 

 

These matrices satisfy  

0s s s s

k k               (II-8) 

2 .s s s s s

k l l k kl I                (II-9) 

It should be noted that, in the case of integral values of s the matrices s in the form 

0

0

s s

s

s s

I

I


 
  

 
 do not satisfy the condition (II-8), i.e., 

0 1,2,...s s s s

k k for s                        (II-10) 

Therefore, Eq. (II-7) correspondences to the case of massless particles for 1,2,...s  . 

   The generalized relativistic equation corresponding to the matrices (II-5), (II-6) and (II-7) is 

defined as 

ˆ
s

s si H
t


 


         (II-11) 

    

2

0
ˆˆ ( )s s se

c
H c p A mc eA             (II-12) 
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s

s

s





 
   

 
,             (II-13) 

where for integral spin (s=0,1,2,…) 

 

0

1

,2 1

,2

.

.

.

s

s

s

s s

s s













 
 
 
 
 

  
 
 
 
 
 

                                                                                                               (II-14a)    

 

,2

,2 1

1

0

.
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.

s s

s s

s

s

s













 
 
 
 
 

  
 
 
 
 
 

                                                                                                         (II-14b)

 

for half-integral spin 
1 3 5

, , ,...
2 2 2

s
 

 
 

 

 

0

2

,2 3

,2 1

.

.

.

s

s

s

s s

s s















 
 
 
 
 

  
 
 
 
 
 

                             (II-15a) 
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,2 1

,2 3

2

0

.

.

.

s s

s s

s

s

s















 
 
 
 
 

  
 
 
 
 
 

                                        (II-15b) 

Here, , ,s s s sand       are the single- and two-component matrices, respectively. The 

two-component matrices are defined as 

, 1

s

s

s

u

u









 
  
 

                                                                                                                   (II-16a) 

, 1s

s

s

u

u







 
  
 

,                                 (II-16b) 

where  0 1 2s   and  0 2 2 1s    for s=0,1,2,… and 
1 3 5

, , ...
2 2 2

s  , respectively.   

   By the use of procedure described in Dirac’s papers [18, 19] it is easy to show that the 

generalized relativistic equation (II-11) satisfies the condition of Lorentz invariance. 

   In the special case of scalar particles (s=0), the generalized relativistic equation (II-11) has 

the form: 

0
0 0ˆi H

t


 


                  (II-17)

     

0 0 2 0

0
ˆˆ ( )e

c
H c p A mc eA                     (II-18) 

00

0

00





 
   

 
,                                      (II-19) 

where  

.
10

01
   , 00











 βσα


                  (II-20) 
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Here,   is formed by the Pauli matrices 1 2 3, ,    and  

ˆ

i
z x y

p
i

i
x y z



   
   

 
   
     

.                                                                                    (II-21) 

  In the case of free particle for e=0, s=0 and 0m  , the two-component relativistic equation 

becomes 

0 0 0 ,H               (II-22)    

 0 2

3.H c p mc            (II-23)                   

   As can easily be seen that the Eq.(II-17) for relativistic scalar particles is a first-order 

differential equation, while the Klein-Cordon equation forms a second-order differential 

equation. Therefore, one has to arrive immediately at the conclusion that the Klein-Cordon 

equation does not meet the requirement of the condition of relativistic covariance, namely, the 

condition of linearity for a relativistic Hamiltonian. The Klein-Gordon equation only partially 

satisfies the postulates of (relativistic) quantum mechanics. 

III. Basis sets of spinor functions in position, momentum and four-dimensional spaces 

     The elaboration of algorithms for the solution of the generalized relativistic equation for 

the particles with arbitrary mass and spin in linear combination of atomic orbitals (LCAO) 

approach [20-22] necessitates progress in the development of theory for complete 

orthonormal basis sets of relativistic spinor functions of multiple orders. The method for 

constructing in position, momentum and four-dimensional spaces the complete orthonormal 

basis sets for (2s+1)-component relativistic tensor wave functions and Slater tensor orbitals 

has been suggested in previous article [23]. Extending this approach to the case of spinors of 

multiple order and using the method set out in [24], we construct in this study the relevant 

complete orthonormal basis sets of 2(2s+1)-component relativistic 
s -exponential type 

spinor orbitals ( s  -ETSO) for particles with arbitrary mass and spin in position, momentum 

and four-dimensional spaces through the sets of one- and two-component spinor  type tensor 

spherical harmonics and radial parts of the complete orthonormal sets of nonrelativistic  -

exponential type orbitals (  -ETO) [25] the angular parts of which are the scalar spherical 
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harmonics. The indices   occurring in the radial parts of   -ETO is the self-frictional 

quantum number [26]. It should be noted that the nonrelativistic  -ETO are the special 

cases of s -ETSO for s=0, i.e., 0   . The basis sets of relativistic spinors of multiple 

order obtained might be useful for solution of generalized relativistic equation of arbitrary 

mass and spin particles when the complete orthonormal relativistic s -ETSO basis sets in 

LCAO approximation are employed. We notice that the definition of phases in this work for 

the scalar spherical harmonics  *

l llm l mY Y   differs from the Condon-Shortley phases [27] by 

the sing factor  | |* l l

l l

m m

lm l mY i Y


 . 

III-1. Relativistic spinor type tensor spherical harmonics  

    In order to construct the complete orthonormal basis sets of relativistic s -ETSO and 

sX -Slater type spinor orbitals (
sX -STSO) of 2(2s+1) order in position, momentum and four-

dimensional spaces we introduce the following formulae for the independent spinor type 

tensor (STT) spherical harmonics of (2s+1) order (see Ref. [23]):  

for integral spin: 
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(III-1a) 
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H

H

H
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H
            

(III-1b)

 

 

for half-integral spin 
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ljm

s s

ljm

Y

Y

Y

Y

Y

 

 

 

 

 





 
 
 
 
 
 
 
 

            

(III-2a) 

 

 

 

 

 

,2 1

,2 3

2

0

,

,

,

,

,

s s

ljm

s s

ljm

s

ljm

s

ljm

s

ljm

 

 

 

 

 





 
 
 
  
 
 

  
           

(III-2b)

 

These STT spherical harmonics are eigenfunctions of operators 
2 2ˆˆ ˆ, ,zj j l and 2ŝ . The one- 

and  two-component basis sets of STT spherical harmonics  ,s

ljmH     ,  ,s

ljm

  H
 

and 

 ,s

ljmY    ,  ,s

ljm

  
 
occurring in Eqs. (III-1a), (III-1b) and (III-2a), (III-2b), respectively, 

can be expressed through the scalar spherical harmonics: 

       , ( ) ,s s

ljm ljm m lm
H a Y

 
     

           

(III-3a) 

       , ( ) ,s s

ljm ljm m lm
ia Y

 
      H

           

(III-3b) 

 
     

       1 1

( ) ,
,

1 ,

s

ljm m lms

ljm s

ljm m lm

a Y
Y

a Y

 

 

   
 

   
 

 
 

  

         (III-4a) 

 
     

     

1 1
( 1) ,

, ,
( ) ,

s

ljm m lms

ljm s

ljm m lm

ia Y

ia Y

 

 

   
 

   

 
  
  

            

(III-4b) 

where 

for integral spin 

0 (1) 2s  , , ,l s j j s j m j      
 

1
,

2
j l t 

 
2( ) 0, 2,..., 2 ,t j l s      

     
    /2

1 ,
m m

l m
m m m s and

 


  

       

 

for half-integral spin
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1
0 (2) 2 1, , , ,

2
s l s j j s j m j j l t              

2( ) 1, 3,..., 2 ,t j l s           
    /2

, 1 .
m m

l m
m m m s

 


  

         

  Here, ( )s

ljma    are the modified Clebsch-Gordan coefficients defined as  

 ( ) ( )s

ljma lsm s lsjm    .                                                                                             (III-5) 

See Ref. [27] for the definition of Clebsch-Gordan coefficients  l llsm m m lsjm . 

 The STT spherical harmonics  , ,s

ljmH    ,s

ljm  H  and  , ,s

ljmY    ,s

ljm   for fixed s 

satisfy the following orthonormality relations: 

       
* *

2 22

00 0 0 0

, , , ,
s

s s s s

ljm ljm ll jj mml j m l j m
H H Sin d d H H Sin d d

   

 



                      


              (III-6a) 

       
* *

2 22

00 0 0 0

, , , ,
s

s s s s

ljm ljm ll jj mml j m l j m
Sin d d Sin d d

   

 



                      


    H H H H         (III-6b) 

       
† †

2 22 1

00 0 0 0

, , , ,
s

s s s s

ljm l j m ljm l j m ll jj mmY Y Sin d d Y Y Sin d d

   

 



                


        



                   (III-7a) 

       
† †

2 22 1

00 0 0 0

, , , ,
s

s s s s

ljm l j m ljm l j m ll jj mmSin d d Sin d d

   

 



                


        



          .   (III-7b) 

III-2. Basis sets of relativistic s -ETSO and
sX -STSO functions 

    To construct the basis sets of  2(2s+1)-component relativistic spinors from STT spherical 

harmonics and radial parts of nonrelativistic orbitals we use the method set out in a previous 

paper [14]. Then, we obtain for the complete basis sets of relativistic spinor wave functions 

,s s    and Slater spinor orbitals 
sX  in position space the following relations: 

for integral spin  
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(0)0

(1)1

(2 1)2 1

(2 )2

(2 )2

2 1

0 , ,

1 , ,

2 1 , ,

2 , ,,1 1
, ,

2 2 2 , ,,

2 1

nl

nl

s

ljm nlmm

s

ljm nlmm

s

ljm nlm sm s

ss
ljm nlm sm sljms

nljm ss

ljm nlm sljm m s

s

ljm m s

a r

a r

a s r

a s rR r H
r

ia s rR r

ia s













   

   

   

    
 

    









 
   

  

 

H

 

     

     

(2 1)

(1)1

(0)0

, ,

1 , ,

0 , ,

nlm s

s

ljm nlmm

s

ljm nlmm

r

ia r

ia r







  

   

   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

    (III-8a)  

 
   

   

     

     

     

     

     

   

(0)0

(1)1

(2 1)2 1

(2 )2

(2 )2

2 1

0 , ,

1 , ,

2 1 , ,

, 2 , ,1 1
, ,

2 2 2 , ,,

2 1

nl

nl

s

ljm nlmm

s

ljm nlmm

s

ljm nlm sm s

s s

ljm ljm nlm sm ss

nljm ss
ljm nlm sm sljm

s

ljm m s

a r

a r

a s r

R r H a s r
r

ia s rR r

ia s
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(2 1)

(1)1

(0)0

, ,

1 , ,

0 , ,

nlm s

s

ljm nlmm

s

ljm nlmm

r

ia r

ia r







  

   

   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

   (III-8b) 

 
   

   

     

     

     

     

     

   

(0)0

(1)1

(2 1)2 1

(2 )2

(2 )2

(2 1)2 1

0 , ,

1 , ,

2 1 , ,

2 , ,,1 1
, ,

2 2, 2 , ,

2 1

n

n

s

ljm nlmm

s

ljm nlmm

s

ljm nlm sm s

ss
ljm nlm sm sljms

nljm s s

ljm ljm nlm sm s

s

ljm nlm sm s

a r

a r

a s r

a s rR r H
X r

R r ia s r

ia s r

   

   

   

    
 

     

 







 
   

  

 

H

 

     

     

(1)1

0 (0)

, ,

1 , ,

0 , ,

s

ljm nlmm

s

ljm m nlm

ia r

ia r

 

   

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

,     (III-9) 

for half-integral spin 
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(2)2

(2 3)2 3

(2 1)2 1

(2 1)2 1
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2 , ,

2 3 , ,

2 1 , ,,1 1
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2 1 , ,2 2,

nl
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ljm nlmm

s

ljm nlmm
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ljm nlm sm s
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ljm nlm sljm m ss

nljm ss
ljm nlm sm sljm

ljm

a r

a r

a s r

a s rR r Y
r

ia s rR r

ia













   

   

   

    
 

    









  
    

   

      

     

     

(2 3)2 3
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2 3 , ,
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0 , ,
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nlm sm s
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ljm nlmm

s r

ia r

ia r
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ljm nlmm
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ljm ljm nlm sm ss
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a s r

R r Y a s r
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(2 3)2 3

(2)2

(0)0

2 3 , ,

2 , ,

0 , ,

s

m nlm sm s
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ljm nlmm
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ljm nlmm

s r

ia r
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 (III-10b) 

 
   

   

     

     

     

     

     

 

(0)0

(2)2

(2 3)2 3

(2 1)2 1

(2 1)2 1

2

0 , ,

2 , ,

2 3 , ,

2 1 , ,,1 1
, ,

2 1 , ,2 2,

2 3

n

n

s

ljm nlmm

s

ljm nlmm

s

ljm nlm sm s

ss

ljm nlm sljm m ss

nljm ss
ljm nlm sm sljm

s

ljm m s

a r

a r

a s r

a s rR r Y
X r

ia s rR r

ia s

   

   

   

    
 

    











  
  

   

 
   

     

     

(2 3)3
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2 , ,

0 , ,
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s
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s

ljm nlmm
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ia r
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,

(III-11) 

where  1, 1, min( , 1)n s j s n j s l j s n           and              
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1
2

1(2 )
, .

(2 )!

n

n r

n nR r R r r e
n






                                                                                (III-12) 

   The relativistic spinor wave functions (
s

nljmK
,

s

nljmK
) and Slater spinor orbitals

s

nljmK  in 

position, momentum and four-dimensional spaces are defined as 

( , ), ( , ), ( , )s s s s

nljm nljm nljm nljmK r k Z                                                                                       (III-13) 

( , ), ( , ), ( , )s s s s

nljm nljm nljm nljmK r k Z                                                                                       (III-14) 

( , ), ( , ), ( , )s s s

nljm nljm nljm

sK r U k V
nljm

X     .                                                                            (III-15) 

    Here, the  nlm
k

 ,  nlm
k 

  and  nlm
k

  are the nonrelativistic complete basis sets of orbitals. 

They are determined through the corresponding nonrelativistic functions in position, 

momentum and four-dimensional spaces by 

       
( , ), ( , ), ( , )

nlm nlm nlm nlm
k r k z   

   
                                                  (III-16) 

       
( , ), ( , ), ( , )

nlm nlm nlm nlm
k r k z   

   
                                                  (III-17) 

       
( , ), ( , ), ( , )

nlm nlm nlm nlm
k r u k v

   
     .                                                                     (III-18) 

See Ref. [28] for the exact definition of functions occurring in Eqs. (III-13) - (III-18). 

   The relativistic spinor orbitals satisfy the following orthogonality relations:  

   
†

, ,s s

nljm n l j m nn ll jj mmK x K x dx                                                                    (III-19) 

   
 

   

†

1 2

!
, , .

2 ! 2 !

s s

nljm n l j m ll jj mm

n n
K x K x dx

n n
          




  
                                                               (III-20) 

    Using the relation  0

0lljm jl mma      and formulae  

0 ( , ) ( , )
l lljm m lmH Y                                 (III-21a)

 

0 ( , ) ( , )
l lljm m lmi Y     H                                                                      (III-21b) 

for the scalar particles it is easy to show that the relativistic spinor functions 
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,s s

nljm nljmK K 
and relativistic Slater spinor orbitals 

s

nljmK  for particles with spin s=0 are reduced 

to the corresponding quantities for nonrelativistic complete basis sets in positon, momentum 

and four-dimensional spaces, i.e., ,
l l

s s

nljm nlm nljm nlmK k K k     and 
l

s

nljm nlmK k , where 

0, , 0,s j l t   0( ) lm m    and l
m m .  Thus, the nonrelativistic and relativistic scalar 

particles can be also described by wave functions ,s s

nljm nljmK K 
and 

s

nljmK for s=t=0, j l and 

lm m , i.e.,  

0 1

2

l

l

l

nlm

nlm

nlm

k
K

ik







 
  

                                                 

(III-22a)
    

 

0 1
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l

l

l

nlm

nlm

nlm

k
K

ik







 
 
                                              

(III-22b)
      

0 1
.

2

l

l

l

nlm

nlm

nlm

k
K

ik

 
  

                                                 

(III-23)
     

 

The 2-, 6-,10- and 4-, 8-component complete orthonormal basis sets of relativistic s -ETSO 

through the nonrelativistic  -ETO in position space for 
1 3

0, 1, 2 , ,
2 2

s s s and s s      

respectively, are given in Tables 2, 3, 4 and 5, 6. 

 III-3. Derivatives of 
s -ETSO in position space 

    Now, we evaluate the derivatives of  
s -ETSO with respect to Cartesian coordinates that 

can be used in the solution of  reduced relativistic equations when the LCAO approach is 

employed. For this purpose we use the
s -ETSO in the following form: 

for integral spin 
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,0

,1

,2

,2

,1

,0

1 1
,

2 2

s

nljm

s

nljm

s ss
nljmnljms

nljm s s s
nljm nljm

s

nljm

s

nljm









 











 





 
 
 
 
 
  
    
   
 
 
 
 
 
 

                                                                                      (III-24) 

 

 

for half integral spin 

,0

,2

,2 1

,2 1

,2

,0

1 1
,

2 2

s

nljm

s

nljm

s ss
nljmnljms

nljm s s s
nljm nljm

s

nljm

s

nljm









 











 









 
 
 
 
 
  
    
   
 
 
 
 
 
 

                                                                                   (III-25) 

where , ,,s s      and , ,,s s      are the one- and two-component spinors, respectively, are 

defined by 

   , ,
nl

s s

nljm ljmR r H                                                                                                       (III-26a) 

   , ,
nl

s s

nljm ljmR r      H                                                                                                (III-26b) 

   , ,
nl

s s

nljm ljmR r Y                                                                                                        (III-27a) 

   , , .
nl

s s

nljm ljmR r                                                                                                       (III-27b) 

Here, 0 (1) 2s   and 0 (2) 2 1s    for integral and half-integral spin, respectively.  
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    To obtain the derivatives of 
s -ETSO we use the following relations [15]: 

 
1

'

, 1 ,

1

( ) lm

m lm k k m l k m

k

df f
f Y kl b Y

z dr r
   



  
     
                                                         (III-28) 

    
1

'

, 1 1 , 1

1

lm

m lm k k m l k m

k

df f
i f Y kl d Y

x y dr r
     



    
          

                                        (III-29) 

   
1

'

, 1 1 , 1

1

lm

m lm k k m l k m

k

df f
i f Y kl c Y

x y dr r
     



    
          

 ,                                     (III-30) 

where f  is any function of the radial distance r  and  

 
1/2

1 1( )( ) / 2( 1) (2 )lm

k k kb l m l m l k l k                                                             (III-31) 

    
1/2

1( 2 )( 1 ) / (2 1 )(2 )lm

k kd k l km l k m l k l k                                            (III-32) 

   
1/2 ,

1( 2 )( 1 ) / 2( 1) (2 ) .lm l m

k k kc k l km l k m l k l k d                                       (III-33) 

The symbol 
'  in Eqs. (III-28), (III-29) and (III-30) indicates that the summation is to be 

performed in steps of two. These formulae can be obtained by the use of method set out in 

Ref.[29]. 

    Using Eqs. (III-28), (III-29) and (III-30) we obtain for the derivatives of two-component 

spinors of half-integral spin the following relations: 

 

   

   

1
'

, 1

1

ˆ ˆ( ) ( )

; , 1; ,

; , 1; ,

s s nl nl
nl ljm k

k

s s

k ljm k ljm

s s

k ljm k ljm

dR Rc
c p c p R Y kl

i dr r

B D

C B

 
      

     

     





 
       

 

  
 

   



                               (III-34)

       
 

                  

 

   

   

1
'

, 1

1

ˆ ˆ( ) ( )

1; , ; ,
,

1; , ; ,

s s nl nl
nl ljm k

k

s s

k ljm k ljm

s s

k ljm k ljm

dR R
c p c p R c kl

dr r

B D

C B

 
      

     

     





 
         

 

  
 

   



                              (III-35) 
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where,   

     ( )

( ) , ( ); , ,s s lm

k ljm ljm k m l k mB a b Y

                       (III-36) 

     ( )

( ) 1 , ( ) 1; , ,s s lm

k ljm ljm k m l k mC a c Y

                   (III-37) 

       ( )

( ) 1 , 1
; , , .s s lm

k ljm ljm k m l k m
D a d Y

 
        

          (III-38) 

     The formulae presented in this work show that all of the 2(2s+1)-component relativistic 

basis spinor wave functions and Slater basis spinor orbitals are expressed through the sets of 

one- and two-component basis spinors. The radial parts of these basis spinors are determined 

from the corresponding nonrelativistic basis functions defined in position, momentum and 

four-dimensional spaces. Thus, the expansion and one-range addition theorems established in 

[28] for the nonrelativistic 
lnlmk
 and 

lnlmk  basis sets in position, momentum and four-

dimensional spaces can be also used in the case of relativistic basis spinor functions 
0

lnlmK
 and 

0

lnlmK . Accordingly, the electronic structure properties of arbitrary mass and spin relativistic 

systems can be investigated with the help of corresponding nonrelativistic calculations. 

IV. Conclusions 

   In this study, we have generalized the Dirac’s 1 2spin  theory to a relativistic theory for 

particles with arbitrary mass and integral and half-integral spin. The relativistic basis sets of 

spinor orbitals for the arbitrary spin particles in position, momentum and four-dimensional 

spaces are also constructed. It is shown that this theory has the following properties: 

(1) The generalized relativistic matrices are irreducible and Clifford algebraic. 

(2) The generalized relativistic wave functions and matrices possess the  2 2 1s   

independent components. 

(3) The generalized relativistic equation satisfies the condition of Lorentz invariance. 

(4a) The relativistic scalar particles for 0 0e and m   satisfy the two-component relativistic 

equation. 

(4b) The free particle with e=0, s=0 and m≠0 is described by two-component relativistic 

equation. 
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(5) The integral spin  1,2, ...s  satisfies the  2 2 1s   component generalized relativistic 

equation for massless particles. 

(6) The half-integral spin 
1 3

, ,...
2 2

s
 

 
 

 satisfies the 2(2s+1)-component generalizes 

relativistic equation for particle with m≠0. 

(7) The relativistic basis sets of spinor orbitals for the arbitrary mass and spin particles in 

position, momentum and four-dimensional spaces are expressed through the corresponding 

quantities of nonrelativistic spinor functions. 

   The generalized relativistic theory presented in this work can be used in the solution of 

different problems of describing particles with arbitrary mass and spin within the framework 

of relativistic quantum mechanics when the position, momentum and the four-dimensional 

spaces are employed. 
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Table 1. Summary of the generalized Dirac group properties for 
7

0
2

s   

Note: irred-irreducible representation 

 Table 2. The exponential type spinor orbitals in position space for 0s  , 

1 2,n  0 1,l n   and ll m l    

 

 

s  
Group 

Order 

No. of 

Classes 

No. of  

1-D irred 

No. of  

2-D irred 

No. of  

4-D irred 

No. of  

6-D irred 

No. of  

8-D irred 

No. of 

10-D 

irred 

No. of 

12-D 

irred 

No. of 

14-D 

irred 

No. of 

16-D 

irred 

0 8 5 4 1 0 0 0 0 0 0 0 

1 2  32 17 16 0 1 0 0 0 0 0 0 

1  72 37 36 0 0 1 0 0 0 0 0 

3 2  128 65 64 0 0 0 1 0 0 0 0 

2  200 101 100 0 0 0 0 1 0 0 0 

5 2  288 145 144 0 0 0 0 0 1 0 0 

3  392 197 196 0 0 0 0 0 0 1 0 

7 2  512 257 256 0 0 0 0 0 0 0 1 

n  l  lm  
0

lnlm

  

1 0 0 

0

100

0

100

1

2 i









 
 
 

 

 

2 

0 0 

0

200

0

200

1

2 i









 
 
 

 

1 

1 

0

211

0

211

1

2 i









 
 
 

 

0 

0

210

0

210

1

2 i









 
 
 

 

-1 

0

21 1

0

21 1

1

2 i
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Table 3. The exponential type spinor orbitals in position space for 1s  , 1 2,n  0 1,l n         

,l s j l s   
 ,j m j    2t j l  and n n t   

n l  j t n
 

m 
1

nljm

  

1 0 

 

1 2 3 
1 100

2

  0 0 0 0 300

2

i 


 

0 0 100

2

  0 0 300

2

i 
  0 

-1 0 0 100

2

  300

2

i 
  0 0 

2 0 1 2 4 
1 200

2

  
0 0 0 0 400

2

i 
  

0 0 200

2

  0 0 400

2

i 
  0 

-1 0 0 200

2


 400

2

i 
  0 0 

1 1 0 2 
1 210

1

2

   0 0 
211

1

2
i    

0  0  211

1

2
i   0 

21 1

1

2
i    

-1 0   
210

1

2
i   

21 1

1

2
i    0 

2 2 4 
2 211

2

  0 0 0 0 411

2

i 
  

1   0 0 411

2

i 
  410

2

i 
  

0 21 1

2 3

   210

3

  211

2 3

  411

2 3

i 
  410

3

i 
  41 1

2 3

i  
 

-1 0 21 1

1

2

 
  410

1

2
i    0 

-2 0 0 21 1

2

 
 41 1

2

i  
 

0 0 
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Table 4. The exponential type spinor orbitals in position space for 2s  , 1 2,n  0 1,l n  
 

,l s j l s   
 

,j m j    2t j l  and n n t 
         

n
 

l
 

j
 

t
 

n
 

m
 

2

nljm

  

1 0 

 

2 4 5 

2 100

2

  0 0 0 0 0 0 0 0 
500

2

i 


 

1 0 100

2

  0 0  0 0 0 
500

2

i 


 

0 

0 0 0 
100

2



 

0 0 0 0 
500

2

i 


 

0 0 

-1 0 0 0 
100

2



 

0 0 
500

2

i 


 

0 0 0 

-2 0 0 0 0 
100

2



 

500

2

i 


 

0 0 0 0 

2 0 2 4 6 

2 200

2

  0 0 0 0 0 0 0 0 
600

2

i 


 

1 0 200

2

  0 0 0 0 0 0 
600

2

i 


 

0 

0 0 0 
200

2



 

0 0 0 0 
600

2

i 


 

0 0 

-1  0 0 200

2

  0  
600

2

i 


 

0 0 0 

-2 0 0 0 0 
200

2



 

600

2

i 


 

0 0 0 0 

1 2 2 4 

2 
210

3




 

211

6

  0 0 0 0 0 0 
411

6

i 


 

410

3

i 
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1 
21 1

6

 

 

210

2 3




 

211

2



 

0 0 0 0 411

2

i 
  410

2 3

i   41 1

6

i  
 

0 0  0  0 0 
411

2

i 


 

0 0 41 1

2

i    

-1 0 0  

210

2 3

  

 

211

6



 

411

6

i 


 410

2 3

i 


 

41 1

2

i    0 0 

-2 0 0 0 21 1

6

   210

3



 

410

3

i 


 41 1

6

i  

 

0 0 0 
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Table 5. The exponential type spinor orbitals in position space for 
1

2
s  , 

1 2,n  0 1,l n   ,l s j l s   
 ,j m j    2t j l  and n n t   

n l  j t n
 

m 1/2

nljm

  

1 0 1/2 1 2 1/2 
100

2

  0 0 200

2

i 
  

   -1/2 
0 100

2

  200

2

i 
  0 

2 0 1/2 1 3 1/2 
200

2

  0 0 300

2

i 
  

   -1/2 
0 200

2

  300

2

i 
  0 

1 1/2 -1 3 1/2 
210

6


  211

3

  311

3

i 
  310

6

i   

  -1/2 
21 1

3

   210

6

  310

6

i 
  31 1

3

i    

3/2 1 3 3/2 
211

2

  0 0 311

2

i 
  

  1/2 
210

3

  211

6

  311

6

i 
  310

3

i 
  

-1/2 
21 1

6

   210

3

  310

3

i 
  31 1

6

i    

-3/2 
0 21 1

2

   31 1

2

i    0 
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n l  j t n
 

m 3/2

nljm

  

1 0 

 

3/2 3 4 3/2 
100

2

  0 0 0 0 0 0 400

2

i 
  

  1/2  
 100

2

  0 0 0 0 400

2

i 
  0 

-1/2 
0 0 100

2

    400

2

i 
  0 0 

-3/2 
0 0 0 100

2

  400

2

i 
  0 0 0 

2 0 3/2 3 5 3/2 
200

2

  0 0 0 0 0 0 500

2

i 
  

1/2  
0 200

2

  0 0 0 0 500

2

i 
  0 

-1/2 
0 0 200

2

  0 0 500

2

i 
  0 0 

-3/2 
0 0 0 200

2

  500

2

i 
  0 0 0 

1 3/2 1 3 3/2 

210

3

10

  211

5

  0 0 0 0 311

5

i 
  

310

3

10
i   

Table 6. The exponential type spinor orbitals in position space for 
3

2
s  , 1 2,n  0 1,l n   ,l s j l s   

 ,j m j    2t j l  and n n t   
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1/2  
21 1

5

   210

30


   0 0 3112

15

i 
  310

30

i   31 1

5

i    

-1/2 
0  210

30

  211

5

  311

5

i 
  310

30

i 
  31 12

15

i    0 

-3/2 

0 0 21 1

5

   
210

3

10
i   310

3

10
i 

 

31 1

5

i    0 0 

5/2 3 5 5/2 
211

2

  0 0 0 0 0 0 511

2

i 
  

3/2 
210

5

  
211

3

10

  0 0 0 0 
511

3

10
i   510

5

i 
  

1/2 
21 1

2 5

   
210

3

10

   0 0 
511

3

20
i   

510

3

10
i   51 1

2 5

i    

-1/2 
0 

21 1

3

20

   
210

3

10

  211

2 5

  511

2 5

i 
  

510

3

10
i    0 

-3/2 
0 0 

21 1

3

10

   210

5

  510

5

i 
  

51 1

3

10
i  

 0 0 

-5/2 
0 0 0 21 1

2

   51 1

2

i    0 0 0 


