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Abstract: We will study the gravitational forces acting between static 

massive sources generated by exchange of massless gravitons within the 

framework of Quantum Gauge Theory Gravity .The gravitational force will 

be determined via Wilson loops and Polyakov loop correlation functions. 

This method will enable us to separate the contribution of the quantum 

mechanical transverse graviton from that of the classical longitudinal field. 

It will be the method of choice if one attempts to determine the gravitational 

static force in simulations of Quantum Gauge Theory Gravity on a Rindler 

space lattice. 
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1. Introduction 

The study of quantum fields in Rindler space has played an important role in developing our 

understanding of quantum fields in non-trivial space-times. The importance of these studies 

derives to a large extent from the existence of a horizon in Rindler space. The kinematics of 

non-interacting quantum fields in Rindler space [1], [2], [3] and their relation to fields in 

Minkowski space together with the interpretation in terms of quantum fields at finite 

temperature [4], [5] are well understood [6].  
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The relation between acceleration and finite temperature remains an important element of the 

thermodynamics of black holes. 

 

Various workers have attempted to derive General Relativity from a gauge-like principle, 

involving invariance of physics under transformations of the locally (i.e. in the tangent space 

at each point) acting Lorentz or Poincare group. ([7], [8], [9]).  

 

N. Wu [10−13] proposed a Quantum Gauge Theory of Gravity (QGTG) based on the 

gravitational gauge group (G). In Wu’s theory, the gravitational interaction is considered as a 

fundamental interaction in a flat Minkowski space-time and not as space-time geometry. 

 

A model of interacting massive gauge gravitons and a possible heavy gauge graviton resulting 

from shell decay of Higgs bosons and the De Broglie-Bohm approach of gravitational gauge 

fields have been developed recently by the author within the framework of QGTG 

[14,15,16,17,18].  

 

Dynamical issues of quantum gravitational gauge fields in Rindler space are in the center of 

the present work. We will study the gravitational forces acting between static massive sources 

generated by exchange of massless gravitons within the framework of QGTG [14, 15, 16, 17, 

18].  

 

The gravitational force will be determined via Wilson loops and Polyakov loop correlation 

functions. This method will enable us to separate the contribution of the quantum mechanical 

transverse graviton from that of the classical longitudinal field. It will be the method of choice 

if one attempts to determine the gravitational static force in simulations of QGTG on a 

Rindler space lattice. 

 

2. Fundamentals of Quantum Gauge Theory of Gravity 

Following, N. Wu, the infinitesimal transformations of the gravitational gauge group G are of 

the form [10]: 

1 ,U i P
    0,1,2,3,          (1) 

 

where 
 are the infinitesimal parameters of the group and /P i x      are the generators 

of the gauge group.   

 

It is known that these generators commute each other 

 

[ , ] 0.P P             (2) 

 

However, this property of the generators does not mean that the gravitational gauge group is 

an Abelian group, because the elements of the gravitational group do not commute [10]: 

 

2 2
[ , ] 0.U U             (3) 

 

The gravitational gauge-covariant derivative is defined by 

 

( )D igC x     ,         (4) 

 

where Cμ(x) is the gravitational gauge field and g is the gravitational gauge coupling constant. 

Cμ(x) is a Lorentz vector. Under gravitational gauge transformation, Cμ(x) transforms as 
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1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )( ( )),
i

C x C x U x C x U x U x U x
g

       
          (5) 

and Dμ transforms covariantly as, 

 

1ˆ ˆ( ) ( ) ( ) ( ) ( ).D x D x U x D x U x    
          (6) 

 

Gravitational gauge field Cμ(x) can be expanded as linear combinations of generators of 

gravitational gauge group, 

 

ˆ( ) ( ) ,C x C x P
             (7) 

 

where C
  is the component field of gravitational gauge field.  

 

C
   looks like a second-rank tensor, but it is not a tensor field. The index   is not an 

ordinary Lorentz index, but a gauge group index. Since gravitational gauge field C
   has 

only one Lorentz index, it is a kind of vector field. The strength of gravitational gauge field is 

defined by the second-order Lorenz tensor, 

 

1
, ,F D D

ig
     

         (8) 

 

or 

 

( ) ( ) ( ) ( ) ( ) ( ),F C x C x igC x C x igC x C x                 (9) 

 

F  is a vector in group space; therefore, it can be expanded in group space: 

 

ˆ( ) ( ) .F x F x P
             (10) 

 

The explicit form of component field strength is 

 

( ) ( ) ( ) ( )F C C gC C gC C      
                  .     (11) 

 

The strength of gravitational gauge field transforms covariantly under gravitational gauge 

transformation. Similar to traditional gauge field theory, the kinematical term for gravitational 

gauge field can be written as: 

 

0

1
.

4
g F F   
              (12) 

 

We can easily prove that this Lagrangian is not invariant under gravitational gauge 

transformation. It transforms covariantly as follows: 

 

0 0 0
ˆ( ).U

             (13) 

 

In order to resume the gravitational gauge symmetry of the action, we introduce an essential 

factor in the form of: 
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1( ) ,
g CI Ce e

 


  1( ) .I C g C 
                  (14) 

 

The full Lagrangian   
is then given by:  

 
( )

0 ,I Ce                      (15) 

 

and the action S is defined by;  

 
4 .S d x                      (16) 

 

It can be proven that this action has local gravitational gauge symmetry [10]. According to the 

gauge principle, the global symmetry gives out a conserved current, which is: 

 

( ) 0
01 .

( )

I C
iT e C

C

  
   

 


 
     
   

       (17) 

 

We call this quantity inertial energy-momentum tensor [10].  

 

The Euler-Lagrange equations for and C

 gauge fields are: 

 

.
( )C C

  
  

 
 

  
          (18) 

 

These forms are identical with those that occur in quantum field theory [10]. By inserting 

equation (15) into  (18), we get: 

 

0 0 0
1 0 1( )

( ) ( )
g g C

C C C

  
     

    

 
  

     
    

  .    (19) 

 

Suppose that the gravitational gauge field C
  

is very weak in vacuum gC
 ≈ 0. Then, in 

leading order approximation, by substituting equation (14) to equations (19) we obtain:  

 

00 0 0.
( )

F
C C


  

  

 
    

           (20) 

 
The equations of motion for gravitons, thus, become: 

 
0 0.F 

  
           (21)

  

We define 

 

,ij ijk kF B    0 .i iF E          (22) 

 

Equation (21) is then changed into: 
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0,B            (23) 

0,E B
t

 
 


         (24) 

From definitions (22), we can prove that  

 

0,E            (25) 

 

0.B E
t

 
 


         (26) 

 

Without superscript α, equations (23-26) would be the ordinary Maxwell equations. In 

conventional quantum field theory, the strength of gravitational field in vacuum is extremely 

weak, so the gravitational wave in vacuum is composed of four independent vector waves. 

Though the gravitational gauge field is a vector field, its component fields C
α

μ have one 

Lorentz index μ and one group index α. Both indexes have the same behavior under Lorentz 

transformation, a behavior that makes the gravitational field to resemble a tensor field. We 

thus call the gauge gravitational field a pseudo-tensor field. The spin of gauge gravitational 

field, determined by its behavior under Lorentz transformation, is 2.  

 

In conventional quantum field theory, spin-1 field is a vector field, and vector field is a spin-1 

field. In gravitational gauge field theory, this correspondence is violated. The reason is that, in 

gravitational gauge field theory, the group index contributes to the spin of a field, while in 

conventional gauge field theory; the spin of a field is independent of the group index.  

 

3. Wilson loops of gravitational gauge fields in Rindler space 

The Rindler space metric [19] 

 

 2 2 2 2 2ads e d d dx              (27) 

 

is the (Minkowski) metric seen by a uniformly accelerated observer (acceleration   in x1-

direction). Rindler space  ,   and Minkowski space  1,t x  coordinates are related by 

 

1
( , ) sinh ,at e a

a

    
1 1
( , ) coshax e a

a

          (27) 

 

The range of ,   is 

 

, ,              (28) 

 

while the preimage of the Rindler space covers only part of Minkowski space, the right 

Rindler wedge, 

 
1{ | }R x t x

             (29) 

 

The restriction of the preimage of the Rindler space to the right Rindler wedge gives rise to a 

horizon, the boundary 
1t x  ,   . With this property the Rindler metric can be identi_ed 

with other static metrics in the near horizon limit. In particular this is the case for the 

Schwarzschild metric which can be approximated in the limit that the distance from the 
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horizon is small in comparison to the Schwarzschild radius and if the spherical Schwarzschild 

horizon is replaced by a tangential plane. 

 

Following, F. Lenz et.al [6] we consider the gravitational gauge field coupled to external 

massive sources given by the action 

2
int

1
,

4
S d d d x g g F F S  

      2
int .S d d d x g C T 

        (30) 

 

The computation of Wilson loops [20, 21, 6] constitute the preferred techniques in analytical 

and numerical studies of interaction energies of static sources in gauge theories. Wilson loops 

are defined as integrals over the gauge field along a closed curve C in spacetime 

 

C
ig dx CiW

e e
 

           (31) 

 

The invariance of the Wilson loop under gauge and (general) coordinate transformations and 

reparameterization which is explicit in Eq. (31) makes the Wilson loop a particularly useful 

tool for our purpose. Up to self energy contributions, the interaction energy of two oppositely 

massive sources is given by the expectation value (e.g. in the Minkowski space ground state) 

of a rectangular Wilson loop in a time-space plane with side lengths T and R 

 

[ , ]

1
lim ,C R T

T
W

T



            (32) 

 

with the ground state expectation value [ , ]C R TW  

 

[ , ] [ , ]0 | | 0 ,C R T C R TW iW
M Me i e          (33) 

 

The gravitational gauge fields along the loop can be interpreted as resulting from two 

opposite massive sources which are separated in an initial phase from distance 0 to R (for a 

rectangular loop this initial phase is reduced to one point in time), remain separated at this 

distance for the time T and recombine in a final phase. In order to make the contributions 

from the turning-on period negligible, the gravitational interaction energy of static mass is 

defined by the T   limit. In terms of the graviton propagator 

 

( , ) 0 | ( ) ( ) | 0 ,M MD x x i T C x C x  
  

  
 

       (34) 

 

the Wilson loop is given by (cf. [20]) 

 
2

( ( ), ( )).
2

C C
C C C

dx dxg
W ds ds D x s x s

ds ds

 




            (35) 

 

In Lorenz gauge, 

 

 0,C             (36) 

 

The Minkowski space graviton propagator is expressed in terms of the scalar propagator as 

 

( )

2 2
( , ) ( , ) ,

4 [( ) ]

M
g

D x x g D x x
i x x i


 

 




 
  

 
      (37) 
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with the Minkowski space metric  . The Rindler space graviton propagator is obtained by 

the change in coordinates (27) 

 

2 ( )

2

( , , ) ( ( ), ( ))

( , )
,

cosh ( ) cosh8

a

D x x g D x x

ga e

a ii

 
 

 


      

  

   

 

 

      




  

      (38) 

 

where we have used the notation 

 

( )( ) ( ) ( ){ , , }   
  
 , ( , )

dx dx

d d

 

  
   

 


 


       (39) 

 

Under the coordinate transformation, the Lorenz gauge condition becomes 

 

( 2 ) 0,C C a C C  
     


               (40) 

 

with the covariant derivative  . 

 

Under the following coordinate transformation (27) the shape of a loop changes. With the 

change in shape also the value of the gravitational interaction energy changes which is 

defined with respect to two different limits ( t or  ) [6]. We compute the 

gravitational interaction energy for a rectangular loop with 2 of the 4 segments of the loop 

varying in time   and , x   kept fixed while the other two segments are computed at fixed . 

The sum 0W  of the two contributions from the integration along the   axis can be carried out 

without specifying the segments in the spatial coordinates. Inserting (cf. Eq. (38)) 

 
2

00 00
00 2

cosh ( )
( , , ) ,

cosh ( ) cosh8

a a
D x x g

a ii

 
   

   
 


    

  
     (41) 

 

into Eq. (35) we find 

 
2 2

0 2
0 0

cosh ( ) cosh ( )

cosh ( ) (1 ) cosh ( ) (cosh )8

T T
g a a s s a s s

W ds ds
a s s i a s s ii   

   
         

     (42) 

 

Here cosh is given by   

 
2

2

( )

( ) ( )
cosh ( , , ) 1 1 ( , , ).

2

a a

a

e e a x x
x x x x

e

 

 
     


 

   

  
            (43) 

with the spatial coordinates 
( )( ) , x

  of the vertices of the rectangle. Introducing s s s as 

integration variables 0W  can be rewritten as 

 

 
2 2

0 0 02
0

( ,1 ) ( ,cosh ) ,
8

T
g a

W ds I s i I s i
i

  


          (44) 

 

With 
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0
2

0

2 2

2 2

cosh 2 cosh
( ,cosh ) 2 2

cosh cosh sinh 2

cosh sinh 2 1 cosh sinh 2
1 ln ln

cosh sinh 2 cosh sinh 2 1

s

as

as

as i
I s ds s

as i a i

e i ii

e i i

 
 

   

     

      


   

   

       
    

         



   (45) 

 

The last step can be verified by differentiation. The contribution to the interaction energy V of 

two oppositely massive sources can be extracted in the T  limit from the two s  - 

independent terms in (45) (the integrals of the s - dependent terms converge). For large T, the 

integration along the spatial segments of the rectangle (the horizontal segments of the loop 

[6]) yields a T-independent term and does therefore not contribute to the gravitational 

interaction energy. The non-diagonal element 01D  gives rise to two space-time contributions 

to the Wilson loop which in the large T limit become independent of the spatial coordinates 

and cancel each other. Thus we obtain the asymptotic value   of the Wilson loop expressed 

in terms  [6]  
2

0 0 0

1
( ) lim coth 1 ( ) ,

4T

g i
W s U V U

T


  

 




 
       

 
     (46) 

 

with the gravitational interaction energy 

 

2 2 2 4 2

2 4 2 4

1 2
( ) 1 ln .

4 2 2

g i
V a

   


     

   
   
    

      (47) 

 

The integration “constant" U0 arises from the first term in (42) and represents the selfenergy 

of the static mass. Regularizing the divergent integrals by point splitting, U0 is given in terms 

of the proper distance in AdS4 [6] 

 
2

0

1 1 2
,

8 2 ( ) 2 ( )

g a i
U

    

 
   

 
  

2
2 2 2 2( ) .

2

aa
e x   


      (48) 

 

Here,Eq. (30) generated by two mass  moving along the trajectories is parametrized as 

 

4( )
( ( )i i

i i i i i
i i

d s
T m ds s

ds


 

             (49) 

 

resulting in the graviton-charge vertex 

 

int ( ( )) .i
i i i i

i i

d
S m ds C s

ds


 



          (50) 

 

The relevant quantity to be computed is the effective action which, for mass at rest in Rindler 

space, yields the sum of interaction and self energies 

 

1,2

( )( )1
( ( ), ( )

2

j ji i
vc i j i j i i j j

i i j

d sd s
W m m ds ds D s s

ds ds


 




 



         (51) 
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where the propagators in different coordinates are obtained from each other by the 

corresponding coordinate transformations (cf. Eq. (38)). We define the Fourier transform in 

time of the 00-component of the propagator (Eq. (41)) by the limit 

 

00 00
00 00

2 2

2 2

( , , , ) lim ( , , , )

2 sinsin
coth ,

44 1

a

a

T
i

T
T

i a

D x d e D x

ia T a
e

i e











      




 

 








 

 
   
  



      (52) 

 

and disregarding the (divergent) constant, for opposite massive sources m = m1 = -m2, the 

result (47) 

 
2 00

00 (0, , , ) ( ),m D x V             (53) 

 

is reproduced.  

 

For small distances the imaginary part is constant and agrees with the constant in the finite 

temperature propagator in Minkowski space 

 
2

2 2

0

1 3 2
lim ( ) (1 ) (1 ) .

4 2 32

m a i
V


  

 

 
    

 
      (54) 

 

With increasing distance the inertial forces become important. The weaken graviton 

interaction energies and change completely the asymptotic behavior 

 
2

2

40

1
lim ( ) 1 ln 2 .

4 2

m a i
V


 

 

 
    

 
       (55) 

 

Of particular interest is the behavior of the interaction energy if one of the sources approaches 

the horizon while the position of the other source is kept fixed. For 

 

( )2 2 2 21
, ( ( ) )

2
ha a

h e e a x x
     

            (56) 

 

the interaction energies are given by 

 
2 ( )

lim ( ) 1
4h

ham a
V



 


 

 
   

 
        (57) 

 

 

We also find in analogy with the ‘’no hair" theorem [22], [23], [24] for Schwarzschild black 

holes that a scalar source close to the horizon cannot be observed asymptotically while vector 

sources are visible [6]. when approaching the horizon while the gravitational coupling 

remains constant. In detail the results for Rindler and Schwarzschild metrics are different. A 

significant improvement can be obtained by modifying the Rindler metric 

 

2 2 2 2 2 2 2 2 2

2

1
( ) ( )

4

a ads e d d dx e d d d
a

           [6]     (58) 
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The dynamics in this space is very close to the dynamics in Rindler space unless the 

difference between the S
2
 and R

2
 matters. This is the case when deriving the “no hair" 

theorem where only the l = 0 waves matter [25]. 

 

4. Polyakov loop correlator of gravitation gauge fields in Rindler space 

In numerical studies of gauge theories at finite temperature on the lattice an important 

quantity for characterizing the interaction energy of static charges is the correlation function 

of Polyakov loops [21, 6]. These studies are carried out on a Euclidean lattice and have 

confirmed the existence of a transition in Yang-Mills theories from the confining to the 

deconfined phase. It would be of great interest to extend these studies to Rindler space and to 

follow the fate of the confined phase when approaching the horizon. Here,  we will calculate 

the Polyakov loop correlator in Rindler space with imaginary (Rindler) time ([6]) which due 

to the acceleration is a periodic coordinate. Up to a multiplication with i, the ‘’Euclidean" 

propagators are obtained from the real time propagators (38)) by this change of the time 

coordinate. In particular the relevant component of the gravitational gauge field propagator 

(41) is given by 

 
2

00 2

cos ( )
( , , , ) .

cos ( ) cosh8

E E E
E E

E E

aa
D x x

a i

 
   

   
 


    

  
    (59) 

The periodicity in imaginary time expresses the similarity of acceleration and finite 

temperature. Unlike the temperature, the acceleration a also appears together with the spatial 

coordinates. The Polyakov loop is defined by 

  
0( )
0( , , ) exp{ ( , , )},

E
E EP m x im d C x             (60) 

 

and the Polyakov loop correlator associated with two static charges 1,2m  located at 1,2 1,2x  

is given by 

 

1 2 1 2 1 1 1 2 2 2( , , , ) 0 | ( , , ) ( , , ) | 0P M P P MC x x C m x C m x            (61) 

 

Written as a path integral, this correlation function is easily evaluated with the result 

 
2

11 22 21( 2 )

1 2 1 2( , , , ) ,a
f f f

PC x x e


 
  

           (62) 

 

where the self and interaction energy contributions to the ‘’free energy" fij [6] 

 
2 2

3
0 0

cos( )

cosh ( , , , ) cos( )32

(coth ( , , , ) 1).
8

i j
ij

i j i j

i j
i j i j

am m s s
f ds ds

x x s s

am m
x x

 

  

  


 

 




 

 

 
     (64) 

 

Regularization by point splitting (cf. Eq. (48)) yields the gravitational self-energies 

 
2

22 2

1
.

8 i

i
ii

a

m
f

e x
  






         (65) 

 

The gravitational interaction energy of the two masses 
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1 2( , , , ) coth ( , , , ) 1),
4

P i j i j i j i j

am m
V x x x x    


           (66) 

 

In agreement with the results of [26] concerning the equivalence of propagators defined in 

static space-time with either real or imaginary times, the Rindler space propagator (cf. Eq. 

(41)) can be reconstructed given the imaginary time propagator (cf. Eq. (59)). However, 

unlike in Minkowski space, this reconstruction may not work separately for single Fourier 

components such as the static component of the propagators. Apparently, the difference 

between imaginary and real time static propagators of the gravitational field is due to the non-

trivial (imaginary) contributions to the propagator from zero energy gravitons.  

 

5. Conclusion  
The gravitational force will be determined via Wilson loops and Polyakov loop correlation 

functions. This method will enable us to separate the contribution of the quantum mechanical 

transverse graviton from that of the classical longitudinal field. It will be the method of choice 

if one attempts to determine the gravitational static force in simulations of QGTG on a 

Rindler space lattice. 
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