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Hans Detlef Hüttenbach

To the Memory of Augustin Louis Cauchy

Abstract. In this article, the Cauchy theory is applied and extended to
n dimensional functions in (Clifford) algebras.
I already touched on this in [3] for path integration of classical fields,
which might not be evident. So, I publish the details here as a celebration
of Cauchy’s outstanding lecture ”Sur les intégrales définies”, held on the
22nd of August 1814, so 200 years ago, which has been re/published in
1825, and is publicly accessible online in [2].

1. Introduction

At the end of the 19th century, Henri Poincaré discovered as was then to be
known as Poincaré’s Lemma; it states that on star-shaped open regions closed
differential forms are necessarily exact (see [1]). This triggered the beginning
of algebraic geometry, which became one of the most important branches of
mathematics, especially in France.
It is often overlooked that Poincaré’s intention at that time was not the
abstract development of a theory of cohomologies, but he wanted to unravel
the curious nature of electromagnetic fields. With the help of this lemma, he
could show that (in 3 dimensions) an electromagnetic field of zero divergence
is the curl of a vector potential A, which in turn is fundamental to derive
gauge invariance and the Lorentz representation of Maxwell’s equations.

In 1895 Volterra showed that Poincaré’s Lemma extends as the equiva-
lence of closed and exact differential forms, and Elie Cartan independently re-
discovered this a decade or two later. As can be seen from [1], for 1-forms that
means that an n-tuple of continuously differentiable functions (f1, . . . , fn) on
an open, star-shaped region U ⊂ Rn is integrable (i.e. defines an exact 1-form)
in that region, if and only if its derivative (the Jacobi matrix) is symmetric.
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Obviously, that is not what Cauchy understood as what an integrable
function should look like: Cauchy examined a pair of differentable real-valued
functions (u, v) on R2, and then he came to a remarkable solution: He defined
u(x+iy) := u(x, y), v(x+iy) := v(x, y), and then he defined a complex-valued
function f on U ⊂ C as f : U 3 x + iy 7→ u(x + iy) + iv(x + iy) ∈ C. He
then proved that f is integrable in U if it is complex differentiable, that
complex differentiability is equivalent to analyticity, and more over, this is
equivalent to the Jacobi matrix of (u(x, y), v(x, y)) to be anti-symmetric in
its off-diagonal elements, namely to follow the Cauchy-Riemann equations
∂u/∂x = ∂v/∂y, and ∂u/∂y = −∂v/∂x!

This not only antedates Poincaré’s differential geometric results 80 years
later, even then, Cauchy’s work appears to be ahead of that time:
Let’s examine the reason for the seemingly controversial results of the condi-
tions of integrability:
The answer is that Poincaré is integrating within Euclidean geometry, whereas
Cauchy is integrating in the complex plane. There are two reasons in favour
of Cauchy’s technique: Firstly, one cannot divide by a vector of two or more
dimensions, but one can divide by complex numbers. It is this clever substi-
tution (x, y) 7→ x + iy that allowed Cauchy to rigorously define (complex)
differentiability. Secondly, by doing so, Cauchy instantaneously carried out
the path integration in a vector space C with its intrinsic hyperbolic metric,
and not in the Euclidean metric:

Whereas Poincaré used (a1, a2) · (b1, b2) := a1b1 +a2b2 as inner product,
for Cauchy it is (a1, ia2) · (b1, ib2) := a1b1 − a2b2.
That explains, why Cauchy’s results lead to the unsymmetric Jacobi matrix,
whereas Poincaré’s Jacobi matrix is to be symmetric. So, Cauchy was also
the first one to carry integration out in hyperbolic vector spaces, something
that Poincaré himself never thought of, even after he and H.A. Lorentz de-
rived the covariant Maxwell equations, which A. Einstein and H. Minkowski
then proved to be a consequence of space-time being hyperbolic, rather than
Euclidean!

2. Preliminaries: Clifford Algebras

I want to deal with 2 or more dimensions of complex numbers. Then, accord-
ing to Cauchy, I have to represent these vectors as numbers, in order to be
able to divide by these. Because only then, I’ll be able to go with his strong
notion of differentiability.

The technique to use has been readily exposed by Hermann Graßman
and William Kingdon Clifford:

Let X be an n-dimensional real vector space with n ≥ 1, and let Q
be a non-degenerate quadratic form on X. This means that one can find a
linear basis a1, . . . , an ∈ X, w.r.t. which Q is defined through a symmetric,
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invertable n × n-matrix A. Then there is an orthogonal transformation O
on Rn, i.e.: O−1 = Ot, where U tij := Ojt is the transpose of U , such that

OAO−1 is a diagonal matrix with real eigenvalues λ1, . . . λn ∈ Rn, and by
scaling the basis elements aj with a positive factor |λj |−1, we arrive at: every
non-degenerate quadratic form in n dimensions defines an orthonormal basis,
and it falls into one of n possible categories: (n, 0), (n−1, 1), . . . , (0, n), where
(p, n − p) signifies that the first p eigenvalues are +1, and the n − p others
are −1. This is termed the signature of the quadratic form.

Proposition 2.1. For each n ∈ N there is an m ∈ N and n m ×m-matrices

α1, . . . , αn, such that
(
α1 + · · · + αn

)2
= α2

1 + · · · + α2
n, where α2

1 = · · · =

α2
n = Im +is the m×m-unit matrix.

Proof. The statement is trivial for n = 1. So, let n > 1. Then suitable
matrices can be picked from the vector space of all endomorphisms on the
n× n-dimensional space of n× n-matrices. �

Remark 2.2. Actually, it can be shown that m = 2n/2 is the minimal m, if
n is even, and then m = 2(n+1)/2 will do for uneven n, but that is irrelevant
for now.

Definition 2.3. For a non-degenerate quadratic form of signature (p, n−p), the
matrices α1, . . . , αp, iαp+1, . . . , iαn are called the generators of the Clifford
algebra Clp,n−p(R), where α1, . . . , αn are as in the preceding proposition.
Clp,n−p(R) is defined as the (non-commutative) algebra of all real linear
combinations of the αk and all products of these. Let X(n) be the vector
space over R spanned by the αk. Clp,n−p(R) becomes a (finite dimensional)
Banach space, when equipped with its natural supremum norm

‖·‖ : x 7→ sup
‖χ‖≤1

x(χ),

and X(n) then becomes a closed subspace of Clp,n−p(R).

Remark 2.4. Although Clp,n−p(R) is a vector space over the field of real
numbers, it captures complex fields, since Cn isomorphically embeds into
Cln,n(R).

The important point now is that
∑
λkαk is an invertible matrix, if

and only if (λk)1≤k≤n is unequal zero. Therefore x is invertible for all x ∈
X(n) \ {0}, and right as well as left division are well-defined on Clp,n−p(R)
for every x ∈ X(n) \ {0}. This allows

Definition 2.5. A continuous mapping f : X(n) ⊃ U → Clp,n−p(R) of an
open subset U ⊂ X(n) is said to be differentiable in x0 ∈ U if and only if
limx→x0(f(x)−f(x0))(x−x0)−1 and limx→x0(x−x0)−1(f(x)−f(x0)) both ex-

ist and are equal. For short, I’ll write this limit as f ′(x0) = limx→x0

f(x)−f(x0)
x−x0

.

Remark 2.6. An analytic function, which vanishes along any one of its n axis,
must be zero throughout.
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Remark 2.7. Also, given two differentiable, Clp,n−p(R)-valued functions f, g
on an open U ⊂ X(n), the product fg : z 7→ f(z)g(z) ∈ Clp,n−p(R) is
differentiable either, and (fg)′(z) = d(f(z)g(z))/dz = f ′(z)g(z) + f(z)g′(z).

To get rid of the factors i for the following, let me write γk := αk,
whenever the metrics is positive for that component, and γk := iαk, when it
is negative.

3. Proceeding with Cauchy’s theorems

We are now in the position to harvest the fruit from Cauchy’s work:

Definition 3.1. Let U ⊂ X(n) be an open subset of X(n) and z0 ∈ U . A
function f : U 3 z 7→ Clp,n−p(R) is called analytic in z0, if and only if there
is a neighbourhood V (z0) ⊂ U of z0, such that f(z) =

∑
k≥0 ak(z − z0)k for

all z ∈ V (z0), where a0, a1, · · · ∈ R.

For a strictly positive, real valued r > 0, let us define the r-ball Br(0) :=

{z = (z1, . . . , zn) ∈ Xn :
∑

1≤k≤n
∣∣zj∣∣2 ≤ r2}, and let Sn(r) be its boundary.

Then the Bε(0), ε > 0, are base of zero neighbourhoods of X(n), which
means that for every open neighbourhood U of 0 there is some ε > 0 such
that Bε(0) ⊂ U .

Definition 3.2. Although with z =
∑
k xkγk with xk ∈ R the derivative f ′(z)

is well-defined, the partial derivatives ∂f(z)/∂zk are not : Generally, when
f is differentiable in z, right and left partial derivatives will be unequal! In
order to deal with partial derivatives, we need to confine to partial derivatives
to the right, which will be denoted by ∂r/∂xk, (1 ≤ k ≤ n).

A function If : Xn ⊃ U → Clp,n−p(R) will be called integral of f : U →
Cln,n−p(C), if (If)′(z) = f(z) for all z ∈ U . More generally, for k ∈ N, the

k-th integral of f is a function I(k)f : U → Clp,np(R), such that dkf(z)/dzk =
f(z) for all z ∈ U .

Proposition 3.3. Let f : U → Clp,n−p(R) be differentiable. Then, writing
z = z1γ1 + · · ·+ znγn for z ∈ U ,

1. ∂f(z)/∂zk = ∂f(z)/∂zlγ
−1
l γk, (1 ≤ k 6= l ≤ n).

2. If f is twice differentiable, then
∂2f(z)/∂zk∂zl = −∂2f(z)/∂zl∂zk, (1 ≤ k 6= l ≤ n).

Proof. We have ∂f(z)/∂zk = f ′(z)∂z/∂zk = f ′(z)γk for all k, from which
the statement 1 follows. Taking a second partial derivative, delivers 2. �

Remark 3.4. For Cl1,1(R), the above equations are the Cauchy-Riemann
equations.

We want to extend the Cauchy integral theorem from 1 to n ∈ N di-
mensions. So, we need to have a notion of surface integration over the unit
ball:
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First off, the r-sphere is the sphere in Euclidean metrics, not in the
hyperbolic metric of Clp,n−p where p > 1. That is, integration must be w.r.t
dx =

∑
j αjdxj , but not w.r.t. dz =

∑
j γjdxj , even when f is an analytic

function of z =
∑
j γjxj =

∑
j≤p αjxj+

∑
j>p iαjxj . What needs to be done,

is to embed the Clp,n−p-valued functions f on Xn into functions f̃ on Rn and
integrate these by means of Euclidean differential forms:
As above, let U ⊂ Xn be open and f : U 3 z =

∑
j γjxj 7→ f(z) ∈ Clp,n−p be

analytic. Let Ũ ⊂ Rn be the set of all (xj)1≤j≤n, such that
∑
j γjxj ∈ U . Then

f̃ : Ũ 3 (x1, . . . , xn) 7→ f(α1x1, . . . , αpxp, iαp+1xp+1, . . . , iαnxn) ∈ Clp,n−p is
smooth, and for 1 ≤ m ≤ n the differential m-form dxk1 ∧ · · · ∧ dxkm defines

the orientated integral
∫
S̃
f̃(x1, . . . , ixm)dxk1 ∧· · ·∧dxkm of a m-dimensional,

plane, compact region S̃ ⊂ Ũ , where the sign of the integration is chosen
positive, if (k1, . . . , km) is a cyclic subpartition of (1, . . . , n) and negative
otherwise. We can now define:

∫
S
f(α1x1, . . . , iαnxn)αk1dxk1 · · ·αkmdxkm :=∫

S̃
f̃(x1, . . . , ixn)dxk1 ∧ · · · ∧ dxkm , where S is the set of all

∑
j γjxj ∈ Xn

with (x1, . . . , xn) ∈ S̃.
In particular, the n-dimensional volume differential becomes the ordered

product dnx := α1dx1 · · ·αndxn, and with V (r) := {y ∈ Rn|y21+· · ·+y2n = 1},
we have ∫

Br(0)

f(
∑
j

αjxj)d
nx =

∫
V (r)

f̃(x1, . . . , xn)dx1 · · · dxn.

In case that n− p elements γp+1, . . . , γn have a negative signature, up to an
additional factor in−p we get the same result:∫

Br(0)

f(α1x1 + · · ·+ αpxp + iαp+1xp+1 + · · ·+ iαnxn)dnx

= in−p
∫
V (r)

f̃(x1, . . . , xn)dx1 · · · dxn.

Analogously, given an analytic f : U → Clp,n−p, n > 1, and Sn(r) ⊂
U the (n-1)-dimensional sphere of an n-dimensional ball, then the surface
integral of f over Sn(r) is given by:∫

Sn(r)

f(z)dn−1a =

∫
Sn(r)

f(z)
∑

1≤k1 6=k26=···6=kn−1≤n

αk1dxk1 · · ·αkn−1dxn−1.

Let’s rewrite this into a simpler form:
We have: r2 = (

∑
j αjxj)

2, where r ≥ 0 is the Euclidean radius, so that

dr = x
r dx and dx = r

xdr, where x =
∑
j αjxj .

With this, let F (r) :=
∫
Br(0)

f(
∑
j αjxj) be the integral of a function f :

U → Cln,0(R), where U is an open subset of Xn containing Br(0) such that
F (r) exists in Cln,0. Then the surface integral of f over Sn(r) can be defined
as:
∫
Sn(r)

f(
∑
j αjxj)d

n−1a := d(F (r) rx )/dx. Again, if f : U → Clp,n−p(R),

we get the same result with an additional factor in−p.
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Armed with that, it is simple to prove

Lemma 3.5 (Cauchy Theorem). For n > 1, let f : U → Clp,n−p(R) be analytic
on an open subset U ⊂ Xn, r > 0, Br(z0) ⊂ U be the closed r-ball around
z0 ∈ U , and let Sr(z0) be its n − 1-dimensional boundary. Then the surface
integral of f over Sr(z0) exists and vanishes, i.e.:

∫
Sr(z0)

fd2n−1a = 0.

Proof. Because of local compactness of Rn, it suffices to prove that state-
ment for r → 0. To prove existence for p = n, notice that f defines a smooth
function f̃ : V (r) = {x ∈ Rn|

∑
j x

2
j ≤ r2} 3 y 7→ f(y1, . . . , yn) ∈ Cln,0,

so F (r) =
∫
Br(0)

f̃(y1, . . . , yn)dy1 · · · dyn exists and is differentiable in r.

With an extra factor in−p, the existence then extends to f being an ana-

lytic function to Clp,n−p. The theorem then follows from
∣∣∣∫Sr(z0)

fd2n−1a
∣∣∣ ≤

Snmaxz∈Br(z0)

∣∣f(z)
∣∣ rn−1, where Sn is the area of the unit sphere, which

goes to 0 (even with degree rn−1) as r → 0. �

Proposition 3.6 (Cauchy Integral). Let f : U → Clp,n−p(R) be analytic on
an open subset U ⊂ Xn, r > 0, with n > 1 as in the above lemma. Then for
z0 ∈ U : ∫

Sr(z0)

f(z)(z0 − z)−1(n−1)dn−1a = in−pSnf(z0),

where again Sn denotes the area of the n− 1-dimensional unit sphere.

Remark 3.7. Note that care must be taken as to whether the factor (z −
z0)−n+1 goes to the left or the right of f(z): if f(z) = γjλ(z) for some j and
some λ(z) ∈ R, for instance, then, depending on (z−z0) and the dimension n,
(z−z0)n may anticommute with f(z); only in case of f being real (or complex)
valued, commutativity is ensured. In what follows, the factor (z − z0)−n+1

will be understood to be taken to the right of f(z).

Proof. It suffices to prove the proposition for z0 = 0.
We first contend that the statement holds for f ≡ 1: Let Vn be the volume
of the n-dimensional unit ball Bn(1). Then the volume of the r-ball Bn(r) is

given by Vnr
n. So, the function f̃ : Rn 3 x 7→ 1

|x|n−1 = 1/rn−1 has a volume

integral over Bn(r) given by rSn, where Sn is the area of the unit sphere. So,

the surface integral of f̃ over the sphere Sr(0) of the r-ball Bn(r) is Sn.
Now, if n − 1 is even, given z =

∑
j αjxj , we have rn−1 = zn−1; so for

f ≡ 1 and even n − 1 > 1 the proposition already holds. So, let n − 1 be
odd, i.e. n ≥ 2 be even. Then 1

zn−1 = 1
rn−2z , and because of rdr = zdz with

z := (
∑
j αjxj) and dz := (

∑
j αjdxj),

1
rn−2zdz = 1

rn−1 dr. So, again, on the

r-sphere Sr(0),
∫
Sr(0)

1
zn−1 da =

∫
Sr(0)

1
rn−1 da, and it gives Sn, the surface

area of the unit n-ball. This proves proposition for f ≡ 1. In general, if f is
analytic in the origin, we have∣∣∣∣∣
∫
Sr(0)

(f(0)/rn−1 − f(z)/zn−1)da

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Sr(0)

r−n−2(f(0)/r − f(z)/z)da

∣∣∣∣∣ ,



Analytic Functions 7

which converges to zero as r → 0, because f is analytic in 0, and therefore
f(z) = f ′(0)z + o(|z|). �

The subsequent steps again are the same as in Cauchy’s analysis:

Lemma 3.8. Let 1 : Rn → Clp,n−p(R) be the constant function 1(x) ≡ 1.
Then

∫
Sr(0)

1/zk = 0 for k ≥ n.

Proof. As we can interchange the order of integration due to continuous dif-
ferentiability, the integration over the n − 2 polar angles can be carried out
first, resulting in a smooth function f(z)/zk−n+1 (outside 0). This function
can be integrated to a function F , and the integral is the difference of F at
start and end point. Because start and end point coincide for last azymuthal
integration (from 0 to 2π), the lemma holds. �

As an immediate consequence:

Corollary 3.9. If f : U → Clp,n−p(R) be analytic on an open subset U ⊂ Xn,
r > 0, with n > 1, z0 ∈ U , and Br(z0) ⊂ U . Then for k ∈ N ∪ {0}:∫

Sr(z0)

f(z)(z0 − z)−1(n−1+k)dn−1a =
in−pSn
k!

dkf(z0)

dkz
.

This can now be extended to analytic functions f(z)/(z − z0)k, where
f is analytic in an environment of z0, and further to meromorphic functions,
in line with Cauchy’s theory of complex numbers.

Perhaps more importantly, the above corollary implies that if f is con-
tinuously differentiable in a point z ∈ Clp,n−p(R), then it is analytic in z0:
Because

∫
Sr(x0)

f(z)(z−z0)n−1da then exists for sufficiently small r > 0, and

as that is an analytic function in z outside {z0}, f(z0) is the uniform limit of
that function to {z0}. So, the power series expansion converges uniformly as
z → z0, which implies analyticity (the proof by itself being a copy of Cauchy’s
theory).

4. Complex Clifford Algebra

In all above, I restricted on a real-valued algebra, in which the elements
z =

∑
k xkγk are such that xk ∈ R, rather than complex numbers. Of course,

I could have replaced the real numbers xk by complex numbers zk from the
beginning, but then one would be tempted to integrate over 2n − 1 dimen-
sions, splitting the real part from the imaginary part of only one of the n
complex dimensions, which was misleading:

In the definition of Clp,n−p(R) we made a strict distinction between the
components of positive signature, x1α1, . . . , xpαp and the n − p ones with
negative signature, xp+1iαp+1, . . . , xniαn. But in the end, we saw that up
to a factor i there is no difference between both signs of signature of each
component. So, if we have the αk phase rotated by an extra factor eiφk ,
each, i.e. substitute αk → eiφkαk, then in the Cauchy integration, we would
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get the same result, up to an additional factor eiφ1+···+iφn . So, by letting
the xk become complex, the distinction of positive/negative signature (or
metrics) becomes irrelevant, we can base all computations on the positive
α1, . . . , αn, still retain the results Cauchy’s theory (without the factor in−p),
and Clp,n−p(R) simplifies to Cln(C)!

5. Conclusion

Let me come back to H. Poincaré’s motivation: He was wondering what the
Lorentz condition

∂0A0(x0, . . . , x3) + · · ·+ ∂3A3(x0, . . . , x3) = 0

meant to electrodynamics. The Aµ represent the electromagnetic vector field
j0 on regions of R4, so are to be taken as real-valued (and smooth) functions.
Therefore they can be extended to the complex by defining

jµ(z0, . . . , z3) := jµ(x+ iy) := jµ(x)− ijµ(y), (0 ≤ µ ≤ 3).

Poincaré knew that the Lorentz condition stated nothing but a conservation
law of some relativistically invariant energy. And he knew that this law was
relativistically invariant. But why then does this equation get lost, when the
Maxwell equations are transformed by a Lorentz transformation and has to
be regained anew by what is called a gauge?

Let us now accept that space-time is not Euclidean, but to be described
in Minkowski metrics, instead, so is of signature (1, 3). So, let’s rewrite:

fµ(z0γ0 + · · ·+ z3γ3)γµ := jµ(z0, . . . , z3), (0 ≤ µ ≤ 3).

Then the Lorentz condition becomes∑
0≤µ≤3

∂(fµ(z0γ0 + · · ·+ z3γ3)γµ)/∂(zµγµ) = 0.

By the above, we know that (fµγµ)0≤µ≤3 is integrable to a function
F : Xn 3 z = z0γ0 + znγ3 7→ F (z) ∈ Cl1,3(R) if and only if ∂µjν = −∂νjµ
for 0 ≤ µ 6= ν ≤ 3. That means that dF (z)/dz =

∑
0≤µ≤3 fµ(z)γµ. So,

∂F (z)/∂(zµγµ) = fµ(z)γµ, hence the Lorentz condition enforces:

�F (z) := (∂20 − · · · − ∂23)F (z) = 0.

Note that integrability here means integrability in the Clifford algebra,
but not in the standard Euclidean space: it’s γµ∂µfνγν = γν∂νfµγµ, and it’s
not ∂µfν = ∂νfµ for 0 ≤ µ 6= ν ≤ 3!

In other words: the mapping

Ψ :
∑

0≤µ≤3

γµfµ(γ0z0 + · · ·+ γ3z3) 7→ (f0(z0, . . . , z3), . . . , f3(z0, . . . , z3))

maps spinor-functions that are integrable within the Clifford algebra into Eu-
clidean vector fields with a generally nontrivial rotation, which are therefore
not integrable within the Euclidean space - the electromagnetic fields just fall
into this class: see [3] for details.
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details/mmoiresurlesin00cauc, 1825.
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