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A property of Toeplitz matrices attributed to Caratheodory is the following: 
 
For a semi-positive definite Toeplitz matrix with a unique eigenvalue of zero, the 
polynomial formed from the elements of the eigenvector corresponding to the zero 
eigenvalue will have roots on the unit circle. 
 
Here the Toeplitz matrix has the (i, j)th element as a function of  i - j , and as an 
example a 4 X 4 Toeplitz matrix can be represented as follows: 
 
 
    1 c1 c2 c3 
    c1 1 c1 c2 
    c2 c1 1 c1 
    c3 c2 c1 1 

 
 

For notational convenience we indicate the Toeplitz matrix as [[1, c1, c2, c3]] and for this 
discussion, we assume only real matrices.  Now we can illustrate the Caratheodory with a 
numerical example. For T = [[1.00000 -0.78329  0.51987 -0.87595]], the eigenvalues can 
be calculated as -0.09709, 0.43785, 0.52564 and 3.13361.  Subtracting the smallest 
eigenvalue from the diagonal elements of the matrix, we obtain after normalizing the 
daigonals to one, [[1.00000, -0.71397, 0.47386, -0.79843]].  For this matrix, the 
eigenvalues are 0.00000, 0.48760, 0.56762 and 2.94479.  The eigenvector that 
corresponds to the smallest, unique eigenvalue is [-0.54157, 0.45464, 0.49104, -0.50880].  
We form a polynomial corresponding to this eigenvector (referred to as zero 
eigenpolynomial hereafter) as Z(x) = -0.54157 + 0.45464 * x + 0.49104 * x2 - 0.50880 * 
x3.  Solving for Z(x) = 0, we see the roots are exp(i * ), exp(i * 1.495) and  
exp(-i * 1.495) which lie on the unit circle thus confirming the Caratheodory's property.  
In this discussion for simplicity we indicate these roots in degrees as 180, 85.40, and -
85.40.  
 
Note Caratheodory expressed this property inter alia in 1900's when there was no fast 
electronic computers available and tools like Mathematica, MatLab/SCiLab, etc. were 
non-existent.  Thus it is all more remarkable that such a property can be derived and 
proved using only mathematical analysis and possible hand calculations.  However proofs 
are long and laborious and do not reflect the underlying structure that leads to such a nice 
and beautiful result.   We approach the problem from a different viewpoint in a numerical 
setting so as to illustrate why the Toeplitz matrices have this property and understand the 
underlying structure that leads to this remarkable property.  It should be mentioned that 



one can see intuitively what is going on from the numerical results but unfortunately we 
do not have at this time simple proofs to accompany the insight. 
 
We define Vandermonde Unit Vectors (VUV) as [1, x, x2, x3 ... xn-1] where x = exp(i * ), 
0     2.  VUVs can span a n-dimensional space by selecting n different 's because 
the Vandermonde determinant formed from these vectors will be non-zero if the 's are 
different.  Now we note that from VUV() =  [1,  exp(i * ), exp(i * 2), exp(i * 3)  ..  
exp(i * (n - 1))], we can form the rows of a Toeplitz matrix by multiplying with  
exp(i * -m), m = 1, .., n - 1.  Thus by multiplying with exp(i *-), we have the second 
row: 
 
 exp(i *-) * VUV() =  
   [exp(i * -),  1, exp(i * ) .. exp(i * (n - 2))] 
 
and the third row by multiplying with exp(i * -2):     (1) 
 
 exp(i * -2) * VUV() =  
   [exp(i * -2),  exp(i * -),  1, exp(i * ) .. exp(i * (n - 3))] 
 
and so on.  This observation connects the Toeplitzness with VUVs and leads us to 
represent a Toeplitz matrix using VUVs.  Since the VUVs span the n-dimensional space, 
for a given Toeplitz matrix [[1, c1, c2, c3, .. cn-1]], select any arbitrary basis vectors 
VUV(i) with different i and solve for [1, 2, 3, .. n]: 
 
 1* VUV(1) + 2 * VUV(2) + ..  + n* VUV(n) = [1, c1, c2, c3, .. cn-1] 
 
We indicate column vectors with [ .. ] and row vectors ( .. ).  The above equation can be 
expressed as: 
 
 [VUV(1) VUV(2) .. VUV(n)] [1, 2, 3, .. n] = [1, c1, c2, c3, .. cn-1] 
 
and solved for i :         (2) 
 
 [1, 2, 3, .. n] = [VUV(1) VUV(2) .. VUV(n)]-1 [1, c1, c2, c3, .. cn-1] 
 
Now the Toeplitzness and VUV connection expressed by (1) can be invoked to express 
the other rows of the Toeplitz matrix from (2).  For instance the second row = [c1, 1, c1, 
c2, c3, .. cn-2] can be expressed in terms of i and i: 
 
[[VUV(1)] [VUV(2)] .. [VUV(n)]] [1exp(i * -1),  2exp(i  * -2), .. nexp(i * -n)] =  
 [c1, 1, c1, c2, c3, .. cn-2]        (3) 
 
 
By writing (3) for all the rows of the Toeplitz matrix, we can see the matrix can be 
expressed as a product: 



[[1, c1, c2, c3, .. cn-1]] =         (4) 
 [[VUV(1)] [VUV(2)] .. [VUV(n)]]  [(VUV(-1)) (VUV(-2)) .. (VUV(-n))] 
 
where  is the diagonal matrix with diagonal elements 1, 2, 3, .. and n.  In fact (4) can 
be seen by multiplying the matrices but by taking the longer route, one can see the 
connection between the Toeplitz matrix and the Vandermonde unit vectors. 
 
Now we consider the Toeplitz matrix [[1.00000, -0.71397, 0.47386]] from our example 
matrix above with the last element removed.  Since we are considering only real matrices, 
's are to be selected so that VUVs are either real or form conjugate pairs.  We denote a 
VUV by a value t in degrees between 0 and 180 and indicate by (t) = [1, exp(i * T), .. 
(exp(i * (n-1)T)] where T = t *  / 180 radians.  Since the matrix is real, we can either 
select {(1), (t), (-t)} or ((-1), (t), (-t)}.  Running thru' all possible values for t, we find out 
that there are only two sets of vectors that can represent the Toeplitz matrix.  They are 
{(1), (147.84), (-147.84)} and {(-1), (85.40), (-85.40)}.  For a given basis {(t1), (t2), 
(t3)}, let {1, 2, 3} be the solution so that 1* (t1) +  2 * (t2) + 3 * (t3) = [1.00000,  
-0.71397, 0.47386].  It turns out only for these two sets, solutions are real and for any 
other set of basis vectors, solutions are not real and the matrix becomes asymmetric.   
 
First Set: 
 
Basis: {(1), (147.84), (-147.84)}  
{1, 2, 3} = {0.0717592 - 2.567D-17i , 0.4641204 - 0.0000817i , 0.4641204 + 
0.0000817i} 
 
Toeplitz matrix from Basis and {1, 2, 3}: 
1.              - 5.342D-17i    - 0.7141439 + 5.333D-17i      0.4741545  - 1.487D-16i    
- 0.71397 - 5.551D-17i       1.                - 5.551D-17i    - 0.7141439 + 1.388D-17i     
0.47386   + 1.110D-16i    - 0.71397      - 1.110D-16i       1.                - 5.551D-17i  
 
Second Set: 
 
Basis: {(-1), (85.40), (-85.40)}  
{1, 2, 3} = {0.7352253 - 2.481D-18i, 0.1323873 - 0.0000104i, 0.1323873 + 
0.0000104i} 
 
Toeplitz matrix from Basis and {1, 2, 3}: 
  1.            - 2.480D-18i       - 0.7140114 + 2.481D-18i        0.4738534 - 2.480D-18i 
- 0.71397                                1.                - 1.735D-18i     - 0.7140114        
  0.47386  - 3.469D-18i        - 0.71397     + 2.385D-18i       1.                - 3.469D-18i 
 
 
 
 
 
 



Wrong Set: 
 
Basis: {(1), (147), (147)}  
{1, 2, 3} = { 0.0751327 - 7.302D-18i, 0.4624336 + 0.0123419i, 0.4624336 - 
0.0123419i} 
 
Toeplitz matrix from Basis and {1, 2, 3}: 
   1.            - 3.469D-17i     -0.6870824 + 7.112D-17i     0.4287603 - 1.292D-16i 
- 0.71397  - 5.551D-17i        1.                                       - 0.6870824 + 8.327D-17i 
   0.47386 + 1.110D-16i     - 0.71397      - 1.110D-16i      1. 
 
We see when the solutions are real, i's are real and the Toeplitz matrix is reproduced 
properly but in the wrong set, some i's are not real and the reproduced matrix is not 
symmetric.  Though it can be proved that i's have to be real for the right solution, it 
appears the proof that only two solutions are possible may not be that simple.  However 
we show later the two solutions are connected to some other factors. 
 
Once we have the basis for the non-singular n X n Toeplitz matrix, it can be extended to 
(n + 1) X (n + 1) Toeplitz matrix by extending the individual VUV basis vectors to n + 1 
elements as follows.  A given VUV() =  [1,  exp(i * ), exp(i * 2), exp(i * 3)  ..  
exp(i * (n - 1))] can be extended to n + 1 elements [1,  exp(i * ), exp(i * 2), exp(i * 
3)  ..  exp(i * (n - 1)), exp(i * n)] and the Toeplitz matrix Tn = [1, c1, c2, c3, .. cn-1] can 
be extended to Tn+1 = [1, c1, c2, c3, .. cn-1, x] by defining x to be: 
 
 x = 1 exp(i * n1) + 2 exp(i * n2)  + .. + n exp(i * nn-1)    (5) 
 
Since the extended basis vectors span n-dimensional space (i.e., the matrix composed of 
these basis vectors is of rank n),  Tn+1 is of rank n and thus have an eigenvalue of zero.  
Also the eigenvector corresponding to the zero eigenvalue will be in the null subspace 
and orthogonal to the basis vectors.  If ߦ = ,1ߦ	] .			,2ߦ . ,  ] is the eigenvector	nߦ
corresponding to the zero eigenvalue, then we have: 
 
    Tn+1 ߦ = 0      (6) 
 
From (4) we can conclude that ߦ is orthogonal to (VUV(-1)), (VUV(-2)),  .., and  
 (VUV(-n)).  The polynomial formed from ߦ has roots on the unit circle namely  
exp(i * -1), exp(i * -2),  .., exp(i * -n-1) thus confirming the Caratheodory’s property. 
 
Taking our numerical example above, we have from the first set: 
 
Basis: {(1), (147.84), (-147.84)}  
{1, 2, 3} = {0.0717592 - 2.567D-17i , 0.4641204 - 0.0000817i , 0.4641204 + 
0.0000817i} 
 
Extending the matrix to a 4 X 4 matrix: 
 



  1 * (1) 4 +   2 * (147.84) 4 + 3 * (-147.84) 4 = (1.00000, -0.71397, 0.47386, 0.17680) 
 
And for the second set: 
 
Basis: {(-1), (85.40), (-85.40)}  
{1, 2, 3} = {0.7352253 - 2.481D-18i, 0.1323873 - 0.0000104i, 0.1323873 + 
0.0000104i} 
 
  1 * (1) 4 +   2 * (85.40) 4 + 3 * (-85.40) 4 = (1.00000, -0.71397, 0.47386, -0.79843) 
 
As we may recall, the first Toeplitz matrix we considered as an example is  
[[1.00000, -0.71397, 0.47386, -0.79843]].  And now we see it has a dual  
[[1.00000, -0.71397, 0.47386, 0.17680]] and both of them have roots on the unit circle 
for their zero eigenpolynomials. 
 
The two values -0.79843 and 0.17680 can also be gotten by a different argument.  
Consider the matrix [[1.00000, -0.71397, 0.47386, x]] and determine x so that the 
determinant of [[1.00000, -0.71397, 0.47386, x]] is zero.  The matrix will become semi-
definite with unique eigenvalue of zero as its determinant is zero and it becomes singular.  
Evaluating the determinant we have: 
 
 Determinant[[1.00000, -0.71397, 0.47386, x]] = 0 
  0.0692051 – 0.304756 x – 0.490247 x2 = 0 
  x = -0.798438 and 0.1768 
 
We used Mathematica to evaluate the determinant in a symbolic form.  One can also 
evaluate the determinant numerically for various values of x and determine the roots.  
The following theorem asserts there are two possible values for x that will make the non-
singular Toeplitz matrix singular (or semi-definite with a unique eigenvalue of zero). 
 
Theorem: A n X n non-singular Toeplitz matrix Tn = [[1, c1, c2, c3, .. cn-1]] can be 
extended to a semi-definite Toeplitz matrix Tn+1 = [[1, c1, c2, c3, .. cn-1, x]] with a unique 
eigenvalue of zero in two ways.  x satisfies the quadratic equation: 
 
 Determinant([[1, c1, c2, c3, .. cn-1, x]]) = 0     (7) 
 
The determinantal equation in x can be seen to be quadratic by looking at its expansion. 
 
To summarize our approach and what has been proved or not, we list the following items: 
 

1.  Any non-singular Toeplitz matrix [[1, c1, c2, c3, .. cn-1]]  can  represented in only 
two ways using VUV’s.  When the VUVs are used as basis vectors, the 
coefficients have to be real to express the vector [1, c1, c2, c3, .. cn-1] for both of 
these ways.  This assertion is unproven and based on numerical evidence. 
 



2. There are only two ways of obtaining a semi-definite matrix [[1, c1, c2, c3, .. cn-1, 
x]] by extending the VUV’s from n elements to n + 1 elements and expressing x 
as in Equation (5).  These are the only possible semi-definite matrices which 
contains the leading submatrix [[1, c1, c2, c3, .. cn-1]].  Follows from 1. 
 

3. For the two Toeplitz matrices obtained in 2 the Caratheodory’s property is 
satisfied.  Thus the Caratheodory’s property follows from its dual representation 
in 1. 
 

4. The determinantal expansion of  Determinant[[1, c1, c2, c3, .. cn-1, x]] = 0 gives two 
roots for x and thus two Toeplitz matrices which are semi-definite.  Numerical 
evidence shows these two matrices to be the same as in 2. 
 

From numerical evidence it appears possible to prove the Caratheodory’s property by 
demonstrating that there are only two possible semi-definite n + 1 X n + 1 Toeplitz 
matrices for a given leading n X n Toeplitz submatrix [[1, c1, c2, c3, .. cn-1]] and for these 
two matrices, the zero eigenpolynomial has roots on the unit circle. 
 
An extensive simulation was performed on 5 X 5 real Toeplitz matrices of the form [[1, 
c1, c2, c3, x]] and it was found that x is always real and has two solutions.  When 
combined with the Caratheodory’s property, it can be asserted that this type of matrices 
always have a dual representation with VUVs.  These matters should be researched in the 
future. 
 
What is interesting is the dual values possible for semi-definiteness (since cara in 
Caratheodory means face/head in Greek and has the Indo-European root siras meaning 
head in Sanskrit, maybe these dual values should be referred to as head and tail).  Usually 
a harmonic analysis is using the Toeplitz matrix and the Caratheodory’s property is used 
to deduce the harmonic nature as expressed by the roots on the unit circle of the zero 
eigenpolynomial.  As our analysis points out, there are two possible cases and they 
provide different sets of roots.  This may require a careful interpretation of the harmonic 
analysis. 
 
We conclude with a 11 X 11 Toeplitz matrix as an example.  The matrix [[1.00000,  
0.36252,  -0.04367, 0.00327, 0.19497, -0.22068, 0.06096, 0.16532, 0.02092, -0.28726,  
0.19065]] has the eigenvalues: 
 
0.00000, 0.02330, 0.24901, 0.65600, 0.97845, 1.17248, 1.42632, 1.49510, 1.58379,  
1.65957, 1.75598 
 
The zero eigenpolynomial has the roots: 
 

28.95º, -28.95º, 104.84º, -104.84º,  88.37º, -88.37º, 58.24º, -58.24º, 180.00º, 0.00º 
 

Determinant[[1.00000,  0.36252,  -0.04367, 0.00327, 0.19497, -0.22068, 0.06096, 
0.16532, 0.02092, -0.28726,  x]] = 0.0000428923 + 0.000643451 x - 0.00454485 x2 



 
x = -0.0494135, 0.190991 
 
The second root corresponds to our original Toeplitz matrix (within numerical accuracy).  
The other value of -0.0494135 gives the Toeplitz matrix [[1.00000,  0.36252,  -0.04367, 
0.00327, 0.19497, -0.22068, 0.06096, 0.16532, 0.02092, -0.28726,  -0.0494135]] and its 
eigenvalues: 
 
0.00000, 0.00379, 0.37539, 0.65181, 0.86729, 1.18001, 1.37567, 1.49640, 1.53916,  
1.74983, 1.76064 
 
The zero eigenpolynomial has the roots: 
 
178.18º, -178.18º, 47.74º, -47.74º, 103.40º, -103.40º, 76.63º, -76.63º, 15.38º, -15.38º 
 
The roots can be seen to be different and an interesting issue is whether the 
Caratheodory’s property indicates any harmonicity or just a mathematical curiosity to 
which harmonic properties are attached. 
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