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Figure:  Doo-Sabin:  The  unit  cube  with  two  opposite  corners  elevated  by  1  defines  a  subdivision  surface  that

encloses a set with centroid  1
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, 189061858950460927

251161615260877860
.  For a set bounded by a limit surface corresponding to a

control  mesh  with  vertices  of  valence  3,  and  4  we  compute  the  ellipsoid  with  equivalent  inertia.  |  Loop:  The
centroid defined by the subdivision surface is at the intersection of the red, green, and blue lines. The surface
right features sharp creases. †

Abstract

The volume enclosed by subdivision surfaces, such as Doo-Sabin, Catmull-Clark, and Loop has recently been
derived. Moments of higher degree d are more challenging because of the growing number of coefficients in the

d + 3-linear forms. We derive the intrinsic symmetries of the tensors, and thereby reduce the complexity of the
problem.

Our  framework  allows  to  compute  the  4-linear  forms  that  determine  the  centroid  defined  by  Doo-Sabin,  and
Loop  surfaces,  including  Loop  with  sharp  creases.  For  Doo-Sabin  surfaces,  we  also  establish  the  tensors  of
rank 5 that determine the inertia for valences 3, and 4. When the subdivision weights are rational, the centroid,
and inertia are obtained in exact, symbolic form. In practice, the formulas are restricted to meshes with a certain
maximum valence of a vertex.

The first  author  dedicates this  work to  the memory of  Andrew Ladd,  Nik  Sperling,  and Leif  Dickmann.  The article  and additional
resources are available at www.hakenberg.de. The first author was partially supported by personal savings accumulated during his
visit to the Nanyang Technological University as a visiting research scientist in 2012-2013. He’d like to thank everyone who worked
to make this opportunity available to him.

Introduction
A subdivision scheme S is a mesh refinement procedure. Starting with an initial mesh M, the repeated applica-

tion of the subdivision scheme results in an increasingly dense mesh SnM. The algorithm is designed so that
the sequence of meshes converges to a piecewise smooth surface S¶M. Due to these properties, subdivision
is a popular technique to design and represent surfaces in computer graphics.

[Catmull/Clark 1978] and [Doo/Sabin 1978] introduced the first subdivision schemes intended for the refinement 
of quad meshes. In the limit, large parts of the surface have piecewise polynomial parameterization. Later, [Loop 



1987] designed a subdivision scheme for triangular meshes. The smoothness characteristics of the limit surface 
produced by the schemes are well-understood, see [Reif 1995].



Figure:  Surface  subdivision  applied  to  a  simple  initial  mesh  of  4  unit  cubes  glued  together.  The  limit  surface

bounds a set of volume 10357799098161+2535566756 5

3238292736000
. The centroid is 0.45289886110702  away from the vertex

of valence 6 on the axis of symmetry inside the set. †

Our article is  restricted to subdivision surfaces that  are generated from meshes with finite number of  facets.  If
the resulting surface S¶M is compact, piecewise smooth, orientable, and not self-intersecting, we denote with

WÕR3  the  interior  of  the  surface.  The  boundary  is  ∑W =S¶M.  Then,  the  p, q, r -moment  of  degree
p + q + r = d  for  p, q, r œ 0, 1, 2, ...  of  the  set  W  with  respect  to  the  x-,  y-  and  z-axis  is  well  defined  by  the

integral

Mp,q,r W = Wxp yq zr „x „y „z 

The moments for small degree d have interpretation as 

volumeW =M0,0,0W d = 0 
centroidW = 1

volumeW M1,0,0W, M0,1,0W, M0,0,1W d = 1 
inertiaW = M2,0,0W, M0,2,0W, M0,0,2W, M1,1,0W, M0,1,1W, M1,0,1W d = 2 



Example:  Doo-Sabin  subdivision  of  a  cube  with  initial  control  points  ≤1, ≤1, ≤1.  The  colors  are  the  relative

volume contribution by each quad of  the dual mesh. The surface encloses a set  of  volumeW = 6241

1240
,  the cen-

troid is at the origin, and inertiaW = b, b, b, 0, 0, 0 where b = 3003739685043074286227439869

2624566978533879876841344000
. †

The  moments  derived  in  the  article  have  diverse  applications:  1)  The  formulas  allow  to  design  subdivision
surfaces with exact volume, centroid, and inertia. 2) By translation of control points, surfaces can be deformed
subject to preservation of moments. 3) Countless computer games and animations use subdivision surfaces for
character and shape modeling. If a subdivision surface is the contour of an animated entity, our formulas help to
make  the  motion  more  accurate:  Unaccelerated  rotation  is  around  centroidW,  and  inertiaW- centroidW
determines the preservation of angular momentum. 4) [Prevost et al. 2013] and [Baecher et al. 2014] explain the
significance of the centroid and inertia in the context of 3d printing.

The limitation: the term Mp,q,r W assumes constant mass density across the inside of the shape.

Previous work

A simple formula for the moment of the set bounded by the limit surface was not known previously. [Peters/Nasri
1997] only describe an approximation of the moment. Moreover, their framework requires “regular submeshes to
have a polynomial parametrization”. Moments defined by the Loop scheme are not covered by their approach.

[Gonzalez et  al.  1998] carry  out  the derivation of  moments Mp,q,r W  of  sets  bounded by piecewise polynomial

surfaces.  Their  derivation  is  sufficient  for  surfaces  that  are  entirely  constructed  from B-spline,  or  Bézier/Bern-
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stein patches, for instance.

[Hakenberg et al. 2014a] present a framework to compute the exact volume enclosed by surfaces generated by
stationary  subdivision  schemes.  The  volume  is  the  moment  of  degree  d = 0  of  the  3-dimensional  set  W.  The
formula is a sum over all facets f œM of the mesh

volM =M0,0,0W =fœM i, j,k
mf  Yi, j,k

0,tf  pxi py j pzk 

where  Y0,tf   is  a  trilinear  form  characteristic  to  the  facet  topology  tf ,  and  pxi, pyi, pziœR3  for

i = 1, 2, ..., mf  are the control points from the mesh that determine the surface associated to facet f .

In particular, the volume is determined by a finite number of additions and multiplications. Trilinear forms charac-
teristic to the subdivision scheme need to be derived for all facet types tf . Then, the formula is universal for all
closed,  orientable meshes M.  In  practice,  the  forms are  available only  up to  a  certain maximum valence.  For
instance,  the  volume defined  by  a  Catmull-Clark  mesh  with  a  vertex  of  valence  42  is  generally  intractable  by
today’s standards. It  had to be a number, an ordinary, smallish number, and I  chose that one. The framework
also extends to subdivision surfaces with sharp creases, which is demonstrated at variants of the Catmull-Clark
and Loop scheme in [Hakenberg et al. 2014b].

At this point, the derivation of the moments of degree 1 § d was known theoretically. However, the large number
of  coefficients  in  the  d + 3-linear  forms poses a  practical  challenge.  In  order  to  familiarize ourselves with  the
intrinsic symmetries of the tensors, we treat the simpler 2d-analogy: moments of 2-dimensional sets bounded by
piecewise smooth subdivision curves in [Hakenberg et al. 2014c].



Example:  The  point  cycle  P = 0, 0, 2, 0, 2, 1, 13, 1 4, 0, 1  is  subdivided  using  the  interpolatory  C1

four-point scheme by [Dubuc 1986].  The moments of  low degree of  the 2-dimensional set  WÕR2  enclosed by

the  smooth  limit  curve  are  areaW = 446389

266112
,  and  centroidW =  7692606932638356977

6491763064547046864
, 5697393899777829797

17311368172125458304
.  The

ellipse visualizes the inertia with respect to the centroid. †

Overview

The contribution of  this  article  is  a  formalism to  derive the moments Mp,q,r W  for  sets  bounded by subdivision

surfaces that do not have a closed-form parameterization. The moment depends on the subdivision scheme S

and the initial mesh M. We derive the formula using the conceptual approach 

Mp,q,r W =Mp,q,r S¶M
=∑W

 =Mp,q,r M 

The first equality is established through the divergence theorem. The second equality is the result of identifying
an operator Mp,q,r  for meshes that is

1) invariant under one round of subdivision Mp,q,r M =Mp,q,r SM, and 

2) reproduces the correct moment value for a known special case, for instance the unit cube W= 0, 13.

Once the formulas are clarified, the equation serves as a definition for the Mp,q,r  operator overloading. Mp,q,r M
is always interpreted with a specific subdivision scheme S in mind.

Our article is structured as follows. First, we derive the formula for Mp,q,r M for stationary subdivision schemes.

Then,  we  demonstrate  the  practicability  of  our  framework  on  several  popular  schemes.  The  computation  of
moment values of simple example meshes serves as a reference for alternative implementations.
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Derivation of Moments

Divergence Theorem

The divergence theorem in  three  dimensions states  that  for  a  smooth  vector  field  G : R3 Ø R3  and a  compact

subset WÕR3 with piecewise smooth boundary ∑W and surface normal n 

Wdiv G „W = ∑WG ÿn „ ∑W 
We select as vector field Gp,q,r : R3 ØR3 

Gp,q,r x, y, z =  1

p+1
xp+1 yq zr , 0, 0 with div Gp,q,r = xp yq zr  

for p, q, r œ 0, 1, 2, .... Then,

Mp,q,r W = Wxp yq zr „V = ∑W 1

p+1
xp+1 yq zr , 0, 0 ÿn „ ∑W = ∑W 1

p+1
xp+1 yq zr nx „ ∑W

where nx  denotes the first component of the normalized surface perpendicular. The moment is expressed as an
integral  over  the  piecewise smooth  subdivision surface ∑W = S¶M.  In  order  to  compute  the  surface  integral,
we parameterize the surface using the facets of the mesh as described in the next section.

Surface Partition

The  correspondence  between  the  facets  f œM  of  the  mesh  and  the  patches  that  partition  the  surface
∑W = S¶M is best illustrated at example schemes: For Doo-Sabin surfaces, the facets are given by the quads

of the dual mesh of S2M.


S


S


dual

Figure: After two rounds of subdivision with Doo-Sabin’s algorithm, each vertex v  has valence 4. We associate

a facet f  to each vertex v œS2M: The facet is the quad spanned by the midpoints of the 4 faces adjacent to v. †

For  surfaces  defined  by  Catmull-Clark,  the  facet  f  is  a  quad  of  the  one-time  subdivided  initial  mesh.  For  the

Loop scheme, the facet f  is a triangle of the one-time subdivided initial mesh.

Figure: Quad and triangular facets of a mesh with associated patch on the subdivision surface. Each facet has
at most one non-regular vertex. †
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The purpose of subdiving a few times before defining the facets is so that non-regular vertices, or faces become
isolated, and a classification of facet topologies simple. Without loss of generality we may assume that the initial
mesh M already has non-regular features isolated.

Figure:  Shaded  in  red,  a  facet  in  a  Doo-Sabin,  Catmull-Clark,  and  Loop  subdivision  mesh  together  with  the
control points that define the surface across the facet.  The surface patch associated to a facet f  is completely

determined by mf  number of vertices in the one-ring of f . †

A subdivision algorithm is  designed so  that  only  vertices  in  the  vicinity  of  the  facet  influence the  shape of  the
surface  patch  associated  to  the  facet.  In  case  of  the  aforementioned  schemes,  the  collection  of  vertices
pxi, pyi, pzi for i = 1, 2, ..., mf  is from the one-ring around the facet.

...

Figure:  Different topologies around a quad facet f  in a Catmull-Clark mesh are characterized by a single non-

regular vertex of valence tf  œ 3, 4, 5, 6, 7, .... Green indicates the regular case tf . †
We introduce the parameterization f : DÕR2 ØR3  of  the surface patch associated to  a facet  f œM.  When the

facet f  is of quad type, we choose the unit square D = 0, 1ä 0, 1ÕR2 as the domain. When f  is triangular, the

canonic choice is D = s, tœR2 : 0 § s, t and s + t § 1.
The  patch  of  the  subdivision  surface  parameterized  by  f  depends  linearly  on  the  vertex  coordinates

pxi, pyi, pzi œR3  for  i = 1, 2, ..., mf .  That  means,  basis  functions  bi : DØR  characteristic  to  the  subdivision

scheme and the facet topology exist for each control point i = 1, 2, ..., mf . The map is of the form 

fs, t =
cxs, t
cys, t
czs, t

=

i=1
mf bis, t pxi

i=1
mf bis, t pyi

i=1
mf bis, t pzi

 

where cx : DØR, cy : DØR, and cz : DØR denote the coordinate functions.

The  collection  of  all  facets  provides  a  complete  and  1-to-1  coverage  of  the  subdivision  surface  up  to  overlap
along the edges. Therefore, the surface integral is written as a sum over all facets 

Mp,q,r W = W ... „V = ∑W ... „ ∑W =fœM fD ... „ fD =fœM Mp,q,r f .
Next, we investigate the moment contribution by a single facet Mp,q,r f .

Multilinear Form

The integral expression associated to a single facet is

Mp,q,r f  = fD
1

p+1
xp+1 yq zr nx „ fD. 

We substitute as, t := detdfs, tT .dfs, t  where 
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dfs, t =
i=1

mf ∑s bis, t pxi i=1
mf ∑t bis, t pxi

i=1
mf ∑s bis, t pyi i=1

mf ∑t bis, t pyi

i=1
mf ∑s bis, t pzi i=1

mf ∑t bis, t pzi

 

Then, the integral becomes

Mp,q,r f  = 1

p+1 D
cxp+1 cyq czr ∑scy ∑tcz-∑tcy ∑scz

as,t as, t „s „ t

= 1

p+1 D
cxp+1 cyq czr ∑s cy ∑t cz - ∑t cy ∑s cz „s „ t

= 1

p+1 D
i=1

mf  bi pxi
p+1 i=1

mf  bi pyi
q i=1

mf  bi pzi
r j=1

mf  ∑s bj py j k=1
mf  ∑t bk pzk - j=1

mf  ∑t b j py j k=1
mf  ∑s bk pzk„s „ t

= 1

p+1
i1,...,id+1, j,k

mf  D
bi1 ... bid+1

∑s bj ∑t bk - ∑t bj ∑s bk „s „ t pxi1 ... pxip+1
pyip+2

... pyip+q+1
pzip+q+2

... pzid+1
py j pzk

= 1

p+1
i1,...,id+1, j,k

mf  Y i1,...,id+1, j,k
d,tf 

pxi1 ... pxip+1
pyip+2

... pyip+q+1
pzip+q+2

... pzid+1
py j pzk

For readability, the arguments s, tœD are omitted from the coordinate- and basis functions cx, cy, cz, and bi.

Also, we use i1,...,id
mf   as abbreviation for i1=1

mf  ... id=1
mf  .

The final expression shows that Mp,q,r f  is a d + 3-linear form in the i = 1, 2, ..., mf  points pxi, pyi, pziœM
that determine the surface patch parameterized by facet f . The coefficients of the tensor Y

d,tf 
 are universal for

any combination p, q, r  with p + q + r = d up to the leading factor 1

p+1
. The coefficients are given by the integrals

Y i1,...,id+1, j,k
d,tf 

= D
bi1 ... bid+1

∑s bj ∑t bk - ∑t b j ∑s bk „s „ t for i1, ..., id+1, j, k œ 1, 2, ..., mf .
When  all  basis  functions  bi : DØR  characteristic  to  facet  topology  tf   are  polynomials,  then  straightforward

evaluation of the integral expressions gives the tensor 1

p+1
Y

d,tf 
. 

Recursion

Typically, not all basis functions bi  have a closed-form expression. That means evaluating the integrals directly
is not possible for most subdivision schemes and facet topologies tf .
Until this point, we have established that the moment of the set WÕR3 bounded by ∑W =S¶M is 

Mp,q,r M =fœM Mp,q,r f  = 1

p+1
fœM i1,...,id+1, j,k

mf  Y i1,...,id+1, j,k
d,tf 

pxi1 ... pxip+1
pyip+2

... pyip+q+1
pzip+q+2

... pzid+1
py j pzk .

The  basis  functions  bi : DØR  characteristic  to  facet  topology  tf   that  parameterize  the  surface  patch  are

identical at every level of subdivision. That means the same set of tensors Y
d,tf 

 is used in the moment formula
at  every  level  of  subdivision.  Moreover,  we  expect  the  moment  formula  to  be  invariant  under  one  (or  more)
rounds of subdivision

Mp,q,r M =Mp,q,r SM 
since  that  operation  does  not  change  the  limit  surface  S¶M.  Fortunately,  we  can  narrow  down  further  and
demand invariance under the decomposition of a single facet 

Mp,q,r f  =h=1
4 Mp,q,r fh.

To keep the notation reasonable, we assume that one round of subdivision neatly decomposes a facet f  into 4

smaller facets fh  for  h œ 1, 2, 3, 4.  This is  the case for  the Doo-Sabin, Catmull-Clark, and Loop schemes that
are  in  our  particular  interest.  Together,  the  four  smaller  facets  fh  of  the  subdivided  mesh  parameterize  and
partition the identical surface patch of S¶M as the original facet f .
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   

Figure: Catmull-Clark subdivision of a facet f  with a vertex of valence tf  = 3 into three regular facets f1, f2, f3
with tf1 = tf2 = tf3 = 4, and one facet f4 with a valence tf4 = 3 vertex. †

Subdivision of the control points of facet f  to the control points of fh  is a coordinatewise, linear mapping that we

express as the matrix Sh  with dimensions mfhämf   for hœ 1, 2, 3, 4.  The resulting control points of facet  fh
are 

i=1
mf  Sa,i

h pxi, i=1
mf  Sa,i

h pyi, i=1
mf Sa,i

h pzi for a = 1, 2, ..., mfh.
We substitute the unknown integral expressions with the coefficients Yi1,...,id+1, j,k

d,tf   of a general tensor Yd,tf  of rank

d + 3 and expand the previous equation to

Yi1,...,id+1, j,k
d,tf  =h=1

4 a1,...,ad+1,b,c
mfh Ya1,...,ad+1,b,c

d,tfh Sa1,i1
h ... Sad+1,id+1

h Sb, j
h Sc,k

h  

for all i1, ..., id+1, j, k œ 1, 2, ..., mf . We suggest the short-hand 

 Yd,tf  =h=1
4 Yd,tfhSh 

In Mathematica, the tensor transformation Y S may be implemented as 

TransformY_, S_ :

Withn  TensorRankY, NestTranspose.S, RotateLeftRangen, 1 &, Y, n
We  refer  to  the  collection  of  linear  equations  as  Ldtf ; tf1, tf2, tf3, tf4.  Unless  the  coefficients  can  be

obtained via integration, the linear system Ld  is the starting point to solve for the tensor coefficients. A subset of

tensors  that  satisfy  the  relation  Ld  also  compute  the  valid  global  moment  Mp,q,r M  and  are  a  substitute  for

Y
d,tf 

. The process of identifying such valid forms Yd,tf  is via symmetry requirements, and calibration.

Symmetries

The tensor Yd,tf   has ¡ :=mf d+3  coefficients.  The straightforward layout of  Ld  results  in  a humongous matrix
with dimensions ¡ä¡. From the practical point of view, it is imperative to account for any known symmetries in

the tensor coefficients prior to building the linear system. Since the tensor Yd,tf   is a substitute for the integral

solution Y
d,tf 

, we inspect the intrinsic symmetries of Y
d,tf 

. The integral Y i1,...,id+1, j,k
d,tf 

 guarantees that there exists

a non-trivial tensor solution Yd,tf  ∫ 0 with these symmetries. For convenience, we restate from above

Y i1,...,id+1, j,k
d,tf 

= D
bi1 ... bid+1

∑s bj ∑t bk - ∑t b j ∑s bk „s „ t for all i1, ..., id+1, j, k œ 1, 2, ..., mf .

skew j, k  Swapping the last two indices j, and k inverts the sign, therefore we assume

Yi1,...,id+1, j,k
d,tf  = -Yi1,...,id+1,k, j

d,tf   for all i1, ..., id+1, j, k œ 1, 2, ..., mf .

sorti1, ..., id+1  The integral  is  invariant  under  permutation of  the first  d + 1 factors  bi1,  ...,  bid+1
.  That  means,

the indices i1, i2, ..., id+1 can be arranged to be non-decreasing i1 § i2 § ... § id+1. We demand

Yi1,...,id+1, j,k
d,tf  = +Ysorti1,...,id+1, j,k

d,tf   for all i1, ..., id+1, j, k œ 1, 2, ..., mf .

on_moments_of_sets_bounded_by_subdivision_surfaces_20140811.nb    7



The symmetries listed next depend on the symmetries in the subdivision rules, which manifest as symmetries in 
the basis functions. For instance, for facets adjacent to sharp creases there might not be any additional 
symmetry.

rotate r  A regular facet satisfies a rotational symmetry r that leaves the integrals invariant when permuting the 

indices as

Yi1,...,id+1, j,k
d,tf  = +Yri1,...,rid+1,r j,rk

d,tf   for all i1, ..., id+1, j, k œ 1, 2, ..., mf .

mirrors  For regular facets,  but  also facets adjacent to  a non-regular vertex,  there is a mirror symmetry s  in

the configuration of control points that inverts the orientation of the facet

Yi1,...,id+1, j,k
d,tf  = -Ysi1,...,sid+1,s j,sk

d,tf   for all i1, ..., id+1, j, k œ 1, 2, ..., mf .
The map s turns the mesh inside out, therefore the sign is toggled.

copy Yd,reg  A  subset  of  basis  functions  bi  for  i œ I Õ 1, 2, ..., mf   for  a  non-regular  facet  Y
d,tf 

 might  be

identical to the basis functions bi  of  the regular facet.  Then clearly Y i1,...,id+1, j,k
d,tf 

=Y i1,...,id+1, j,k
d,reg

 when all  indices are

from the subset i1, ..., id+1, j, k œ I. Once the multilinear form Yd,reg  for the regular facet is settled on, the coeffi-
cients are inserted directly into the tensor for non-regular facets 

Yi1,...,id+1, j,k
d,tf  :=Yi1,...,id+1, j,k

d,reg
 for all i1, ..., id+1, j, k œ I.

We summarize the symmetries that are typically present in the facet types; exceptions exist.

topology \ symmetry skew j, k sorti1, ..., id+1 rotate r mirrors copy Yd,reg

regular ª ª ª ª -

non-regular ª ª - ª ª
adjacent to crease ª ª - - ª

 

Remark:  [Hakenberg et  al.  2014a]  setup and solve  the  linear  system L0  of  full  size  ¡ä¡  in  their  derivation  of
volume  forms.  The  relation  skew j, k  is  enforced  only  afterwards  by  skewing  the  elements  in  the  solution
space. Sorting is obsolete since d = 0. †

Lemma 1 [Hakenberg et al. 2014a]: If the subdivision matrix S4 has a single eigenvalue 1 and all other eigenval-

ues with absolute value < 1, then the system Ldtf ; n, n, n, tf  and the form Yd,n  determine the tensor Yd,tf 
uniquely for all 0 § d. †

To paraphrase: tensors Yd,tf   corresponding to non-regular facets follow uniquely from the regular case for all
common surface subdivision schemes.

Calibration

1 2 3

4 5 6 7

8 9 10

11 12

   

Figure: Decomposition of a regular facet f  with tf  = 6 in a Loop mesh. The tensor Yd,6 is in the solution space

of Ld6; 6, 6, 6, 6. The subdivision weights as well as the coefficients of Yd,6  are invariant under rotation r with
r1 = 7, r2 = 10, r3 = 12, r4 = 3, r5 = 6, r6 = 9, ... r12 = 4. †

8     on_moments_of_sets_bounded_by_subdivision_surfaces_20140811.nb



For  a  regular  facet  f ,  the  decomposition  is  tf  = tfh  for  all  hœ 1, 2, 3, 4.  All  five  forms  that  appear  in  the

relation  Ldtf ; tf , tf , tf , tf   are  identical  and  initially  unknown.  The  linear  system  Ld  is  homogeneous.

That means, the tensor Yd,tf  has to be identified in the nullspace of a matrix. Since Yd,tf  = 0 is also a solution

to Ld, it is clear that the solution space of Ld  has to be restricted to a subspace of those forms that result in the
correct global moment value. We refer to this procedure as calibration.

The global moment is  the sum Mp,q,r M =fœM Mp,q,r f .  The strategy for  calibration is to construct  a mesh M
with 1) Mp,q,r f  ∫ 0 only for regular facets f œM, and 2) the limit surface S¶M bounds a set of known moment.

Then, the additional linear equation confines Yd,tf  to an affine subspace of the nullspace of Ld.

Figure: The unit cube, and tetrahedron can be reproduced by subdivision and have known moments. †

The  two  sets  that  we  employ  to  calibrate  the  tensors  corresponding  to  the  regular  facets  for  the  Doo-Sabin,
Catmull-Clark, and Loop schemes are the unit cube and the tetrahedron.

For the unit cube WC := 0, 13 ÕR3 the moment for p, q, r œ 0, 1, 2, ... is 

Mp,q,r WC = 0,10,10,1x
p yq zr „x „y „z = 1

1+p

1

1+q

1

1+r
. 

The tetrahedron spanned by the unit vectors is WT := x, y, zœR3 : 0 § x, y, z and x + y + z § 1 
Mp,q,r WT  = 0

10
max0,1-z0

max0,1-y-zxp yq zr „x „y „z =
p! q! r!

3+p+q+r! . 

In  all  examples  that  we  encountered,  calibration  does  not  determine  the  tensor  Yd,tf   uniquely.  Instead,  the

affine  subspace is  1-dimensional,  from which  a  form Yd,tf   can  be  selected  arbitrarily.  The  choice  affects  the
value of the contribution of a single facet Mp,q,r f  but is canceled in the global sum Mp,q,r M =fœM Mp,q,r f .

Summary

We state the moment contribution by a single facet for low degrees d § 2.

d = 0: The trilinear form Y0,tf  has dimensions mf ämf ämf  and gives 

M0,0,0f  = 1

1
i1, j,k

mf  Yi1, j,k
0,tf  pxi1 py j pzk 

Figure: Facets colored relative to the moment contribution Mp,q,r f , and M
è

p,q,r f  for degree p + q + r = 1. †

d = 1: The single 4-linear form Y1,tf  has dimensions mf ämf ämf ämf  and gives 

M1,0,0f  = 1

2
i1,i2, j,k

mf  Yi1,i2, j,k
1,tf  pxi1 pxi2 py j pzk  

M0,1,0f  = 1

1
i1,i2, j,k

mf  Yi1,i2, j,k
1,tf  pxi1 pyi2 py j pzk  M

è
0,1,0f  = 1

2
i1,i2, j,k

mf  Yi1,i2, j,k
1,tf  pyi1 pyi2 pz j pxk 

M0,0,1f  = 1

1
i1,i2, j,k

mf  Yi1,i2, j,k
1,tf  pxi1 pzi2 py j pzk  M

è
0,0,1f  = 1

2
i1,i2, j,k

mf  Yi1,i2, j,k
1,tf  pzi1 pzi2 px j pyk 
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Figure: Facets colored relative to the moment contribution Mp,q,r f , and M
è

p,q,r f  for degree p + q + r = 2. †

d = 2: The single 5-linear form Y2,tf  has mf 5 coefficients and gives all 6 moments of degree 2

M2,0,0f  = 1

3
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pxi1 pxi2 pxi3 py j pzk  

M0,2,0f  = 1

1
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pxi1 pyi2 pyi3 py j pzk M

è
0,2,0f  = 1

3
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pyi1 pyi2 pyi3 pz j pxk 

M0,0,2f  = 1

1
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pxi1 pzi2 pzi3 py j pzk  M

è
0,0,2f  = 1

3
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pzi1 pzi2 pzi3 px j pyk 

M1,1,0f  = 1

2
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pxi1 pxi2 pyi3 py j pzk  M

è
1,1,0f  = 1

2
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pxi1 pxi2 pyi3 py j pzk 

M0,1,1f  = 1

1
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pxi1 pyi2 pzi3 py j pzk  M

è
0,1,1f  = 1

2
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pyi1 pyi2 pzi3 pz j pxk 

M1,0,1f  = 1

2
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pxi1 pxi2 pzi3 py j pzk  M

è
1,0,1f  = 1

2
i1,i2,i3, j,k

mf  Yi1,i2,i3, j,k
2,tf  pzi1 pzi2 pxi3 px j pyk 

The global moment is a sum over all facets f œM
Mp,q,r M =fœM Mp,q,r f  =fœM M

è
p,q,r f .

The terms Mp,q,r f  correspond to our initial choice of Gp,q,r x, y, z =  1

p+1
xp+1 yq zr , 0, 0. The terms M

è
p,q,r f  are

derived from the vector fields Gp,q,r
a x, y, z = 0, 1

q+1
yq+1 zr xp, 0, as well as Gp,q,r

b x, y, z = 0, 0, 1

r+1
zr+1 xp yq.

Any  affine  linear  combination 1 - a - b Gp,q,r + aGp,q,r
a + bGp,q,r

b
 for  a, b œR  and p, q, r œ 0, 1, 2, ...  also  has

divergence of xp yq zr  and leads to a tensor that computes the moment.

Applications
For  demonstration,  we  apply  the  formalism  to  several  well-known  subdivision  algorithms:  For  the  Doo-Sabin
scheme, we determine the centroid, and inertia.  For Loop, and Loop with sharp creases we only establish the
tensors for the centroid. The formulas are available only for meshes with vertices of low valence. For the Cat-
mull-Clark scheme we present an overview only.

We tabulate the size of the adapted linear system Ld  that accounts for the symmetries and the already-known
coefficients. Whenever the subdivision weights are all rational, we determine the tensor coefficients in symbolic,
exact form. We find that the number of unique coefficient values up to sign is only slightly lower than assumed
by our symmetry considerations. Several example coefficients are stated for reference.

Doo-Sabin

A  surface  generated  by  the  Doo-Sabin  subdivision  scheme is  partitioned  by  a  parameterization  through  quad
facets. A facet f  is associated to a vertex v  of the two-times subdivided initial mesh. At that level, every vertex is

adjacent  to  4  faces,  of  which  at  least  3  are  quads.  To  classify  the  topology  type  of  f ,  we  choose  tf   as  the
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number  of  vertices  in  the  non-regular  face  adjacent  to  vertex  v,  or  tf  = 4  in  the  regular  case.  The  surface

parameterized by facet f  is determined by mf  = 5 + tf  vertices.

...

Figure:  Facets  of  a  Doo-Sabin  mesh  with  tf œ 3, 4, ..., 7,  and  mf œ 8, 9, ..., 12,  and  indexing  of  the
control points. The basis functions bi for i œ I = 1, 2, 3, 4, 7 are common to all facet types tf . †
d = 0:  The  trilinear  forms  Y0,tf   that  determine  the  volume  enclosed  by  a  Doo-Sabin  surface  have  already
been established in [Hakenberg et al. 2014a] for topology types tf  œ 3, 4, ..., 12.
d £ 1: In the following, we find the tensors Y1,tf   for tf  œ 3, 4, ..., 9, and Y2,tf   for tf œ 3, 4. Besides the

symmetries  in  the  tensor  coefficients,  we  insert  the  already-known  coefficients  from  Yd,4  for  all  non-regular
topologies tf  ∫ 4. Together, this reduces the number of variables significantly. The tables give an overview on

the size of the matrices adapted from Ld 

d = 1 tf  mf  rows variables solution

4 9 5440 200 symbolic

3 8 3064 432 symbolic

5 10 9298 1170 numeric

6 11 12708 1742 symbolic

7 12 19990 2512 numeric

8 13 27788 3482 numeric

9 14 37618 4722 numeric

10 15 - 6240 -

11 16 - 8112 -

 

d = 2 tf  mf  rows variables solution

4 9 50448 740 symbolic

3 8 28584 1690 symbolic

5 10 - 4790 -

6 11 - 7698 -

7 12 - 11862 -

8 13 - 17592 -

 

We now discuss the derivation step by step.

Regular facet

Figure:  Regular  facet  with  mf  = 9  control  points.  The  basis  functions  b1, b2, ..., b5 : DØR  are  shown.  The
rotation r maps r1 = 3, r2 = 6, r3 = 9, ..., r9 = 7. Mirror s is s1 = 1, s2 = 4, s3 = 7, ..., s9 = 9. †

The  surface  associated  to  a  regular  facet  tf  = 4  is  parameterized  by  the  basis  functions  bi : DØR  for
i = 1, 2, ..., 9 that are the following polynomials in s, t œD = 0, 1ä 0, 1:

b1 =
1

4
s - 12 t - 12, b2 =

1

2
 1

2
+ s - s2 t - 12, b3 =

1

4
s2 t - 12, b4 =

1

2
s - 12  1

2
+ t - t2,

b5 =  1

2
+ s - s2  1

2
+ t - t2, b6 =

1

2
s2  1

2
+ t - t2, b7 =

1

4
s - 12 t2, b8 =

1

2
 1

2
+ s - s2 t2, and b9 =

1

4
s2 t2.

Option 1  A  solution  to  the  tensor  Yd,4  is  given  by  Y i1,...,id+1, j,k
d,4

= D
bi1 ... bid+1

∑s bj ∑t bk - ∑t b j ∑s bk „s „ t  for  all

i1, ..., id+1, j, k œ 1, 2, ..., 9.  The  integrals  over  the  products  of  the  bivariate  polynomials  can  be  evaluated
using the list of basis functions stated above.
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Example: When choosing Yd,4 =Y
d,4

, then

Y1,5,3,6
1,4 = 79

752640
, Y2,7,2,8

1,4 = 17

1254400
, Y4,9,1,7

1,4 = - 29

9031680
, d = 1

Y1,4,9,3,7
2,4 = 13

1625702400
, Y2,5,8,7,9

2,4 = - 293

19353600
, Y3,6,7,2,5

2,4 = - 47

101606400
 d = 2. †

For  better  comparability,  we  work  with  Yd,4 =Y
d,4

 when  solving  the  multilinear  forms  corresponding  to  non-
regular facets tf  ∫ 4 in the next section.

Option 2  We setup and solve the homogeneous linear system Ld4; 4, 4, 4, 4  for  d = 1,  and d = 2.  Since the

subdivision weights in Sh  for hœ 1, 2, 3, 4 are rational, the nullspace of the resulting matrix is easily computed
in  symbolical,  exact  form.  In  both  cases  d œ 1, 2,  we  find  the  nullspace  to  be  2-dimensional.  One  degree  of
freedom is  eliminated through calibration.  The second does not  affect  the global  moment,  and can be chosen

arbitrarily. We now present one of the many possible ways to trim the solution space to identify all tensors Yd,4

that result in the correct global moment.

For calibration, we construct a closed quad mesh MC  with limit surface S¶MC = ∑ WC as the boundary of the

unit cube WC = 0, 13. We begin with a cube with all edges of length 1. Initially, the cube mesh has 8 vertices,
each  with  valence  3.  We  linearly  subdivide  the  quads  of  the  mesh  2  times.  Then,  each  vertex  of  the  refined
mesh is moved to the position of the cube vertex that is closest.


S


S

Figure: Construction of the degenerate cube mesh MC: Linear subdivision followed by vertex collapse. One can
show, that  the piecewise linear surface defined by the degenerate mesh is invariant under Doo-Sabin subdivi-
sion. †

The degenerate cube mesh MC  has the following properties: 1) each of the 8 non-regular vertices are topologi-
cally surrounded by regular vertices, 2) the one-ring of each facet associated to a non-regular vertex is degener-

ated to a single vertex, thus the moment contribution of such a facet is 0 regardless of the tensor Yi1,...,id+1, j,k
d,3  that

is  skew  in  j  and  k,  and  3)  the  set  bounded  by  the  subdivision  surface  is  the  unit  cube  with  known  moment

Mp,q,r WC = 1

1+p

1

1+q

1

1+r
 for p, q, r œ 0, 1, 2, ....

The  moment  formula  is  linear  in  the  coefficients  of  Yd,4.  By  demanding  for  instance  M1,0,0MC = 1 2,  and

M2,0,0WC = 1 3 respectively, the 2-dimensional nullspace is restricted to a 1-dimensional affine subspace. The

other moments M0,1,0MC etc. are correct by permutation of coordinates, see previous section “Summary”.

Non-regular facets

The  subdivision  matrix  S4  satisfies  the  conditions  of  Lemma  1.  The  linear  system  Ldtf ; 4, 4, 4, tf   deter-

mines  the  tensor  Yd,tf   uniquely.  We  compute  the  tensors  Yi1,...,id+1, j,k
d,tf   for  valences  tf œ 3, 5, 6, 7, ....  The

mirror  symmetry  s  maps  the  index  to  the  counterpart  opposite  of  the  diagonal.  Moreover,  for  an  index

i1, ..., id+1, j, k with all i1, ..., id+1, j, k œ 1, 2, 3, 4, 7,  we have Yi1,...,id+1, j,k
d,tf  =Yi1,...,id+1, j,k

d,4  for all d,  and tf .  Since

for tf œ 5, 7, 8, ... the Doo-Sabin subdivision weights are not all rational, we revert to numerical precision for

Yd,tf .
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   

Example:  For valence tf  = 5, the facet  decomposition is determined by mf  =mf4 = 10 initial control  points.

The matrix Sh maps the control points of facet f  to the control points of fh for h œ 1, 2, 3, 4 during one round of

subdivision. The matrices are 

Sh = 1

16


9 3 0 3 1 0 0 0 0 0

3 9 0 1 3 0 0 0 0 0

0 9 3 0 3 1 0 0 0 0

3 1 0 9 3 0 0 0 0 0

1 3 0 3 9 0 0 0 0 0

0 3 1 0 9 3 0 0 0 0

0 0 0 9 3 0 3 1 0 0

0 0 0 3 9 0 1 3 0 0

0 0 0 0 8 l 0 l m m

,

3 9 0 1 3 0 0 0 0 0

0 9 3 0 3 1 0 0 0 0

0 3 9 0 1 3 0 0 0 0

1 3 0 3 9 0 0 0 0 0

0 3 1 0 9 3 0 0 0 0

0 1 3 0 3 9 0 0 0 0

0 0 0 3 9 0 1 3 0 0

0 0 0 0 8 l 0 l m m

0 0 0 0 l 8 0 m m l

,

3 1 0 9 3 0 0 0 0 0

1 3 0 3 9 0 0 0 0 0

0 3 1 0 9 3 0 0 0 0

0 0 0 9 3 0 3 1 0 0

0 0 0 3 9 0 1 3 0 0

0 0 0 0 8 l 0 l m m

0 0 0 3 1 0 9 3 0 0

0 0 0 1 3 0 3 9 0 0

0 0 0 0 l m 0 8 l m

,

1 3 0 3 9 0 0 0 0 0

0 3 1 0 9 3 0 0 0 0

0 1 3 0 3 9 0 0 0 0

0 0 0 3 9 0 1 3 0 0

0 0 0 0 8 l 0 l m m

0 0 0 0 l 8 0 m m l

0 0 0 1 3 0 3 9 0 0

0 0 0 0 l m 0 8 l m

0 0 0 0 m m 0 l 8 l

0 0 0 0 m l 0 m l 8

 

with  l = 2 1 + 5-12,  and  m = 2 1 - 5-12.  The  indices  are  mirrored  across  the  diagonal  as  s1 = 1,  s2 = 4,

s3 = 7, ..., s5 = 5, s6 = 8, ..., s10 = 9. †

Using  the  integral  solution  Yd,4 = Y
d,4

 for  the  regular  facets  tfh = 4  for  h œ 1, 2, 3  the  linear  system  Ld

becomes

 Yd,tf S4 -Yd,tf  = -h=1
3 Y

d,4Sh 
For  all  topology  types  tf   the  corresponding  subdivision  matrix  S4  has  a  single  eigenvalue  1  and  all  other

eigenvalues with absolute value < 1. That means, Yd,tf  follows uniquely from the choice of Yd,4.

Example: Coefficients are

Y1,7,2,8
1,3 = 43975751

5169499695360
, Y2,4,1,3

1,3 = 493

4515840
, Y3,5,4,6

1,3 = - 5765852179941739

43750923381746380800
, d = 1, tf  = 3 

Y1,4,1,11
1,6 = 69381972847

44294436468172800
, Y3,3,2,10

1,6 = - 19460825974588709

4686140979759458419200
, d = 1, tf  = 6 

Y1,2,4,1,8
2,3 = - 305

16257024
, Y3,5,7,3,7

2,3 = - 5319299741238104349557

1869384571597797042812870246400
, d = 2, tf  = 3. †

Discussion of Catmull-Clark

The  mesh  refinement  by  Catmull-Clark  is  a  thoroughly  analyzed,  and  frequently  implemented  subdivision
scheme.  [Autodesk  2013]  makes  a  compelling  case  for  why  the  algorithm  is  the  preferred  choice  for  surface
design in animation movies, and computer games.



Figure: Catmull-Clark mesh with a vertex of valence 16. The mesh is subdivided once, so that each quad facet
has at  most  one non-regular vertex.  For  illustration,  the volume formula is  applied at  various refinement level.
Facets are colored relative to their contribution to the global volume. †

d = 0:  The  trilinear  forms  Y0,tf   that  determine  the  volume  enclosed  by  a  Catmull-Clark  surface  have  been
established in [Hakenberg et al. 2014a] for topology types tf  œ 3, 4, ..., 8. If the solution space is restricted to
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the  unique  alternating  trilinear  form,  tensors  Y0,tf   for  valences  up  to  tf  = 16  and  higher  can  be  resolved  in
symbolic form.

The variant of the scheme by [DeRose et al. 1998] includes sharp cubic B-spline creases along selected edges.
Trilinear  forms  for  facets  adjacent  to  the  crease  are  derived  in  [Hakenberg  et  al.  2014b].  Numerous  topology
types have to be treated. The strategy is identical to the one for Loop with sharp creases that we discuss in a
later section.

1 2 3 4

5 6 7 8

9 10 11 12

13
14

15 16

   

Figure: Decomposition of a facet in a Catmull-Clark mesh adjacent to a sharp crease. †

d £ 1: At this point in time, we do not solve for any tensors Y1,tf  of rank 4, let alone higher ranks. For regular

facets tf  = 4, the basis functions bi  are polynomials, that means Yd,4 =Y
d,4

 can be determined by integration.

The table lists the maximum number of required variables in the linear system L1 for small tf .
d = 1 tf  mf  rows variables solution

4 16 - 2048 -

3 14 - 4470 -

5 18 - 12790 -

 

The tensors Y1,3 and Y1,4 appear to be in reach.

Loop

A  subdivision  surface  generated  by  the  Loop  algorithm  is  parameterized  by  a  partition  of  triangular  facets.  A
facet f  corresponds to a triangle of the one-time subdivided initial mesh. As index tf  we choose the valence of

the non-regular vertex of f , or tf  = 6 when f  is regular. The vertices in the one-ring around f  completely define

the subdivision surface associated to f . Their cardinality is mf  = 6 + tf .

1
2

3

4

5 6

78

9

1
2

3

4

5 6

7

8

9

10

1 2 3

4
5 6

7

8
9

10

11

1 2 3

4 5 6 7

8 9 10

11 12

1 2 3

4 5 6 7

8
9

10

11
12

13

...

Figure:  Indexing of vertices in the one-ring of a triangular facet f  for  tf œ 3, 4, 5, 6, 7.  Mirror symmetry s  is

along  the  vertical  line  through  vertex  with  index  9  for  all  topology  types  tf .  The  basis  functions  bi  for
i œ I = 1, 2, 3, 4, 7 are common for all facet types tf . Everything is awesome. †

d = 0: The trilinear forms Y0,tf   that determine the volume enclosed by a Loop surface have been established
in [Hakenberg et al. 2014a] for topology types tf  œ 3, 4, ..., 12.
d £ 1: In the following, we find tensors Y1,tf  of rank 4 that compute the centroid of the set bounded by a Loop

surface for  valences tf œ 3, 4, ..., 8.  We do not  solve for  the  5-forms Y2,tf ,  however.  Besides the  symme-

tries in the tensor coefficients, we insert the already-known coefficients from Yd,6  for all  non-regular topologies
tf  ∫ 6. Together, this reduces the number of variables significantly.
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

Example: The linear-subdivided pyramid with all sides length 1 generates a Loop surfaces with enclosed 

volumeW = 5823179952258696430342912039676956990094407

27226325104284527103923010320230023343200000 2
, and centroid that is located

1018752771829193661146492650817175657325296745255084294583488124749298331139294058486 *
4139639762513024968704729699833262554098072438132916993808863211995895907211516270527 *

1

2
 

above the base of the pyramid. The [*] represent 50 more digits. In the illustrations, the facets are colored based
on M0,0,0f ; M1,0,0f , M0,1,0f , and M0,0,1f  respectively. †

The dimensions of the adapted linear systems Ld are tabulated as

d = 1 tf  mf  rows variables solution

6 12 18924 874 symbolic

3 9 5742 810 symbolic

4 10 8476 1170 symbolic

5 11 13824 1742 numeric

7 13 27648 3482 numeric

8 14 37449 4722 numeric

9 15 - 6240 -

10 16 - 8112 -

 

d = 2 tf  mf  rows variables solution

6 12 - 4032 -

3 9 - 2792 -

4 10 - 4790 -

5 11 - 7698 -

7 13 - 17592 -

 

We now discuss the derivation step by step.

Regular facet

In the regular case tf  = 6, the surface associated to f  is determined by mf  = 12 control points. The subdivi-

sion weights are invariant under rotation by r with r1 = 7, r2 = 10, r3 = 12, r4 = 3, ...,  r12 = 4, and also
invariant  under  mirror  operation by  s  with  s1 = 3,  s2 = 2,  s3 = 1,  s4 = 7,  ...,  s12 = 11.  Since the  basis
functions  bi  for  i = 1, 2, ..., 12  do  not  have  a  closed-form  expression,  integration  of  the  coefficients  is  not  an

option.  Instead,  we  setup  the  homogeneous  system  L16; 6, 6, 6, 6  to  identify  the  coefficients  Y1,6  in  the
nullspace of a matrix.  Since the subdivision weights are rational, the nullspace can be obtained in exact,  sym-
bolic form. For d = 1, the nullspace turns out to be 2-dimensional.

For calibration we construct a closed triangular mesh MT  with limit surface S¶MT  = ∑ WT  as the boundary of
the  axis-aligned tetrahedron WT :  We  begin  with  a  tetrahedron  mesh  spanned by  the  unit  vectors.  Initially,  the
tetrahedron mesh has 4 vertices, each with valence 3. We linearly subdivide the triangles of the mesh 3 times.
Then, each vertex of the refined mesh is moved to the position of the original corner that is topologically closest.


S


S

Figure:  Construction of  the degenerate tetrahedron mesh MT :  Linear subdivision followed by vertex collapse.
One can show, that the piecewise linear surface defined by the degenerate mesh is invariant under Loop subdivi-
sion. †

The  degenerate  mesh  MT  has  the  following  properties:  1)  each  of  the  4  non-regular  vertices  is  topologically
surrounded by regular vertices, 2) the one-ring of each facet adjacent to a non-regular vertex is degenerated to
a  single coordinate,  thus  the  moment  contribution of  such a  facet  is  0  regardless of  the  choice of  coefficients
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Yi1,...,id+1, j,k
d,3  that  are  skew  in  j  and  k,  and  3)  the  set  bounded  by  the  subdivision  surface  is  a  tetrahedron  with

known moment Mp,q,r WT  = p! q! r!

3+p+q+r!  for p, q, r œ 0, 1, 2, ....
The moment formula Mp,q,r M is linear in the coefficients of Yd,6. By demanding for instance M1,0,0MT  = 1 24,

the  2-dimensional  nullspace  is  truncated  to  a  1-dimensional  affine  subspace.  The  other  moments  M0,1,0MT 
and M0,0,1MT  are correct by permutation of coordinates, see previous section “Summary”.

To  settle  for  a  unique  choice  within  the  affine  subspace  for  the  upcoming  computations,  we  introduce  the

(arbitrary) additional symmetry Yi1,i2, j,k
1,6 = 0 for any combination of i1, i2, j, k œ 5, 6.

Example: Carrying out these steps results in a tensor Y1,6 with the coefficients 

Y1,5,3,12
1,6 = 2329

43589145600
, Y2,3,7,8

1,6 = 21167

43589145600
, Y2,10,6,11

1,6 = 7471

29059430400
, Y4,4,2,9

1,6 = 893

72648576
. †

Non-regular facets

The  subdivision  matrix  S4  satisfies  the  conditions  of  Lemma  1.  The  linear  system  Ldtf ; 6, 6, 6, tf   deter-

mines  the  tensor  Yd,tf   uniquely.  We  compute  the  4-linear  forms  Yi1,i2, j,k
1,tf   for  non-regular  valences

tf  œ 3, 4, 5, 7, 8. The size of the problem is reduced by accounting for the mirror symmetry in the subdivision
weights.

   

Figure: Decomposition of a non-regular facet that leads to the recursive equation is visualized for tf  = 4. The
mirror map is s1 = 3, s2 = 2, s3 = 1, s4 = 7, s5 = 6, ..., s9 = 9, s10 = 8. †

The basis  functions bi : DØR  for  i œ I = 1, 2, 3, 4, 7  are  identical  for  all  topology types tf œ 3, 4, ...,  so  we

write Yi1,...,id+1, j,k
d,tf  =Yi1,...,id+1, j,k

d,6  for a multi-index i1, ..., id+1, j, k where all i1, ..., id+1, j, k œ I, and d œ 0, 1, 2, ....
Example: Our specific pick for Y1,6 leads to 

Y1,4,3,9
1,3 = 16319784391763

46801346231255616000
, Y2,5,8,9

1,3 = - 14654412895775123621909242697

134069924744279506664235537984000
, tf  = 3 

Y1,3,8,10
1,4 = - 47621881394017872290654012933893

413949212345780492196357895665312000000
, Y3,3,5,7

1,4 = - 1432324735867

334226468402386560
 tf  = 4. †

Loop with sharp creases

[Hoppe et al. 1994] extend the Loop scheme to allow for sharp creases. The refinement rules along crease edge
cycles in a mesh are identical to cubic B-spline subdivision for curves.

18 34 18 12 12
Figure: Affine linear combinations for vertex repositioning, and mid-edge vertex insertion. †

For a triangular facet f  that is adjacent to a crease, we encode the topology type tf  using a tuple n.m. The first

number  n  is  the  valence  of  the  non-regular  vertex  (that  also  belongs  to  the  crease).  The  second  number  m

enumerates different configurations of the crease. Each topology type that we discuss is illustrated graphically.

Because  the  subdivision  weights  are  simple  integer  fractions,  we  establish  the  d + 3-linear  forms  Yd,tf   in
symbolical notation.

16     on_moments_of_sets_bounded_by_subdivision_surfaces_20140811.nb





Example:  We apply one round of linear subdivision to the axis-aligned octahedron with all  sides length 1 cen-
tered at 0. A cycle consisting of 4 edges is designated as sharp crease as shown. Subsequent Loop subdivision

results  in  a  surface  with  enclosed  volumeW = 274962183466592197331396286238960674452153

516628559853596339732884446304175016000000 2
,  and  centroid  with

offset  1176961551521973353632159944554550387148035958378217594790807739804037542166 *
53314823024198405545146879225619942404822902836467289643807372272615753455604 *  from  0  in  the  direction

toward the crease. The [*] represent 40 more digits. The facets are colored relative to M0,0,0f . †
d = 0:  The  trilinear  forms  Y0,tf   that  determine  the  volume  enclosed  by  a  Loop  surface  with  sharp  creases
have been derived in [Hakenberg et al. 2014b] for facets with vertex valence up to n = 6.

1 2 3

4 5 6 7

8 9 10

   

Figure:  One  round  of  subdivision  of  a  facet  f  of  topology  type  tf  = 3.1  results  in  four  smaller  facets  fh  with

tf1 = tf2 = tf3 = 6, and tf4 = 3.1. The surface associated to f  is determined by mf  = 10 control points. †

d £ 1:  In  the  following,  we  find  tensors  Y1,tf   of  rank  4  for  facets  adjacent  to  a  sharp  creases  with  vertex
valence up to n = 4.

One round of  subdivision of  a  facet  f  adjacent  to  a  crease results  in  one or  more  regular  facets,  for  instance

tf1 = 6. That means the tensor Yd,6  is required in the linear system Ld  for the derivation of the unknown form.
The topology tf  = 1.2 is an exception. Furthermore, we begin the derivation with tf  = 3.1, and tf  = 3.2, since
these types are a by-product of subdividing facets of many other topology types adjacent to a crease, for which

Yd,3.1, and Yd,3.2 need to be available. The size of the matrices adapted from L1 are 

d = 1 tf  mf  rows variables solution

3.1 10 9792 1248 symbolic

3.2 9 6553 820 symbolic

1.1 8 * 510 symbolic

1.2 6 1064 160 symbolic

1.3 6 * 103 symbolic

2.1 8 3584 1008 symbolic

4.1 11 13310 3630 symbolic

4.2 10 9000 2475 symbolic

 

d = 2 tf  mf  rows variables solution

3.1 10 - 4968 -

3.2 9 - 2980 -

1.1 8 * 1690 -

1.2 6 - 424 -

1.3 6 * 273 -

2.1 8 - 3360 -

4.1 11 - 15730 -

4.2 10 - 9900 -

 

The  asterisk  *  indicates that  the  tensor  is  computed explicitly,  and does not  require solving  a  linear  system.
The number of variables can further be reduced by identifying basis functions shared with tf  œ 6, 3.1, 3.2.
We now discuss the derivation step by step.

Topology type 3.1

The facet decomposition for tf  = 3.1 is depicted above. The linear system L13.1; 6, 6, 6, 3.1 determines Y1,3.1

uniquely.
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Example: Y1,2,6,8
1,3.1 = 6971711

261534873600
, Y1,3,7,10

1,3.1 = 1223

26153487360
, Y2,4,5,9

1,3.1 = 120677

20118067200
. †

Topology type 3.2 (semi-regular)

1 2 3

4 5 6

7 8

9

   

Figure:  Subdivision of  a facet  f  with tf  = 3.2 results in tf1 = 6, tf2 = 3.1,  and tf3 = tf4 = 3.2. The surface

patch parameterized by f  is determined by mf  = 9 control points. The subdivision weights are symmetric with

respect to the mirror operation s1 = 4, s2 = 7, s3 = 9, ..., s8 = 6, s9 = 3. †

Solutions  to  the  linear  system  L13.2; 6, 3.1, 3.2, 3.2  are  from  a  1-dimensional  affine  vector  space.  We  intro-

duce  the  (arbitrary)  additional  symmetry  Yi1,i2 j,k
1,3.2 = 0  for  any  combination  of  i1, i2, j, k œ 6, 8  that  results  in  a

unique tensor Y1,3.2 to work with subsequently.

Example: Y1,2,4,7
1,3.2 = - 67

19768320
, Y1,5,6,8

1,3.2 = 836887

3113510400
, Y3,7,3,9

1,3.2 = 25

249080832
. †

Topology type 1.1 (explicit)

1 2

3 4 5

6 7 8

   

Figure: Decomposition of a facet f  with tf  = 1.1 results in tf1 = tf2 = 6, and tf3 = tf4 = 3.1; mf  = 8. †

The equations L11.1; 6, 6, 3.1, 3.1 are an explicit formulation for the tensor Y1,1.1.

Example: Y1,6,3,8
1,1.1 = - 19

207567360
, Y2,3,5,7

1,1.1 = 24443

566092800
, Y3,4,2,6

1,1.1 = 9527

296524800
. †

Topology type 1.2

1 2 3

4 5

6

   

Figure: Subdivision of a facet f  with tf  = 1.2; mf  = 6. †

We  state  the  subdivision  matrices  Sh  that  map  the  control  points  of  facet  f  coordinatewise  to  those  of  fh  for

h œ 1, 2, 3, 4. S1 and S2 have dimension 9ä6, S3 is a 8ä6 matrix, and S4 is square 6ä6.

         S1 = 1

8

0 0 1 0 6 1

0 0 0 0 4 4

0 0 0 1 1 6

0 3 1 1 3 0

0 1 0 3 3 1

0 0 0 4 0 4

1 3 0 3 1 0

1 0 0 6 0 1

4 0 0 4 0 0

, S2 = 1

8

1 3 0 3 1 0

0 3 1 1 3 0

0 0 4 0 4 0

1 0 0 6 0 1

0 1 0 3 3 1

0 0 1 0 6 1

0 0 0 4 0 4

0 0 0 0 4 4

0 0 0 1 1 6

, S3 = 1

8

0 3 1 1 3 0

0 0 1 0 6 1

1 3 0 3 1 0

0 1 0 3 3 1

0 0 0 0 4 4

1 0 0 6 0 1

0 0 0 4 0 4

0 0 0 1 1 6

, S4 = 1

8

1 0 0 6 0 1

0 1 0 3 3 1

0 0 1 0 6 1

0 0 0 4 0 4

0 0 0 0 4 4

0 0 0 1 1 6

.
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The linear system L11.2; 3.2, 3.2, 1.1, 1.2 determines Y1,1.2 uniquely.

Example: Y1,2,3,4
1,1.2 = 911

159667200
, Y2,6,1,5

1,1.2 = 61

2419200
, Y3,4,5,6

1,1.2 = 2033

6842880
. †

Topology type 1.3 (explicit)

1

2 3

4 5 6

   

Figure: Decomposition of a facet f  with tf  = 1.3 results in tf1 = 6, and tf2 = tf3 = tf4 = 3.1; mf  = 6. †

The topology type tf  = 1.3 exists in a mesh at most until depth 1 of the subdivision iteration. In other words, the
derivation is not required if the mesh is subdivided twice before applying the moment formula.

The equations L11.3; 6, 3.1, 3.1, 3.1 are an explicit formulation for the tensor Y1,1.3.

Example: Y1,2,3,4
1,1.3 = 58273

79833600
, Y2,5,1,5

1,1.3 = 5683

9580032
, Y3,4,5,6

1,1.3 = - 45139

239500800
. †

Topology type 2.1

1 2 3

4 5 6

7 8

   

Figure: Decomposition of a facet f  with tf  = 2.1; mf  = 8. †

The linear system L12.1; 6, 3.1, 3.2, 2.1 determines Y1,2.1 uniquely.

Example: Y1,2,1,4
1,2.1 = - 1

1464320
, Y2,3,1,8

1,2.1 = - 6274501260593

1403333457520490496
, Y2,6,2,7

1,2.1 = - 269051

5448643200
. †

Topology type 4.1

1 2 3

4 5 6 7

8 9 10

11

   

Figure: Decomposition of a facet f  with tf  = 4.1; mf  = 11. †

The linear system L14.1; 6, 6, 6, 4.1 determines Y1,4.1 uniquely.

Example: Y1,4,4,8
1,4.1 = - 6159226332891074094848332937

9018730198101307245587395384734720
, Y2,3,1,11

1,4.1 = - 17094833382460548061760608463

919027853701755636293817038494272000
. †

on_moments_of_sets_bounded_by_subdivision_surfaces_20140811.nb    19



Topology type 4.2

1 2 3

4 5 6

7 8

9 10

   

Figure: Decomposition of a facet f  with tf  = 4.2; mf  = 10. †

The linear system L14.2; 6, 3.1, 3.2, 4.2 determines Y1,4.2 uniquely.

Example: Y1,4,2,7
1,4.2 = 4237633495296704275693

941243844690956727245445120
, Y2,3,1,10

1,4.2 = - 1215913897309328456567231881

42087407591139433812741178462095360
. †

Final Remarks
Each tensor Yd,tf   listed as solved in the article took at most 30 minutes to establish on a computer with 8 GB
ram.  The number  of  equations are  not  the  bottleneck,  but  the  number  of  variables is.  Therefore,  we have not
made  efforts  to  remove  linear  dependent  rows  and  trim  the  matrix  to  square  size  prior  to  solving  the  linear

system Ld.

The number of unique coefficients up to sign is still slightly lower than the assumed number of variables. Extra
effort could be taken to identify non-trivial symmetries to further reduce the size of the linear system.

For simplicity, we have restricted the derivation to 4-split schemes. Schemes that use 9-splits etc. can be han-
dled with the same methodology.

The initial subdivision of the mesh to isolate non-regular features is not absolutely required. The forms for facets
with two, or more irregular features follow explicitly from the non-regular facets derived in the article. The han-
dling is identical to the facet type tf  = 1.3 for Loop with sharp creases.

The formulas extend to a more general class of surfaces S¶M  than previously assumed. For instance, if  the
surfaces are permitted to self-intersect, then

Mp,q,r M = R3\S¶Mx
p yq zr nx, y, z „x „y „z 

where n : R3\S¶MØZ gives the winding number of a point in 3-dimensional space with respect to the surface
S¶M.
This article completes our trilogy in four parts.
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