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Figure: Doo-Sabin: The unit cube with two opposite corners elevated by 1 defines a subdivision surface that
1 1 189061858950460927
2’ 2’ 251161615260877860

control mesh with vertices of valence 3, and 4 we compute the ellipsoid with equivalent inertia. | Loop: The
centroid defined by the subdivision surface is at the intersection of the red, green, and blue lines. The surface
right features sharp creases. =

encloses a set with centroid ( ) For a set bounded by a limit surface corresponding to a

Abstract

The volume enclosed by subdivision surfaces, such as Doo-Sabin, Catmull-Clark, and Loop has recently been
derived. Moments of higher degree d are more challenging because of the growing number of coefficients in the
(d + 3)-linear forms. We derive the intrinsic symmetries of the tensors, and thereby reduce the complexity of the
problem.

Our framework allows to compute the 4-linear forms that determine the centroid defined by Doo-Sabin, and
Loop surfaces, including Loop with sharp creases. For Doo-Sabin surfaces, we also establish the tensors of
rank 5 that determine the inertia for valences 3, and 4. When the subdivision weights are rational, the centroid,
and inertia are obtained in exact, symbolic form. In practice, the formulas are restricted to meshes with a certain
maximum valence of a vertex.

The first author dedicates this work to the memory of Andrew Ladd, Nik Sperling, and Leif Dickmann. The article and additional
resources are available at www.hakenberg.de. The first author was partially supported by personal savings accumulated during his
visit to the Nanyang Technological University as a visiting research scientist in 2012-2013. He'd like to thank everyone who worked
to make this opportunity available to him.

Introduction

A subdivision scheme S is a mesh refinement procedure. Starting with an initial mesh M, the repeated applica-
tion of the subdivision scheme results in an increasingly dense mesh S"(M). The algorithm is designed so that
the sequence of meshes converges to a piecewise smooth surface S*(M). Due to these properties, subdivision
is a popular technique to design and represent surfaces in computer graphics.

[Catmull/Clark 1978] and [Doo/Sabin 1978] introduced the first subdivision schemes intended for the refinement
of quad meshes. In the limit, large parts of the surface have piecewise polynomial parameterization. Later, [Loop
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1987] designed a subdivision scheme for triangular meshes. The smoothness characteristics of the limit surface
produced by the schemes are well-understood, see [Reif 1995].

Figure: Surface subdivision applied to a simple initial mesh of 4 unit cubes glued together. The limit surface

bounds a set of volume 10357799523;2;;55:;?;6756‘/?. The centroid is 0.45289886110702... away from the vertex

of valence 6 on the axis of symmetry inside the set. =

Our article is restricted to subdivision surfaces that are generated from meshes with finite number of facets. If
the resulting surface S™(M) is compact, piecewise smooth, orientable, and not self-intersecting, we denote with

QcR® the interior of the surface. The boundary is dQ=S*(M). Then, the (p, g, r)-moment of degree
p+q+r=d for p,q,re{0, 1, 2, ..} of the set O with respect to the x-, y- and z-axis is well defined by the

integral
Mpar( Q) = [ XPy92z" dxdydz

The moments for small degree d have interpretation as

volume(2) = Mg 0,0(€2) d=0)
centroid(@) = - (M1,0,0(02), Mo,1,0(02), Mo,01() @=1
inertia(€) = (M,0,0(€2), Mo 2,0(Q), Mg 0,2(€2), M1 10(€2), Mg 11(Q), My0,1(£)) d=2)

Example: Doo-Sabin subdivision of a cube with initial control points (+1, +1, +1). The colors are the relative
volume contribution by each quad of the dual mesh. The surface encloses a set of volume(Q) = %, the cen-

3003739685043074 286227 439869
2624566978533879876841344000 °

troid is at the origin, and inertia(Q2) = (8, 8, B8, 0, 0, 0) where 8=

The moments derived in the article have diverse applications: 1) The formulas allow to design subdivision
surfaces with exact volume, centroid, and inertia. 2) By translation of control points, surfaces can be deformed
subject to preservation of moments. 3) Countless computer games and animations use subdivision surfaces for
character and shape modeling. If a subdivision surface is the contour of an animated entity, our formulas help to
make the motion more accurate: Unaccelerated rotation is around centroid()), and inertia({2 — centroid({2))
determines the preservation of angular momentum. 4) [Prevost et al. 2013] and [Baecher et al. 2014] explain the
significance of the centroid and inertia in the context of 3d printing.

The limitation: the term M, 4 ((€2) assumes constant mass density across the inside of the shape.

Previous work

A simple formula for the moment of the set bounded by the limit surface was not known previously. [Peters/Nasri
1997] only describe an approximation of the moment. Moreover, their framework requires “regular submeshes to
have a polynomial parametrization”. Moments defined by the Loop scheme are not covered by their approach.

[Gonzalez et al. 1998] carry out the derivation of moments M, (£2) of sets bounded by piecewise polynomial
surfaces. Their derivation is sufficient for surfaces that are entirely constructed from B-spline, or Bézier/Bern-
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stein patches, for instance.

[Hakenberg et al. 2014a] present a framework to compute the exact volume enclosed by surfaces generated by
stationary subdivision schemes. The volume is the moment of degree d =0 of the 3-dimensional set Q. The
formula is a sum over all facets f € M of the mesh

VOI(M) = Mg 0,0(2) = Ysem Zrlnj(flz Yi(,)j',Tlif) PX; PY; PZ

where YO™ s a trilinear form characteristic to the facet topology 7(f), and (px;, py;, pz)<R? for
i=1, 2, ..., m(f) are the control points from the mesh that determine the surface associated to facet f.

In particular, the volume is determined by a finite number of additions and multiplications. Trilinear forms charac-
teristic to the subdivision scheme need to be derived for all facet types 7(f). Then, the formula is universal for all
closed, orientable meshes M. In practice, the forms are available only up to a certain maximum valence. For
instance, the volume defined by a Catmull-Clark mesh with a vertex of valence 42 is generally intractable by
today’s standards. It had to be a number, an ordinary, smallish nhumber, and | chose that one. The framework
also extends to subdivision surfaces with sharp creases, which is demonstrated at variants of the Catmull-Clark
and Loop scheme in [Hakenberg et al. 2014b].

At this point, the derivation of the moments of degree 1 <d was known theoretically. However, the large number
of coefficients in the (d + 3)-linear forms poses a practical challenge. In order to familiarize ourselves with the
intrinsic symmetries of the tensors, we treat the simpler 2d-analogy: moments of 2-dimensional sets bounded by
piecewise smooth subdivision curves in [Hakenberg et al. 2014c].

S S

Example: The point cycle P =((0, 0), (2, 0), (2, 1), (1/3, 1/4), (0, 1)) is subdivided using the interpolatory ct
four-point scheme by [Dubuc 1986]. The moments of low degree of the 2-dimensional set Q c R? enclosed by

- 446389 . 7692606932638356977 5697393899777829797
the smooth limit curve are area(Q))= , and centroid(Q) =( , ) The
266112 6491763064547046864 " 17311368172125458304

ellipse visualizes the inertia with respect to the centroid. =

Overview

The contribution of this article is a formalism to derive the moments M () for sets bounded by subdivision
surfaces that do not have a closed-form parameterization. The moment depends on the subdivision scheme S
and the initial mesh M. We derive the formula using the conceptual approach

Mp,q,r(Q) = Mp,q,r(sm(M)) = Mp,q,r(M)
=00

The first equality is established through the divergence theorem. The second equality is the result of identifying
an operator M, o, for meshes that is
1) invariant under one round of subdivision M, 4 (M) = M ¢ (S(M)), and

2) reproduces the correct moment value for a known special case, for instance the unit cube Q = [0, 1]°.

Once the formulas are clarified, the equation serves as a definition for the M, operator overloading. M g (M)
is always interpreted with a specific subdivision scheme S in mind.

Our article is structured as follows. First, we derive the formula for M, o, (M) for stationary subdivision schemes.

Then, we demonstrate the practicability of our framework on several popular schemes. The computation of
moment values of simple example meshes serves as a reference for alternative implementations.
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Derivation of Moments

Divergence Theorem

The divergence theorem in three dimensions states that for a smooth vector field G:R® - R® and a compact
subset Q c R® with piecewise smooth boundary 9Q and surface normal n

JdivGda=[ G-nd©Q)

We select as vector field G, g : R3® - R3

Gpqr(X, Y, 2) = (p%l xPtlydz 0, 0) with divGp g, =xPylZz'

forp,q,re{0, 1, 2, ...}. Then,
Mpar(@) = [(xPydz @V = fm(p%l XPLy92",0,0) N d(@0) = bz XYz ned 00

where n, denotes the first component of the normalized surface perpendicular. The moment is expressed as an
integral over the piecewise smooth subdivision surface dQ = S*(M). In order to compute the surface integral,
we parameterize the surface using the facets of the mesh as described in the next section.

Surface Partition

The correspondence between the facets f € M of the mesh and the patches that partition the surface
00 =S"(M) is best illustrated at example schemes: For Doo-Sabin surfaces, the facets are given by the quads
of the dual mesh of S2(M).
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Figure: After two rounds of subdivision with Doo-Sabin’s algorithm, each vertex v has valence 4. We associate
a facet f to each vertex v e S?(M): The facet is the quad spanned by the midpoints of the 4 faces adjacentto v. =

For surfaces defined by Catmull-Clark, the facet f is a quad of the one-time subdivided initial mesh. For the
Loop scheme, the facet f is a triangle of the one-time subdivided initial mesh.

Figure: Quad and triangular facets of a mesh with associated patch on the subdivision surface. Each facet has
at most one non-regular vertex. m
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The purpose of subdiving a few times before defining the facets is so that non-regular vertices, or faces become
isolated, and a classification of facet topologies simple. Without loss of generality we may assume that the initial
mesh M already has non-regular features isolated.

— — — b — — &

Figure: Shaded in red, a facet in a Doo-Sabin, Catmull-Clark, and Loop subdivision mesh together with the
control points that define the surface across the facet. The surface patch associated to a facet f is completely
determined by m(f) number of vertices in the one-ring of f. m

A subdivision algorithm is designed so that only vertices in the vicinity of the facet influence the shape of the
surface patch associated to the facet. In case of the aforementioned schemes, the collection of vertices
(pX;, pyi, pzy) fori=1, 2, ..., m(f) is from the one-ring around the facet.

Figure: Different topologies around a quad facet f in a Catmull-Clark mesh are characterized by a single non-
regular vertex of valence 7(f) {3, 4, 5, 6, 7, ...}. Green indicates the regular case 7(f). m

We introduce the parameterization ¢ : D c R? »R® of the surface patch associated to a facet f € M. When the
facet f is of quad type, we choose the unit square D = [0, 1]x[0, 1] c R? as the domain. When f is triangular, the
canonic choice is D={(s, t)eR*:0<s,t and s+t =<1}.

The patch of the subdivision surface parameterized by f depends linearly on the vertex coordinates
(PX;, PYi, Pz) €R3 for i=1, 2, ..., m(f). That means, basis functions b;: D — R characteristic to the subdivision
scheme and the facet topology exist for each control pointi =1, 2, ..., m(f). The map is of the form

cx(s, 1) > bics, t) px;
#(s, ) =| cy(s, 1) ] =| ¥ by(s, t) py,
cz(s, t)

f
T bies, v pz,
where cx:D - R, cy:D - R, and cz: D - R denote the coordinate functions.

The collection of all facets provides a complete and 1-to-1 coverage of the subdivision surface up to overlap
along the edges. Therefore, the surface integral is written as a sum over all facets

Mpar(Q) = [ @V = [ . d©@Q) = T fp - d@D)) = TrepMp gr(h).

Next, we investigate the moment contribution by a single facet My,  ,(f).

Multilinear Form

The integral expression associated to a single facet is

Mp.qr(F) = L(D)pi—l xPrLyd2" n, d(¢(D)).

We substitute a(s, t) ;= \/ | det(dg(s, ) .dé(s, 1)) | where
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SO asbics, typx, IV a,bics, 1) px;
dg(s, ) =| x1Vasbis, py; iy dcbics, ) py;
S osbis, tpz, Ty acbi(s, ) pz,
Then, the integral becomes

_ 1 P+l 0 Ao OsCY 0iCZ-diCy 05CZ
Mp,q,r(f)— chx oyt cz' ZEEEEEEE ags, D dsdt

p+1 chxerl cydcz'(dscy 0, cz — 6;cy Oscz) ds dt

= S (o) (S by (51 bz (5255 by py;) (55 b p2i) — (S0 01y py; ) (552 b P s it

1 m(f)Id+1 ik fD iy - Dy, (0sbj Ot by — by dsby) dsdtpx; ... PXio PYio.  PYin.on P2, - PZig,, PY) PZi

= a1 L
_ 1 am®) Sd.7()
= o Dirreigendok Yipigon, ik PXiy - PXi B, - PYiq00 PZip,qiz -+ PZig,, PYj PZk

For readability, the arguments (s, t) € D are omitted from the coordinate- and basis functions cx, cy, ¢z, and b;.
(f) m(f) m(f)
e Dig=1-

Also, we use 3} ", as abbreviation for 3} -1

The final expression shows that M 4, (f) is a (d + 3)-linear form in the i=1, 2, ..., m(f) points (px;, py;, pz;) e M

()

that determine the surface patch parameterized by facet f. The coefﬂments of the tensor Y are universal for

any combination p, g, r with p + g+ r =d up to the leading factor p+—1. The coefficients are given by the integrals
—dT(f) : : H
Y ionik = Jo0i; - by, (8sbj dcby — 8t bj s by ) d's dit for iy, ..., idge1, j, K€(1, 2, ..., m(f)}.

When all basis functions b;:D - R characteristic to facet topology 7(f) are polynomials, then straightforward

. . . . 1 gd®
evaluation of the integral expressions gives the tensor ey Y .

Recursion

Typically, not all basis functions b; have a closed-form expression. That means evaluating the integrals directly
is not possible for most subdivision schemes and facet topologies 7(f).

Until this point, we have established that the moment of the set Q. ¢ R® bounded by §Q = S®*(M) is

f va )
Mp,q,r(M) = 2teptMp qr(F) = ZfeM S ik Y g s ik Py PXi,, i - PYisqs PZig,q.s -+ PZig., PYj PZk-

The basis functions b;:D — R characteristic to facet topology 7(f) that parameterize the surface patch are

. . I —d.(f) . .
identical at every level of subdivision. That means the same set of tensors Y ™ is used in the moment formula
at every level of subdivision. Moreover, we expect the moment formula to be invariant under one (or more)
rounds of subdivision

Mpyq,r(M) = Mp,q,r(S(M))
since that operation does not change the limit surface S*(M). Fortunately, we can narrow down further and
demand invariance under the decomposition of a single facet

Mp,q.r(F) = Thet Mp q.r (Fr).

To keep the notation reasonable, we assume that one round of subdivision neatly decomposes a facet f into 4
smaller facets f,, for he {1, 2, 3, 4}. This is the case for the Doo-Sabin, Catmull-Clark, and Loop schemes that
are in our particular interest. Together, the four smaller facets f;, of the subdivided mesh parameterize and
partition the identical surface patch of S¥(M) as the original facet f.
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Figure: Catmull-Clark subdivision of a facet f with a vertex of valence 7(f) = 3 into three regular facets fy, f,, f3
with 7(f;) = 7(fy) = 7(f3) = 4, and one facet f, with a valence (f;) = 3 vertex. =
Subdivision of the control points of facet f to the control points of f, is a coordinatewise, linear mapping that we

express as the matrix S" with dimensions m(f,)xm(f) for he {1, 2, 3, 4}. The resulting control points of facet fj,
are

(me X, TSt py;, S sh ) fora=1, 2, ..., m(f,).

d,7(f)

T ..jk of a general tensor Y™ of rank

We substitute the unknown integral expressions with the coefficients Y;
d + 3 and expand the previous equation to

d,7(f) m(fn) d.7(fn) h h h <h
Yig gk = Zﬁ:l b Ya,,...ag1.0.c S .S Sb,j Sck

I3,y Tyeeny ag41,0,C ' ag,..., ai, |1 Ad41, |d+l

foralliy, ..., ig41, j, ke€{l, 2, ..., m(f)}. We suggest the short-hand
Yd,T(f) — Zﬁ,le’T(fh)[Sh]
In Mathematica, the tensor transformation Y [S] may be implemented as

Transform[Y_, S_] :=
With[{n = TensorRank[Y]}, Nest[Transpose [#.S, RotateLeft[Range[n], 1]1] &, Y, n]]

We refer to the collection of linear equations as L9(z(f); 7(fy), 7(fo), 7(f3), 7(f4)). Unless the coefficients can be
obtained via integration, the linear system LY is the starting point to solve for the tensor coefficients. A subset of

tensors that satisfy the relation L also compute the valid global moment Mp,qr(M) and are a substitute for

YO The process of identifying such valid forms Y %™® is via symmetry requirements, and calibration.

Symmetries

The tensor Y% has & :=m(f)**3 coefficients. The straightforward layout of LY results in a humongous matrix
with dimensions NxX. From the practical point of view, it is imperative to account for any known symmetries in

the tensor coefficients prior to building the linear system Since the tensor Yd'“f) is a substitute for the integral

solution Y™ ), we inspect the intrinsic symmetries of Y ' The integral Y ik uarantees that there exists

a non-trivial tensor solution Y 7 « 0 with these symmetries. For convenience, we restate from above

Vi k= b by, (9sb; Ay — b dsby) d's dt for all iy, ..., igsa, J, k€ {1, 2, ..., m()}.

|1 ----- s,k T

skew(j, k) | Swapping the last two indices j, and k inverts the sign, therefore we assume

Yo k==Y foralliy, ..., igs1, J, K€ {1, 2, ..., m(b)}.
sort(iy, ..., ig+1) | The integral is invariant under permutation of the first d + 1 factors b;, ..., b; ,,. That means,
the indices iy, iy, ..., ig+1 €can be arranged to be non-decreasing i; <i, <... <ig,1. We demand

Yo =AY ik foralliy, ..., g1, J, K {1, 2, ..., m(H)}.
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The symmetries listed next depend on the symmetries in the subdivision rules, which manifest as symmetries in
the basis functions. For instance, for facets adjacent to sharp creases there might not be any additional
symmetry.

rotate p | A regular facet satisfies a rotational symmetry p that leaves the integrals invariant when permuting the

indices as

d,z(f)

d,7(f) . . .
iz eonicins ik = Y (o) pligen) o (Do) forall iy, ..., Igs1, j, K€{1, 2, ..., m(D)}.

Y

mirror o | For regular facets, but also facets adjacent to a non-regular vertex, there is a mirror symmetry o in

the configuration of control points that inverts the orientation of the facet

d,r(f) d,r(f) . ) )
Yir ik = = Yo(iy).olig .o (o) forall iy, ..., 1q41, J. K€{1, 2, ..., m(f)}.

The map o turns the mesh inside out, therefore the sign is toggled.

. . . —dad .
Copde"eg A subset of basis functions b; for ielc{1, 2, ..., m(f)} for a non-regular facet Y ™ might be
identical to the basis functions b; of the regular facet. Then clearly Yil,i(.,i)m,j,k :Yilfﬁm,i,k when all indices are
from the subset iy, ..., igs1, j, k € 1. Once the multilinear form Y %'®9 for the regular facet is settled on, the coeffi-
cients are inserted directly into the tensor for non-regular facets
d,r(f . d,reg . . .
Yilfaizd’j'k = Yi1 _____ ige100.K for all 1, ooy ld+2s |y kel

We summarize the symmetries that are typically present in the facet types; exceptions exist.

topology \ symmetry skew(j, k) sort(iy, ..., igs1) rotate p mirroro copy Y 49
regular v v v v -
non-regular v v - v v
adjacentto crease v v - - v

Remark: [Hakenberg et al. 2014a] setup and solve the linear system L° of full size 8xX in their derivation of
volume forms. The relation skew(j, k) is enforced only afterwards by skewing the elements in the solution
space. Sorting is obsolete since d =0. =

Lemma 1 [Hakenberg et al. 2014a]: If the subdivision matrix S* has a single eigenvalue 1 and all other eigenval-

ues with absolute value <1, then the system L%z(f); n, n, n, 7(f)) and the form Y " determine the tensor Y 4
uniquely forall0<d. =

To paraphrase: tensors Y %™ corresponding to non-regular facets follow uniquely from the regular case for all
common surface subdivision schemes.

Calibration

H---B

VAN
’ \ / A

’ N A

(1

/ A\ 28

\ /£ \ =

/ Ny W \

Figure: Decomposition of a regular facet f with 7(f) = 6 in a Loop mesh. The tensor Y %€ is in the solution space

of LY(6; 6, 6, 6, 6). The subdivision weights as well as the coefficients of Y€ are invariant under rotation p with
p(1)=7, p(2)=10, p(3)=12, p(4)=3, p(5)=6, p(6)=9, ... p(12)=4. =
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For a regular facet f, the decomposition is 7(f) =7(fy) for all he {1, 2, 3, 4}. All five forms that appear in the
relation LY(z(f); v(f), =(f), 7(f), 7(f)) are identical and initially unknown. The linear system LY is homogeneous.
That means, the tensor Y %™ has to be identified in the nullspace of a matrix. Since Y% =0 is also a solution
to LY, it is clear that the solution space of LY has to be restricted to a subspace of those forms that result in the
correct global moment value. We refer to this procedure as calibration.

The global moment is the sum M ¢ (M) = Xscp(Mp g (F). The strategy for calibration is to construct a mesh M
with 1) M, 4 (f) # 0 only for regular facets f € M, and 2) the limit surface S*(M) bounds a set of known moment.

Then, the additional linear equation confines Y % to an affine subspace of the nullspace of LY.

Figure: The unit cube, and tetrahedron can be reproduced by subdivision and have known moments. =

The two sets that we employ to calibrate the tensors corresponding to the regular facets for the Doo-Sabin,
Catmull-Clark, and Loop schemes are the unit cube and the tetrahedron.

For the unit cube Q¢ := [0, 1]° c R® the moment for p q,ref{0,1,2, ..}is

1 1

q _— = =
Mqu(QC) f01f01f01x y Z dxdydz= 1+p 1+q 141

The tetrahedron spanned by the unit vectors is Qr :={(x, y, 2)€R*:0<x,y,z and x +y +z < 1}

_ ax(0,1-z) ax(0,1-y-z) [ __piagtr!
Mp,q’r(QT)_kﬁ11 Lm xPy9z dxdydz= Geprarn”

In all examples that we encountered, calibration does not determine the tensor Y ™" uniquely. Instead, the

affine subspace is 1-dimensional, from which a form Y%™" can be selected arbitrarily. The choice affects the
value of the contribution of a single facet M, 4 (f) but is canceled in the global sum M, g (M) = X5y Mp g, (F).

Summary
We state the moment contribution by a single facet for low degrees d < 2.

(d = 0): The trilinear form Y %™ has dimensions m(f)xm(f)xm(f) and gives

L ymf) 0t
Mooo(f) =7 ZAT(JL i, JT(k) PXi, PYj PZk

Figure: Facets colored relative to the moment contribution M, 4 (), and |\~/Ip,q,,(f) fordegreep+q+r=1.m=

(d =1): The single 4-linear form Y17 has dimensions m(f)xm()xm(f)xm(f) and gives

Ma00(F) = 3 T Vi e PX, PX;, PY; PZi
Mo.1,0(F) = T Tt Yiy i e PX, BY, PY; PZi Mo.1.0() = 3 X ik Yir ok PYi, PY:, PZ) P

1 m(f) 1 (f) v 1 m(f) 1 (f)
Mo,o,1(F) = T X ik Vi k PXi, PZi, PY; PZg Mo,01(F) = 3 Ziriyiik Yiyio.ik PZi, PZi, PX] PYi
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Figure: Facets colored relative to the moment contribution M, 4 ,(f), and |\~/Ip,q,r(f) fordegreep+q+r=2.=

(d =2): The single 5-linear form Y 2™ has m(f)® coefficients and gives all 6 moments of degree 2

My g o(f) = é ET(.fz)u3 ik Y.f;(f.; ik PXi, PXi, PXi, PY; PZj

Mo,2,0(f) = % ZT,(ifz),ig,j,k Yii’i‘rz(,fi;,j,k PX;i, PYi, PYi, PY; PZ |\7|0,2,0(f) = % ZT,(ifz),ig,j,k Yii’i‘rz(,fi;,j,k PYi, PYi, PYi, PZj PX
Mo,0,2(f) = % ZT,(ifz),ig,j,k Yif,’é(,fi;,j,k PX;, PZ;, Pz;, PY; PZ I\7|0,o,2(f) = % ZT,(ifz),ig,j,k Yif,’é(,fi;,j,k Pz;, PZ;, PZ;, PX; PYk
My 10(f) = % ZT,(ifz),ig,j,k Yif,’é(,fi;,j,k PXi, PXi, PYi, PY; PZ I\7|1,1,o(f) = % ZT,(ifz),ig,j,k Yif,’é(,fi;,j,k PXi, PXi, PYi, PY; PZ
Mo1.1(F) = % ZT,(ifz),ig,j,k Yif,’é(,fi;,j,k pX;, PYi, Pz, PY; PZ |\7|0,1,1(f) = % ZT,(ifz),ig,j,k Yii’é(,fig,j,k PYi, PYi, Pz, PZj PX

1 f 2,7(f = 1 f 2,7(f
Myoa(f) =7 ZT,(iz),ig,j,k Yil,iz(,i;,j,k PXi, PXi, PZi, PY; PZi Mioa(f) =3 ZT,(iz),ig,j,k Yil,iz(,i;,j,k PZi, PZ;, PXi, PX; PYi

The global moment is a sum over all facets f e M

Mp,qr(M) = D pMp q,r () = ZfeMMp,q,r(f)-
The terms M, 4 ((f) correspond to our initial choice of Gy 4, (X, Y, ) = (p%l xPrlydz" 0, 0). The terms M, 4, (f) are
derived from the vector fields G (%, Y, 2) = (0, q%l ya*t zt xP, 0), as well as Gg,q,r(x, y,2)=(0, 0, ﬁ ARE y9).

Any affine linear combination (1 —a - ) Gpqr +cngqr +,3Gg,q,r for a, BeR and p,q,re{0, 1, 2, ...} also has

divergence of xP y9z" and leads to a tensor that computes the moment.

Applications

For demonstration, we apply the formalism to several well-known subdivision algorithms: For the Doo-Sabin
scheme, we determine the centroid, and inertia. For Loop, and Loop with sharp creases we only establish the
tensors for the centroid. The formulas are available only for meshes with vertices of low valence. For the Cat-
mull-Clark scheme we present an overview only.

We tabulate the size of the adapted linear system LY that accounts for the symmetries and the already-known
coefficients. Whenever the subdivision weights are all rational, we determine the tensor coefficients in symbolic,
exact form. We find that the number of unique coefficient values up to sign is only slightly lower than assumed
by our symmetry considerations. Several example coefficients are stated for reference.

Doo-Sabin

A surface generated by the Doo-Sabin subdivision scheme is partitioned by a parameterization through quad
facets. A facet f is associated to a vertex v of the two-times subdivided initial mesh. At that level, every vertex is
adjacent to 4 faces, of which at least 3 are quads. To classify the topology type of f, we choose 7(f) as the
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number of vertices in the non-regular face adjacent to vertex v, or 7(f)=4 in the regular case. The surface
parameterized by facet f is determined by m(f) =5 + 7(f) vertices.

9. 9.

_____________ -9 4
'I" ? 4 § ? -8 \‘m 7--———8" 10 7----8 '0“
i . i | | i [ I ! H ! .
: I b | | I : i .rl : |! ,11 : i ’12
i - W BEE - pEE - s - B
| | 1 | I I I |
cmn mp 3 - 23 - = 3 1---2---3 1--—-- — 3

Figure: Facets of a Doo-Sabin mesh with 7(f)e {3, 4, ..., 7}, and m(f)e {8, 9, ..., 12}, and indexing of the
control points. The basis functions b; fori el ={1, 2, 3, 4, 7} are common to all facet types 7(f). m

(d =0): The trilinear forms Y™ that determine the volume enclosed by a Doo-Sabin surface have already
been established in [Hakenberg et al. 2014a] for topology types 7(f) € {3, 4, ..., 12}.

(d =1): In the following, we find the tensors Y30 for 7(f) e (3, 4, ..., 9}, and Y>™ for 7(f) € {3, 4}. Besides the
symmetries in the tensor coefficients, we insert the already-known coefficients from Y%* for all non-regular
topologies 7(f) # 4. Together, this reduces the number of variables significantly. The tables give an overview on
the size of the matrices adapted from LY

d=1 7(f) m(f) rows variables solution d=2 7(f) m@f) rows variables solution
4 9 5440 200 symbolic 4 9 50448 740 symbolic
3 8 3064 432 symbolic 3 8 28584 1690 symbolic
5 10 9298 1170 numeric 5 10 - 4790 _
6 11 12708 1742 symbolic 6 11 - 7698 -
7 12 19990 2512 numeric 7 12 - 11862 -
8 13 27788 3482 numeric 8 13 - 17592 -
9 14 37618 4722 numeric
10 15 - 6240 -
11 16 - 8112 -

We now discuss the derivation step by step.

Regular facet

<
]
]
|}
]
— oo

=
|
|
|
1
Lh

s
|
|
|
|
) —

Figure: Regular facet with m(f)=9 control points. The basis functions by, b,, ..., bs:D—>R are shown. The
rotation p maps p(1) =3, p(2)=6, p(3)=9, ..., p(9) =7. Mirrorcisc(1) =1, 0(2) =4, 0(3)=7, ..., 0(9)=9. =

The surface associated to a regular facet 7(f)=4 is parameterized by the basis functions b;:D—>R for
i=1, 2, ..., 9 that are the following polynomials in (s, t) e D = [0, 1]x[0, 1]:
by=3(s-D*(t-1% b= (F+5-5%)(t-1% bg=;s*(t-17% by= (s - 1?5 +t-t?),

1 1
bs

(§+s—52)(§+t—t2), bB:%sz(%H—tz), b7=4—(s—1)2t2, bgzg(%+s—52)t2, and bQZ%Sztz.

Option 1 | A solution to the tensor Y% is given by ?;‘4 ik = JoDis by, (8sb; by — ;b dsby ) ds dt for all

.....

i1, - igs1, I, KE({L, 2, ..., 9}. The integrals over the products of the bivariate polynomials can be evaluated
using the list of basis functions stated above.
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Example: When choosing Y94 = Vd'4, then

79 14 17 1429
752640 27128 7 1254400 @ 4917 9031680’

2.4 13 2.4 293 2.4 47
Yitoar= — Y2 = 2B 244 d=2).
149377 1625702400" * 25879 19353600'  3:6.7.25 101606400 ( )

Yll,’g,3,6 = (d =1)

For better comparability, we work with Y94 =Y ! when solving the multilinear forms corresponding to non-
regular facets 7(f) # 4 in the next section.

Option 2 | We setup and solve the homogeneous linear system L94; 4, 4, 4, 4) for d =1, and d = 2. Since the

subdivision weights in S" for h e {1, 2, 3, 4} are rational, the nullspace of the resulting matrix is easily computed
in symbolical, exact form. In both cases d {1, 2}, we find the nullspace to be 2-dimensional. One degree of
freedom is eliminated through calibration. The second does not affect the global moment, and can be chosen
arbitrarily. We now present one of the many possible ways to trim the solution space to identify all tensors Y %#
that result in the correct global moment.

For calibration, we construct a closed quad mesh Mc with limit surface S™(Mc) = d(Qc) as the boundary of the
unit cube Qc = [0, 1]3. We begin with a cube with all edges of length 1. Initially, the cube mesh has 8 vertices,
each with valence 3. We linearly subdivide the quads of the mesh 2 times. Then, each vertex of the refined
mesh is moved to the position of the cube vertex that is closest.

Figure: Construction of the degenerate cube mesh Mc: Linear subdivision followed by vertex collapse. One can
show, that the piecewise linear surface defined by the degenerate mesh is invariant under Doo-Sabin subdivi-
sion. =

The degenerate cube mesh M has the following properties: 1) each of the 8 non-regular vertices are topologi-

cally surrounded by regular vertices, 2) the one-ring of each facet associated to a non-regular vertex is degener-
3

ated to a single vertex, thus the moment contribution of such a facet is 0 regardless of the tensor Yflj _____ iv.0.jk that

is skew in j and k, and 3) the set bounded by the subdivision surface is the unit cube with known moment
-t 1 1

Mp,q,r(Qc) = 24p 1eq Ler forp,q,re{0, 1,2, ...}.

The moment formula is linear in the coefficients of Y% By demanding for instance Mjgo(Mc)=1/2, and
M200(¢c) =1/3 respectively, the 2-dimensional nullspace is restricted to a 1-dimensional affine subspace. The
other moments Mg 1 o(Mc) etc. are correct by permutation of coordinates, see previous section “Summary”.

Non-regular facets

The subdivision matrix S* satisfies the conditions of Lemma 1. The linear system LY¢z(f); 4, 4, 4, 7(f)) deter-
@) .« for valences 7(f)e(3,5, 6,7, ..}. The
mirror symmetry o maps the index to the counterpart opposite of the diagonal. Moreover, for an index

(i1, -y ldsn, Jo K) With @ll iy, ..., igs1, j, k€11, 2,3, 4, 7), we have Y% =y, .\ forall d, and (f). Since

mines the tensor Y™™ uniquely. We compute the tensors Y;

for 7(f) e {5, 7, 8, ...} the Doo-Sabin subdivision weights are not all rational, we revert to numerical precision for
Yd,T(f).
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Example: For valence 7(f) =5, the facet decomposition is determined by m(f) = m(f;) = 10 initial control points.
The matrix S" maps the control points of facet f to the control points of f, for h e {1, 2, 3, 4} during one round of
subdivision. The matrices are

1303900000

9303100000)(3901300000) (3109300000
0310930000

3901300000[|0930310000[|1303900000
0130390000

0930310000[|0390130000|[|0310930000
0003901300

3109300000[|1303900000||0009303100
ho 1 00008A0A pu

S"=={!1303900000,|0310930000[/0003901300]
16 000O0XB8O0 uua?

0310930000[|0130390000||00008210R1yuu
0001303900

0009303100[|0003901300|[|00031009300
0000ALOS8 A

0003901300[|0000821014uupu|/|l0001303900
0000 g uO2XB82

0000821202 uupu/l0000A2A80uprr/l0000A 0821y
0000 g A0 pyua28

with A =2(1+57"?), and u=2(1-5"%). The indices are mirrored across the diagonal as o(1)=1, o(2)=4,
c3)=7,..,005)=5,06)=8, ...,0(100=9. =

Using the integral solution Yd"‘z\?d’4 for the regular facets 7(f,)=4 for he{l, 2, 3} the linear system L¢
becomes

Yd,‘r(f)[s4] _ydr® _Z?;—lvd"‘[sh]
For all topology types (f) the corresponding subdivision matrix S* has a single eigenvalue 1 and all other

eigenvalues with absolute value < 1. That means, Y %™ follows uniquely from the choice of Y %4

Example: Coefficients are

43975751 , 493 1,3 5765852179941739

13 1

yl3 43975751 =498 yl3 d=1, 7(f)=3
17287 5169499695360°" @ 2413 7 4515840" 3546 T T 43750923381746380800° ( » (1) =3)
16 69381972847 16 19460825 974588709

Y s - Y ’ - — d = 1 T f = 6
14111 = 44294436468172800° = 3:3:2.10 4686140979759458419200 ' ( » 7(1) =6)
23 305 23 5310209741238 104349557

Y , [ Y ’ [ = 2 f = .
12418 16257024 35737 1869384571597 797 042812870246400 ' @d=2, 7(f)=3)

Discussion of Catmull-Clark

The mesh refinement by Catmull-Clark is a thoroughly analyzed, and frequently implemented subdivision
scheme. [Autodesk 2013] makes a compelling case for why the algorithm is the preferred choice for surface
design in animation movies, and computer games.

Figure: Catmull-Clark mesh with a vertex of valence 16. The mesh is subdivided once, so that each quad facet
has at most one non-regular vertex. For illustration, the volume formula is applied at various refinement level.
Facets are colored relative to their contribution to the global volume. =

(d =0): The trilinear forms Y% that determine the volume enclosed by a Catmull-Clark surface have been
established in [Hakenberg et al. 2014a] for topology types 7(f) € {3, 4, ..., 8}. If the solution space is restricted to
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the unique alternating trilinear form, tensors Y ™" for valences up to 7(f) =16 and higher can be resolved in
symbolic form.

The variant of the scheme by [DeRose et al. 1998] includes sharp cubic B-spline creases along selected edges.
Trilinear forms for facets adjacent to the crease are derived in [Hakenberg et al. 2014b]. Numerous topology
types have to be treated. The strategy is identical to the one for Loop with sharp creases that we discuss in a
later section.

Figure: Decomposition of a facet in a Catmull-Clark mesh adjacent to a sharp crease. =

(d <1): At this point in time, we do not solve for any tensors Y™ of rank 4, let alone higher ranks. For regular

. . . —d4 . . .
facets 7(f) = 4, the basis functions b; are polynomials, that means Y%* =Y " can be determined by integration.
The table lists the maximum number of required variables in the linear system L* for small =(f).

d=1 7(f) m({) rows variables solution

4 16 - 2048 -
3 14 - 4470 -
5 18 - 12790 -

The tensors Y12 and Y appear to be in reach.

Loop

A subdivision surface generated by the Loop algorithm is parameterized by a partition of triangular facets. A
facet f corresponds to a triangle of the one-time subdivided initial mesh. As index 7(f) we choose the valence of
the non-regular vertex of f, or 7(f) = 6 when f is regular. The vertices in the one-ring around f completely define
the subdivision surface associated to f. Their cardinality is m(f) = 6 + 7(f).

1 11---12 A2
4---8--m- 7 /,8*\***;10 PR // \\ / \\ 11: | :13
/ \\ / I\\ / \ - ; \‘9’/ 1 ) ~7 8- : _10 8/ \9// \10 /’ S U 2 \\
fON ' i I AU RN A e S
// \SAQ \\6\/ \\ \\éAé// l‘ 4 ’ \\\ . // A 7 // \\ / \\ // \ /8\\ ‘/10\
AN ~ ) \ 2N N ~ - - ’ Ny N/ \ 4 Vi
P \ Sy v 2N \ 5 6 : BE-——- o _ _ _ 7 ) ‘ /
l~\‘\\‘\‘2//,4 3 EI./—/ \ ’// N 2NN / N / A LR K 4\,»—/5\ /6\\\\/7
R (R W/ N g _\3 R/ \\ I S v N // Y\ // \\ p
T2 1----2----3 i---2--- 3

Figure: Indexing of vertices in the one-ring of a triangular facet f for 7(f) {3, 4, 5, 6, 7}. Mirror symmetry o is
along the vertical line through vertex with index 9 for all topology types t(f). The basis functions b; for
iel={1, 2, 3, 4, 7} are common for all facet types 7(f). Everything is awesome. =

(d = 0): The trilinear forms Y °%™® that determine the volume enclosed by a Loop surface have been established
in [Hakenberg et al. 2014a] for topology types 7(f) € {3, 4, ..., 12}.

(d <1): In the following, we find tensors Y *™® of rank 4 that compute the centroid of the set bounded by a Loop
surface for valences r(f) {3, 4, ..., 8}. We do not solve for the 5-forms Y2™® however. Besides the symme-

tries in the tensor coefficients, we insert the already-known coefficients from Y€ for all non-regular topologies
7(f) £ 6. Together, this reduces the number of variables significantly.
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Example: The linear-subdivided pyramid with all sides length 1 generates a Loop surfaces with enclosed
5823179952258696430342912039676 956 990094407
27226 325104284 527103923010320230023343200000 V2 '

1018752771829193661146492650817 175657325296 745255084 294583488124749298331139294058486[«] 1
4139639762513024 968 704 729699833 262554098 072438132916 993808863211995895907211516270527 [+] /2~

volume(Q) = and centroid that is located

above the base of the pyramid. The [«] represent 50 more digits. In the illustrations, the facets are colored based
on Mg g,0(f); M100(f), Mg 1,0(f), and Mg o 1(f) respectively. =

The dimensions of the adapted linear systems LY are tabulated as

d=1 «(f) m) rows variables solution d=2 (f) m() rows variables solution

6 12 18924 874 symbolic 6 12 - 4032 -

3 9 5742 810 symbolic 3 9 - 2792 -

4 10 8476 1170  symbolic 4 10 - 4790 _

5 11 13824 1742 numeric 5 11 - 7698 -

7 13 27648 3482 numeric 7 13 - 17592 -

8 14 37449 4722 numeric

9 15 - 6240 -

10 16 - 8112 -

We now discuss the derivation step by step.

Regular facet

In the regular case 7(f) =6, the surface associated to f is determined by m(f) = 12 control points. The subdivi-
sion weights are invariant under rotation by p with p(1) =7, p(2) =10, p(3)=12, p(4) =3, ..., p(12) =4, and also
invariant under mirror operation by o with o(1)=3, 0(2)=2, 0(3)=1, 0(4) =7, ..., 0(12) = 11. Since the basis
functions b; for i=1, 2, ..., 12 do not have a closed-form expression, integration of the coefficients is not an
option. Instead, we setup the homogeneous system L(6;6, 6, 6, 6) to identify the coefficients Y1 in the
nullspace of a matrix. Since the subdivision weights are rational, the nullspace can be obtained in exact, sym-
bolic form. For d =1, the nullspace turns out to be 2-dimensional.

For calibration we construct a closed triangular mesh My with limit surface S®(My) =d(Q1) as the boundary of
the axis-aligned tetrahedron Qr: We begin with a tetrahedron mesh spanned by the unit vectors. Initially, the
tetrahedron mesh has 4 vertices, each with valence 3. We linearly subdivide the triangles of the mesh 3 times.
Then, each vertex of the refined mesh is moved to the position of the original corner that is topologically closest.

Figure: Construction of the degenerate tetrahedron mesh M : Linear subdivision followed by vertex collapse.
One can show, that the piecewise linear surface defined by the degenerate mesh is invariant under Loop subdivi-
sion. =

The degenerate mesh My has the following properties: 1) each of the 4 non-regular vertices is topologically
surrounded by regular vertices, 2) the one-ring of each facet adjacent to a non-regular vertex is degenerated to
a single coordinate, thus the moment contribution of such a facet is 0 regardless of the choice of coefficients
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Yi?,'?.,im,j,k that are skew in j and k, and 3) the set bounded by the subdivision surface is a tetrahedron with
p!q!r!

known moment My, o (Q1) = Grpeqe)]

forp,q,re{0, 1,2, ...}.

The moment formula M, 4 (M) is linear in the coefficients of ydse, By demanding for instance My g o(My) =1/24,
the 2-dimensional nullspace is truncated to a 1-dimensional affine subspace. The other moments Mg o(My)
and Mg o 1(My) are correct by permutation of coordinates, see previous section “Summary”.

To settle for a unique choice within the affine subspace for the upcoming computations, we introduce the
(arbitrary) additional symmetry Yii’g'j,k = 0 for any combination of iy, i», |, k € {5, 6}.

Example: Carrying out these steps results in a tensor Y *® with the coefficients

2329 16 21167
43589145600 2378 T 43589145600

7471 1,6 893

yis. y16 B B .
153812 2106,11 = 59059430400° = 4429~ 72648576

Non-regular facets

The subdivision matrix S* satisfies the conditions of Lemma 1. The linear system LY¢z(f); 6, 6, 6, 7(f)) deter-

. . . 1,7
mines the tensor Y%™® uniquely. We compute the 4-linear forms Yiljf:’j),k for non-regular valences

7(f) e {3, 4, 5, 7, 8}. The size of the problem is reduced by accounting for the mirror symmetry in the subdivision
weights.

Figure: Decomposition of a non-regular facet that leads to the recursive equation is visualized for 7(f) = 4. The
mirrormapiso(1)=3,0(2)=2,03)=1,04)=7,0(5)=6, ..., 0(9)=9,0(10)=8. =

The basis functions b;:D >R for iel={1, 2, 3, 4, 7} are identical for all topology types 7(f) € {3, 4, ...}, soO we
d,r(f) d,6
Yi

Lreeoldsts K = Vg,

write Y; iv.0k for a multi-index (iy, ..., igs1, j, K) where all'iy, ..., ig11, j, kel,andd €{0, 1, 2, ...}.

Example: Our specific pick for Y1 leads to

13 16319784391763 13 14654412895 775123621 909242 697
Yii39= y Y2589 ="~ : (r(f)=3)
43,9 = 46801346231255616000° @ 258 134069 924744 279506 664 235 537 984 000
1.4 47621881394017 872290 654012933893 1,4 1432324735867
Y13810=~ y Y3357=— (r(f)=4). =
3.8, 413949 212345780492 196 357 895 665312000000 ° ' 335 334226 468402386560

Loop with sharp creases

[Hoppe et al. 1994] extend the Loop scheme to allow for sharp creases. The refinement rules along crease edge
cycles in a mesh are identical to cubic B-spline subdivision for curves.

- ¥ - ¥ o
1/8 3/4 1/8 1/2 1/2

Figure: Affine linear combinations for vertex repositioning, and mid-edge vertex insertion. =

For a triangular facet f that is adjacent to a crease, we encode the topology type (f) using a tuple n.m. The first
number n is the valence of the non-regular vertex (that also belongs to the crease). The second number m
enumerates different configurations of the crease. Each topology type that we discuss is illustrated graphically.

Because the subdivision weights are simple integer fractions, we establish the (d + 3)-linear forms Y™ in
symbolical notation.
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Example: We apply one round of linear subdivision to the axis-aligned octahedron with all sides length 1 cen-
tered at 0. A cycle consisting of 4 edges is designated as sharp crease as shown. Subsequent Loop subdivision

. . 274962 183466592 197 331 396 286 238 960 674 452 153
results in a surface with enclosed volume(Q) =
516628559853 596 339 732 884 446 304 175016 000000 V2
1176961551521973353632159944554550387 148035958378217594 790807 739804037542 166 . . .
L from 0 in the direction

53314823024198405545146879225619942404822902836467 289643807 372272615753455604[+]
toward the crease. The [«] represent 40 more digits. The facets are colored relative to Mg g o(f). =

, and centroid with

offset

(d =0): The trilinear forms Y% that determine the volume enclosed by a Loop surface with sharp creases
have been derived in [Hakenberg et al. 2014b] for facets with vertex valence up to n =6.

/\ﬂ} /\x Y\
VA AVANVAVAV/

VY

Figure: One round of subdivision of a facet f of topology type 7(f) = 3.1 results in four smaller facets f, with
7(f1) = 7(fy) = 7(f3) = 6, and 7(f;) = 3.1. The surface associated to f is determined by m(f) = 10 control points. =

(d <1): In the following, we find tensors YX™® of rank 4 for facets adjacent to a sharp creases with vertex
valence up to n=4.

One round of subdivision of a facet f adjacent to a crease results in one or more regular facets, for instance
7(f;) = 6. That means the tensor Y96 is required in the linear system LY for the derivation of the unknown form.
The topology 7(f) = 1.2 is an exception. Furthermore, we begin the derivation with 7(f) = 3.1, and 7(f) = 3.2, since
these types are a by-product of subdividing facets of many other topology types adjacent to a crease, for which
Y431 and Y932 need to be available. The size of the matrices adapted from L* are

d=1 r(f) m{f) rows variables solution d=2 (f) m@{) rows variables solution
3.1 10 9792 1248  symbolic 3.1 10 - 4968 -
32 9 6553 820 symbolic 32 9 - 2980 -
1.1 8 (%) 510 symbolic 1.1 8 (%) 1690 -
1.2 6 1064 160 symbolic 1.2 6 - 424 -
1.3 6 (*) 103 symbolic 1.3 6 (%) 273 -
21 8 3584 1008  symbolic 21 8 - 3360 -
41 11 13310 3630 symbolic 41 11 - 15730 -
42 10 9000 2475  symbolic 42 10 - 9900 -

The asterisk (x) indicates that the tensor is computed explicitly, and does not require solving a linear system.
The number of variables can further be reduced by identifying basis functions shared with 7(f) € {6, 3.1, 3.2}.

We now discuss the derivation step by step.

Topology type 3.1

The facet decomposition for 7(f) = 3.1 is depicted above. The linear system L%(3.1; 6, 6, 6, 3.1) determines Y131

uniguely.
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6971711
261534873600’

1,31 1223 1,3. 120677
Y1,3,7,10 = 56153487360 Y2,

1,3.1
Example: Yi5eg = , = =20
P 12,68 26153487360 459~ 50118067200

Topology type 3.2 (semi-regular)

Figure: Subdivision of a facet f with 7(f) =3.2 results in 7(f;) =6, 7(f,) = 3.1, and (f3) = 7(f;) = 3.2. The surface
patch parameterized by f is determined by m(f) =9 control points. The subdivision weights are symmetric with
respect to the mirror operation o(1) =4, 0(2)=7,0(3)=9, ..., 0(8) =6, 0(9)=3. =

Solutions to the linear system L1(3.2;6, 3.1, 3.2, 3.2) are from a 1-dimensional affine vector space. We intro-
duce the (arbitrary) additional symmetry Yiifi?;'iz,k =0 for any combination of iy, iy, j, k € {6, 8} that results in a

unique tensor Y 32 to work with subsequently.

67 1,3.2 836887 1,3.2 25
TTiaci0a00" Y3739 =

132
Example: Y{547 = ———, = , =—2= g
P 12,47 19768320° 1568~ 3113510400 7397 249080832

Topology type 1.1 (explicit)

Figure: Decomposition of a facet f with (f) = 1.1 results in 7(f;) = 7(f,) =6, and 7(f3) = 7(f4) =3.1; m(f) =8. =

The equations L1(1.1; 6, 6, 3.1, 3.1) are an explicit formulation for the tensor Y %11,
1,11 19 1,11 24443 111 9527
: ’ — A ’, - — ! = —- 1
Example: Yig3g 207567360 Y2357 566092800’ Y3426 296524800

Topology type 1.2

Figure: Subdivision of a facet f with r(f)=1.2, m(f)=6. =

We state the subdivision matrices S" that map the control points of facet f coordinatewise to those of f,, for

he(l, 2, 3, 4}. S* and S? have dimension 9x6, S® is a 8x6 matrix, and S* is square 6x6.
001061 130310
031130
0000 4 4 031130
001061 100601
000116 004040
130310 010331
031130 100601
st=1lo010331[S?=2|o10331|SP=2(?210383 1] g4 _L1001 001
8 ! 8 ! 8o oo0oo04 4] 8o o040 4
000404 001061
100601 00004 4
130310 00040 4
000404 000116
100601 00004 4
000116
400400 000116
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The linear system L%(1.2; 3.2, 3.2, 1.1, 1.2) determines Y %' uniquely.

112 911 112 61 1,12 2033
Example: Yi55s= ———— Yo51e=———, Y3uce= )
P 12,34~ 159667200° 28157 2419200 3456 T gga2880

Topology type 1.3 (explicit)

W

Figure: Decomposition of a facet f with 7(f) = 1.3 results in 7(f;) = 6, and 7(f;) = 7(f3) = 7(f4) =3.1; m(f) =6. =

The topology type 7(f) = 1.3 exists in a mesh at most until depth 1 of the subdivision iteration. In other words, the
derivation is not required if the mesh is subdivided twice before applying the moment formula.

The equations L(1.3; 6, 3.1, 3.1, 3.1) are an explicit formulation for the tensor Y 213,

11.3 58273 1,1.3 5683 1,1.3 45139
Y Y

Example: Y = = 9580032 = T 239500800°
ample: Y1234 = 79833600" ' 2515 = g5g0032” ' 3456 = ~ 239500800

Topology type 2.1

PN ENCROB RN
\\‘\1/\\2/ \3 v v VA A

Figure: Decomposition of a facet f with 7(f)=2.1; m(f)=8. =

The linear system L%(2.1; 6, 3.1, 3.2, 2.1) determines Y %! uniquely.

1,21 1 Y1,2.1 6274501260593 Y1,2.1 269051
5448643200

Example: Y

2318

2,6,2,7

12147 7 1464320° " 1403333457520490496

Topology type 4.1

Figure: Decomposition of a facet f with 7(f)=4.1, m(f)=11. =

The linear system L1(4.1; 6, 6, 6, 4.1) determines Y 2** uniquely.

Example: Y 141 _ _ 6150226332891074094848332937 y1A41 _ __ 17094833382460548061760608463
© 114487 7 9018730198101307245587395384734720 23111 T T 919027853701 755636 293817038 494272000 °
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Topology type 4.2

Figure: Decomposition of a facet f with 7(f) =4.2; m(f)=10. =

The linear system L%(4.2; 6, 3.1, 3.2, 4.2) determines Y **2 uniquely.

4237633495 296704 275693 142 _ _ 1215013897309328456567231881
941243844690956727245445120 ' 23110 T 7 45087407591 139433812741 178462095360 °

Example: Yfﬁ% =

Final Remarks

Each tensor Y™™ Jisted as solved in the article took at most 30 minutes to establish on a computer with 8 GB
ram. The number of equations are not the bottleneck, but the number of variables is. Therefore, we have not
made efforts to remove linear dependent rows and trim the matrix to square size prior to solving the linear
system LY.

The number of unique coefficients up to sign is still slightly lower than the assumed number of variables. Extra
effort could be taken to identify non-trivial symmetries to further reduce the size of the linear system.

For simplicity, we have restricted the derivation to 4-split schemes. Schemes that use 9-splits etc. can be han-
dled with the same methodology.

The initial subdivision of the mesh to isolate non-regular features is not absolutely required. The forms for facets
with two, or more irregular features follow explicitly from the non-regular facets derived in the article. The han-
dling is identical to the facet type 7(f) = 1.3 for Loop with sharp creases.

The formulas extend to a more general class of surfaces S*(M) than previously assumed. For instance, if the
surfaces are permitted to self-intersect, then

Mo.arM) = fagenX* Y2 VX, Y, 2)dx dy dz

where v:R3\S*(M) - Z gives the winding number of a point in 3-dimensional space with respect to the surface
S®(M).

This article completes our trilogy in four parts.
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