The formula of number of prime pair in Goldbach's conjecture

Oh Jung Uk

Abstract

If $\pi_g(N)$ is the number of cases that even number N could be expressed as the sum of the two primes of $6n \pm 1$ type then the formula of $\pi_a(N)$ is below

$$
\pi_g(6n+0) = n - 1 - \frac{2}{3} \sum_{k=1}^{n-1} \left(\frac{\pi \beta_g(6k-1)}{\pi \beta_g(6k-1) - 1} \right) - \frac{2}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2 \beta_g(6k-1)}{\pi \beta_g(6k-1) - 1}\right)}{m}
$$
\nwhere, $\beta_g(6k-1) = \tau(6k-1) - 2 + \tau(6(n-k) + 1) - 2, \dots$

But, the formula of $\pi_g(6n + 2), \pi_g(6n - 2)$ is omitted in abstract.

1. Introduction

As well known, Goldbach's conjecture is "All of even number could be expressed expressed as the sum of the two primes". We redefined $\beta_q(N), \rho_q(N)$ using by $\beta(N), \rho(N)$ defined in paper "The formula of $\pi(N)$ " [[1](#page-19-0)] of myself. By using this, we build the formula of $\pi_q(N)$ as the number of cases that even number N could be expressed as the sum of the two primes of $6n \pm 1$ type. In addition, we express the formula of $\pi_q(N)$ with $\pi(6n + 1)$ by using apple box principle in the paper "theorem 6 in The number of twin prime" [\[4\]](#page-19-1) of myself.

2. The formula of number of prime pair in Goldbach's conjecture

Definition [1](#page-19-0). We apply same definition in paper "The formula of $\pi(N)$ " [1] of myself. **Definition 2.** For an arbitrary even number N and $P = 6p \pm 1$, $T = 6t \pm 1$, when $N = P + T$, for arbitrary d

Let us define $\beta_q(P) = \begin{cases} 0 & \text{if } q \neq 0 \\ 0 & \text{if } q \neq 0 \end{cases}$ \overline{d}

Definition 3. Let us define $\rho_a(P) = \begin{cases} 0 & 0 \end{cases}$ $\mathbf{1}$

Definition 4. Let us define $\pi_q(N)$ as the number of cases that all of P, N – P is prime. But, we exclude duplication. That is, $\pi_q(N)$ means the number of cases except duplication that N could be expressed as the sum of the two primes of $6n \pm 1$ type..

Theorem 1. $\beta_q(P)$

If we define $N(N > 2)$ as an even number and $P = 6p \pm 1, T = 6t \pm 1, N = P + T$ then $\beta_q(P) = \beta(P) + \beta(N - P)$ $\beta_a(P) = \rho(P) + \rho(N - P)$

Proof 1.

Let us define $N(N > 2)$ as an even number and $P = 6p \pm 1$, $T = 6t \pm 1$, $N = P + T$. According to "definition 4 in paper The formula of $\pi(N)$ " [[1](#page-19-0)] of myself and $T = N - P$, let us define as if P is composite then $\beta(P) = a$, if $T = N - P$ is composite then $\beta(T) = \beta(N - P) = b$. If all of $P \cdot N - P$ is composite then $\beta(P) + \beta(N - P) = a + b$, $\rho(P) + \rho(N - P) = 2$ If one of P, N – P is composite then $\beta(P) + \beta(N - P) = a$ or b, $\rho(P) + \rho(N - P) = 1$ If all of $P, N - P$ is prime then $\beta(P) + \beta(N - P) = 0$, $\rho(P) + \rho(N - P) = 0$ Therefore, $\beta_a(P) = \beta(P) + \beta(N - P), \beta_a(P) = \rho(P) + \rho(N - P)$

 \blacksquare

Theorem 2. $\rho_g(P)$

If we define $N(N > 2)$ as an even number and $P = 6p \pm 1, T = 6t \pm 1, N = P + T$ then

$$
\rho_g(P) = \left[\frac{\beta_g(P) + 1}{2}\right] = \left[\frac{\rho(P) + \rho(N - P) + 1}{2}\right]
$$

$$
\rho_g(P) = \left[\frac{\beta_g(P)}{\beta_g(P) - w}\right], 0 < w < \frac{1}{2}, w \in \overline{\mathbb{R}}, w = \frac{1}{e}, \frac{1}{\pi}, \frac{1}{N}(N > 2), \dots
$$

If one or more of $P, N - P$ is composite then

$$
\rho_g(P) = \frac{\beta_g(P)}{\beta_g(P) - w} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(\frac{2k\pi\beta_g(P)}{\beta_g(P) - w}\right)}{k}
$$

If all of $P, N - P$ is prime then

$$
\rho_g(P) = \left\{ \frac{\beta_g(P)}{\beta_g(P) - w} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(\frac{2k\pi\beta_g(P)}{\beta_g(P) - w}\right)}{k} \right\} + \frac{1}{2}
$$

Especially, if $=$ $\frac{1}{2}$ $\frac{1}{\pi}$,

If one or more of $P, N - P$ is composite then

$$
\rho_g(P) = \frac{\pi \beta_g(P)}{\pi \beta_g(P) - 1} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(\frac{2k \pi^2 \beta_g(P)}{\pi \beta_g(P) - 1} \right)}{k}
$$

If all of $P, N - P$ is prime then

$$
\rho_g(P)=\left\{\frac{\pi\beta_g(P)}{\pi\beta_g(P)-1}-\frac{1}{2}+\frac{1}{\pi}\sum_{k=1}^\infty \frac{\sin\left(\frac{2k\pi^2\beta_g(P)}{\pi\beta_g(P)-1}\right)}{k}\right\}+\frac{1}{2}
$$

Proof 2.

Because $\beta_g(P) = \rho(P) + \rho(N - P)$ according to theorem $\boxed{1}$, if all of $P, N - P$ is composite then

$$
\beta_g(P) = \rho(P) + \rho(N - P) = 2 \to \left[\frac{\beta_g(P) + 1}{2}\right] = \left[\frac{2 + 1}{2}\right] = 1
$$

if one of $P, N - P$ is composite then

$$
\beta_g(P) = \rho(P) + \rho(N - P) = 1 \to \left[\frac{\beta_g(P) + 1}{2}\right] = \left[\frac{1 + 1}{2}\right] = 1
$$

if all of $P, N - P$ is prime then

$$
\beta_g(P) = \rho(P) + \rho(N - P) = 0 \to \left[\frac{\beta_g(P) + 1}{2}\right] = \left[\frac{0 + 1}{2}\right] = 0
$$

S β $\frac{2}{2}$ T β $\frac{2}{2}$ ρ $\frac{1}{2}$

And, if we define $\rho_a(P) = \left[\frac{\beta}{\rho_a}\right]$ $\frac{p_g(r)}{p_g(p)-w}$ like as "theorem 3 in paper The formula of $\pi(N)$ " [[1](#page-19-0)] of myself then for $0 \lt w \lt \frac{1}{2}$ $\frac{1}{2}$, W β $\frac{Fg^{(-)} }{\beta_q(P)-w}$ \overline{c} $\frac{1}{2-w}$ when one of $P, N-P$ is composite , β $\frac{Fg(y)}{\beta_q(P)-w}$ $\mathbf{1}$ $\frac{1}{1-w}$ w β $\frac{F_g(y)}{\beta_g(P)-w}$ $\boldsymbol{0}$ $\frac{1}{0-w}$ s β $\frac{Fg^{(-)} }{\beta_q(P)-w}$ $\mathbf{1}$ $\frac{1}{e}$, $\mathbf{1}$ $\frac{\overline{}}{\pi}$, $\mathbf{1}$ $\frac{1}{N}$

And, when one of more of P, $N - P$ is composite, because $\beta_a(P) > 0.0 < w < \frac{1}{2}$ $\frac{1}{2}$,

$$
1 < \frac{\beta_g(P)}{\beta_g(P) - w} < 2, \text{ that is, } \frac{\beta_g(P)}{\beta_g(P) - w} \in \overline{\mathbb{R}} \text{ and}
$$

for arbitrary $x \in \overline{\mathbb{R}} [x] = x - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2k\pi x)}{k}$
[3]

$$
\rho_g(P) = \left[\frac{\beta_g(P)}{\beta_g(P) - w}\right] = \frac{\beta_g(P)}{\beta_g(P) - w} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(\frac{2k\pi\beta_g(P)}{\beta_g(P) - w}\right)}{k}
$$

When all of $P, N - P$ is prime, because

$$
\frac{\beta_g(P)}{\beta_g(P) - w} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(\frac{2k\pi\beta_g(P)}{\beta_g(P) - w}\right)}{k} = \frac{0}{0 - w} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(2k\pi\frac{0}{0 - w}\right)}{k} = -\frac{1}{2'}
$$

And, because $\rho_g(P) = 0$

$$
\rho_g(P) = 0 = -\frac{1}{2} + \frac{1}{2} = \left\{ \frac{\beta_g(P)}{\beta_g(P) - w} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(\frac{2k\pi\beta_g(P)}{\beta_g(P) - w}\right)}{k} \right\} + \frac{1}{2}
$$

Especially, if $=$ $\frac{1}{2}$ $\frac{1}{\pi}$,

When one or more of $P, N - P$ is composite,

$$
\rho_g(P) = \frac{\beta_g(P)}{\beta_g(P) - \frac{1}{\pi}} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(\frac{2k\pi\beta_g(P)}{\beta_g(P) - \frac{1}{\pi}}\right)}{k}
$$

$$
= \frac{\pi\beta_g(P)}{\pi\beta_g(P) - 1} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(\frac{2k\pi^2\beta_g(P)}{\pi\beta_g(P) - 1}\right)}{k}
$$

When all of $P, N - P$ is prime,

$$
\rho_g(P) = 0 = -\frac{1}{2} + \frac{1}{2} = \left\{ \frac{\pi \beta_g(P)}{\pi \beta_g(P) - 1} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(\frac{2k\pi^2 \beta_g(P)}{\pi \beta_g(P) - 1}\right)}{k} \right\} + \frac{1}{2}
$$

Theorem 3. $\pi_g(N)$

If we define $N(N > 2)$ as an even number and $P = 6p \pm 1, T = 6t \pm 1, N = P + T$ then for $n \ge 2$

1) When $N = 6n - 2 = P + T = (6p - 1) + (6t - 1)$

$$
\pi_g(6n-2) = \left[\frac{n}{2}\right] - \sum_{k=1}^{\lfloor n/2 \rfloor} \rho_g(6k-1)
$$
\n
$$
= \left[\frac{n}{2}\right] - \frac{2}{3} \sum_{k=1}^{\lfloor n/2 \rfloor} \left(\frac{\pi \beta_g(6k-1)}{\pi \beta_g(6k-1)-1}\right) - \frac{2}{3\pi} \sum_{k=1}^{\lfloor n/2 \rfloor} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2 \beta_g(6k-1)}{\pi \beta_g(6k-1)-1}\right)}{m}
$$
\n
$$
= \frac{1}{2} \left(n - 1 - \sum_{k=1}^{n-1} \rho_g(6k-1) + a(n)\right)
$$
\n
$$
= \frac{n - 1 + a(n)}{2} - \frac{1}{3} \sum_{k=1}^{n-1} \left(\frac{\pi \beta_g(6k-1)}{\pi \beta_g(6k-1)-1}\right) - \frac{1}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2 \beta_g(6k-1)}{\pi \beta_g(6k-1)-1}\right)}{m}
$$

where,

$$
\beta_g(6k-1) = \beta(6k-1) + \beta(6(n-k)-1) = \tau(6k-1) - 2 + \tau(6(n-k)-1) - 2
$$

$$
= \sum_{p=1}^{6k-1} \left(\left[\frac{6k-1}{p} \right] - \left[\frac{6k-2}{p} \right] \right) + \sum_{p=1}^{6(n-k)-1} \left(\left[\frac{6(n-k)-1}{p} \right] - \left[\frac{6(n-k)-2}{p} \right] \right) - 4
$$

 $a(u) = \binom{1}{u}$ $\boldsymbol{0}$ 2) When $N = 6n + 2 = P + T = (6p + 1) + (6t + 1)$

$$
\pi_g(6n+2) = \left[\frac{n}{2}\right] - \sum_{k=1}^{\lfloor n/2 \rfloor} \rho_g(6k+1)
$$
\n
$$
= \left[\frac{n}{2}\right] - \frac{2}{3} \sum_{k=1}^{\lfloor n/2 \rfloor} \left(\frac{\pi \beta_g(6k+1)}{\pi \beta_g(6k+1)-1}\right) - \frac{2}{3\pi} \sum_{k=1}^{\lfloor n/2 \rfloor} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2 \beta_g(6k+1)}{\pi \beta_g(6k+1)-1}\right)}{m}
$$
\n
$$
= \frac{1}{2} \left(n - 1 - \sum_{k=1}^{n-1} \rho_g(6k+1) + b(n)\right)
$$
\n
$$
= \frac{n - 1 + b(n)}{2} - \frac{1}{3} \sum_{k=1}^{n-1} \left(\frac{\pi \beta_g(6k+1)}{\pi \beta_g(6k+1)-1}\right) - \frac{1}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2 \beta_g(6k+1)}{\pi \beta_g(6k+1)-1}\right)}{m}
$$

Where,

 $\beta_g(6k+1)=\beta(6k+1)+\beta(6(n-k)+1)=\tau(6k+1)-2+\tau(6(n-k)+1)-2$

$$
= \sum_{p=1}^{6k+1} \left(\left[\frac{6k+1}{p} \right] - \left[\frac{6k}{p} \right] \right) + \sum_{p=1}^{6(n-k)+1} \left(\left[\frac{6(n-k)+1}{p} \right] - \left[\frac{6(n-k)}{p} \right] \right) - 4
$$

 $b(u) = \begin{cases} 1 \end{cases}$ $\boldsymbol{0}$ 3) When $N = 6n + 0 = P + T = (6p - 1) + (6t + 1)$ or $(6p + 1) + (6t - 1)$

$$
\pi_g(6n+0) = n - 1 - \sum_{k=1}^{n-1} \rho_g(6k-1)
$$

= $n - 1 - \frac{2}{3} \sum_{k=1}^{n-1} \left(\frac{\pi \beta_g(6k-1)}{\pi \beta_g(6k-1) - 1} \right) - \frac{2}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2 \beta_g(6k-1)}{\pi \beta_g(6k-1) - 1}\right)}{m}$
= $n - 1 - \sum_{k=1}^{n-1} \rho_g(6k+1)$
= $n - 1 - \frac{2}{3} \sum_{k=1}^{n-1} \left(\frac{\pi \beta_g(6k+1)}{\pi \beta_g(6k+1) - 1} \right) - \frac{2}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2 \beta_g(6k+1)}{\pi \beta_g(6k+1) - 1}\right)}{m}$

Where,

$$
\beta_g(6k-1) = \beta(6k-1) + \beta(6(n-k)+1) = \tau(6k-1) - 2 + \tau(6(n-k)+1) - 2
$$

$$
= \sum_{p=1}^{6k-1} \left(\left[\frac{6k-1}{p} \right] - \left[\frac{6k-2}{p} \right] \right) + \sum_{p=1}^{6(n-k)+1} \left(\left[\frac{6(n-k)+1}{p} \right] - \left[\frac{6(n-k)}{p} \right] \right) - 4
$$

 $\beta_g(6k+1) = \beta(6k+1) + \beta(6(n-k)-1) = \tau(6k+1) - 2 + \tau(6(n-k)-1) - 2$

$$
= \sum_{p=1}^{6k+1} \left(\left[\frac{6k+1}{p} \right] - \left[\frac{6k}{p} \right] \right) + \sum_{p=1}^{6(n-k)-1} \left(\left[\frac{6(n-k)-1}{p} \right] - \left[\frac{6(n-k)-2}{p} \right] \right) - 4
$$

Proof 3.

Let us define $N(N > 2)$ as an even number and $P = 6p \pm 1$, $T = 6t \pm 1$, $N = P + T$. If we list up all cases of $N = P + T$ by using P_k then the following equation is satisfied. But, we exclude the duplicated cases of $P_k = T_m$ and $P_m = T_k$.

$$
N = \begin{cases} P_1 + T_1 = P_1 + (N - P_1) \\ P_2 + T_2 = P_2 + (N - P_2) \\ \dots \\ P_r + T_r = P_r + (N - P_r) \end{cases} \dots \dots \dots (3.1)
$$

If all of P_k , $N - P_k$ is prime then $1 - \rho_a(P_k) = 1 - 0 = 1$, If one or more of P_k , $N - P_k$ is composite then $1 - \rho_a(P_k) = 1 - 1 = 0$. So,

$$
\pi_g(N) = \sum_{k=1}^r \{1 - \rho_g(P_k)\} = \sum_{k=1}^r 1 - \sum_{k=1}^r \rho_g(P_k) = r - \sum_{k=1}^r \rho_g(P_k) \dots \dots \dots \tag{3.2}
$$

And, let us define P as a set which all of P_k , $N - P_k$ is prime, and let us define $\mathbb C$ as a set which one or more of P_k , $N - P_k$ is composite

and let us define
$$
A = \frac{\beta_g(P_k)}{\beta_g(P_k) - w} - \frac{1}{2} + \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi\beta_g(P_k)}{\beta_g(P_k) - w}\right)}{m}
$$

According to theorem 2 , if one or more of P_k , $N - P_k$ is composite then $\rho_a(P_k) = A$,

if all of P_k , $N - P_k$ is prime then $\rho_q(P_k) = A + \frac{1}{2}$ $\frac{1}{2}$, and

l \boldsymbol{n} W

because $P \cap C = \emptyset$,

$$
\sum_{k=1}^{r} \rho_g(P_k) = \sum_{p=1}^{r} \rho_g(P_k) + \sum_{C}^{r} \rho_g(P_k) \dots \dots \dots \tag{3.3}
$$

So, if we apply (3.3) to (3.2) then

$$
\pi_g(N) = r - \left(\sum_{p}^{r} \rho_g(P_k) + \sum_{C}^{r} \rho_g(P_k)\right) = r - \left(\sum_{p}^{r} \left(A + \frac{1}{2}\right) + \sum_{C}^{r} A\right)
$$

$$
= r - \left(\sum_{p}^{r} \left(\frac{1}{2}\right) + \sum_{p}^{r} A + \sum_{C}^{r} A\right) \dots \dots \dots (3.4)
$$

$$
\sum_{p}^{r} \left(\frac{1}{2}\right) = \frac{1}{2} \sum_{p}^{r} 1 = \frac{\pi_g(N)}{2}, \sum_{p}^{r} A + \sum_{C}^{r} A = \sum_{k=1}^{r} A
$$

So, if we apply this to (3.4) then

$$
\pi_g(N) = r - \left(\frac{\pi_g(N)}{2} + \sum_{k=1}^r A\right) = r - \frac{\pi_g(N)}{2} - \sum_{k=1}^r A \dots \dots \dots \tag{3.5}
$$

If we substitute A to (3.5) and arrange then

$$
\pi_g(N) + \frac{\pi_g(N)}{2} = r - \sum_{k=1}^r A \to \frac{3\pi_g(N)}{2} = r - \sum_{k=1}^r A \to
$$
\n
$$
\pi_g(N) = \frac{2}{3} \left\{ r - \sum_{k=1}^r \left(\frac{\beta_g(P_k)}{\beta_g(P_k) - w} - \frac{1}{2} + \frac{1}{\pi} \sum_{m=1}^\infty \frac{\sin\left(\frac{2m\pi\beta_g(P_k)}{\beta_g(P_k) - w}\right)}{m} \right) \right\}
$$
\n
$$
= \frac{2}{3} \left\{ r - \sum_{k=1}^r \left(-\frac{1}{2} \right) - \sum_{k=1}^r \left(\frac{\beta_g(P_k)}{\beta_g(P_k) - w} \right) - \frac{1}{\pi} \sum_{k=1}^r \sum_{m=1}^\infty \frac{\sin\left(\frac{2m\pi\beta_g(P_k)}{\beta_g(P_k) - w}\right)}{m} \right\}
$$
\n
$$
= \frac{2}{3} \left\{ \frac{3r}{2} - \sum_{k=1}^r \left(\frac{\beta_g(P_k)}{\beta_g(P_k) - w} \right) - \frac{1}{\pi} \sum_{k=1}^r \sum_{m=1}^\infty \frac{\sin\left(\frac{2m\pi\beta_g(P_k)}{\beta_g(P_k) - w}\right)}{m} \right\}
$$
\n
$$
= r - \frac{2}{3} \sum_{k=1}^r \left(\frac{\beta_g(P_k)}{\beta_g(P_k) - w} \right) - \frac{2}{3\pi} \sum_{k=1}^r \sum_{m=1}^\infty \frac{\sin\left(\frac{2m\pi\beta_g(P_k)}{\beta_g(P_k) - w}\right)}{m} \text{........ (3.6)}
$$

If we substitute $w = \frac{1}{x}$ $\frac{1}{\pi}$ to [\(3.6\)](#page-9-1) especially then

$$
\pi_g(N) = r - \frac{2}{3} \sum_{k=1}^r \left(\frac{\beta_g(P_k)}{\beta_g(P_k) - \frac{1}{\pi}} \right) - \frac{2}{3\pi} \sum_{k=1}^r \sum_{m=1}^\infty \frac{\sin \left(\frac{2m\pi\beta_g(P_k)}{\beta_g(P_k) - \frac{1}{\pi}} \right)}{m}
$$

$$
= r - \frac{2}{3} \sum_{k=1}^r \left(\frac{\pi\beta_g(P_k)}{\pi\beta_g(P_k) - 1} \right) - \frac{2}{3\pi} \sum_{k=1}^r \sum_{m=1}^\infty \frac{\sin \left(\frac{2m\pi^2\beta_g(P_k)}{\pi\beta_g(P_k) - 1} \right)}{m} \dots \dots \dots \tag{3.7}
$$

N is one of $N = 6n - 2$, $N = 6n + 0$, $N = 6n + 2$ and the cases that we could express $N = P + T$ type is following equation.

$$
\begin{Bmatrix}\nN = 6n - 2 = P + T = (6p - 1) + (6t - 1) \\
N = 6n + 0 = P + T = (6p + 1) + (6t - 1) \text{ or } (6p - 1) + (6t + 1) \\
N = 6n + 2 = P + T = (6p + 1) + (6t + 1)\n\end{Bmatrix}
$$
............ (3.8)

1) When $N = 6n - 2 = P + T = (6p - 1) + (6t - 1)$ If we define $p_1 = 1, p_2 = 2, ...$, that is, $p_k = k$ then $P_k = 6p_k - 1 = 6k - 1$ and if we express [\(3.1\)](#page-8-3) by using this then the following equation is satisfied.

$$
N=6n-2
$$

$$
= \begin{cases} P_1 + T_1 = (6p_1 - 1) + (6t_1 - 1) = (6 \times 1 - 1) + (6(n - 1) - 1) \\ P_2 + T_2 = (6p_2 - 1) + (6t_2 - 1) = (6 \times 2 - 1) + (6(n - 2) - 1) \\ \vdots \\ P_r + T_r = (6p_r - 1) + (6t_r - 1) = (6r - 1) + (6(n - r) - 1) \\ \vdots \\ P_{n-2} + T_{n-2} = (6p_{n-2} - 1) + (6t_{n-2} - 1) = (6(n - 2) - 1) + (6 \times 2 - 1) \\ \vdots \\ P_{n-1} + T_{n-1} = (6p_{n-1} - 1) + (6t_{n-1} - 1) = (6(n - 1) - 1) + (6 \times 1 - 1) \end{cases} \dots (3.1.1)
$$

All of the cases that we could express $N = (6p - 1) + (6t - 1)$ is until $N = (6p_{n-1} - 1) +$ $(6t_{n-1} - 1)$, but, this duplication that $6k - 1 + 6(n - k) - 1 = (6p_k - 1) + (6t_k - 1)$ is same as $6(n-k)-1+6k-1 = (6p_{n-k}-1) + (6t_{n-k}-1)$ is occurred because $t_k = n - p_k = n - k$. Because this duplication occurs from $k = n - k$, if we define $p_r = t_r$ then $r = n - r \rightarrow r = n/2$, and $r = \lfloor n/2 \rfloor$ because r has to be an natural number

When *n* is an odd number, $r = [n/2] \neq n/2$, so, $p_r = t_r$ is not exist.

But, when *n* is an even number $r = [n/2] = n/2$, so, $p_r = t_r$ is occurred. But, $r = n/2$ term is allowed because "one prime is allowed to use twice" in Goldbach's conjecture.

That is, $1 \le p_k \le [n/2]$ term and $[n/2] + 1 \le p_k \le n - 1$ term is duplicated. And, it should be $p_k \ge 1$, $t_k \ge 1$ because $=p_k + t_k$, so, $n \ge 2$.

So, if we apply the above contents to $(\overline{3.2})$, $(\overline{3.6})$, $(\overline{3.7})$ then

$$
\pi_g(6n-2) = \left[\frac{n}{2}\right] - \sum_{k=1}^{\lfloor n/2 \rfloor} \rho_g(6k-1)
$$
\n
$$
= \left[\frac{n}{2}\right] - \frac{2}{3} \sum_{k=1}^{\lfloor n/2 \rfloor} \left(\frac{\beta_g(6k-1)}{\beta_g(6k-1) - w}\right) - \frac{2}{3\pi} \sum_{k=1}^{\lfloor n/2 \rfloor} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi\beta_g(6k-1)}{\beta_g(6k-1) - w}\right)}{m}
$$
\n
$$
= \left[\frac{n}{2}\right] - \frac{2}{3} \sum_{k=1}^{\lfloor n/2 \rfloor} \left(\frac{\pi\beta_g(6k-1)}{\pi\beta_g(6k-1) - 1}\right) - \frac{2}{3\pi} \sum_{k=1}^{\lfloor n/2 \rfloor} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2\beta_g(6k-1)}{\pi\beta_g(6k-1) - 1}\right)}{m}
$$

If we define A as the number of pair of that P , T are all prime which includes duplication,

if we define $a(u) = \begin{cases} 1 - \rho_g(6[u/2] - 1), if u \text{ is even number} \\ 0, if u \text{ is odd number} \end{cases}$ then

$$
A = n - 1 - \sum_{k=1}^{n-1} \rho_g(6k - 1)
$$

When $a(u) = 1$, $\lceil n/2 \rceil$ term of $N = (6\lceil n/2 \rceil - 1) + (6(n - \lceil n/2 \rceil) - 1)$ is not duplicated but the one is only exist ,so,

$$
\pi_g(6n-2) = \frac{1}{2}\big(A + a(n)\big)
$$

Therefore,

$$
\pi_g(6n-2) = \frac{1}{2} \left(n - 1 - \sum_{k=1}^{n-1} \rho_g(6k-1) + a(n) \right)
$$

=
$$
\frac{n-1+a(n)}{2} - \frac{1}{3} \sum_{k=1}^{n-1} \left(\frac{\beta_g(6k-1)}{\beta_g(6k-1) - w} \right) - \frac{1}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi\beta_g(6k-1)}{\beta_g(6k-1) - w}\right)}{m}
$$

=
$$
\frac{n-1+a(n)}{2} - \frac{1}{3} \sum_{k=1}^{n-1} \left(\frac{\pi\beta_g(6k-1)}{\pi\beta_g(6k-1) - 1} \right) - \frac{1}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2\beta_g(6k-1)}{\pi\beta_g(6k-1) - 1}\right)}{m}
$$

And, according to theorem $\begin{vmatrix} 1 \\ \beta_a(P_k) \end{vmatrix} = \beta(P_k) + \beta(N - P_k)$ $\begin{vmatrix} 1 \\ \beta_a(P_k) \end{vmatrix} = \beta(P_k) + \beta(N - P_k)$ $\begin{vmatrix} 1 \\ \beta_a(P_k) \end{vmatrix} = \beta(P_k) + \beta(N - P_k)$, so,

 $\beta_g(6k-1) = \beta(6k-1) + \beta(6n-2 - (6k-1)) = \beta(6k-1) + \beta(6(n-k)-1)$ In the above formula, if we express $\beta_g(6k-1)$ by using only $\beta(N) = \tau(N) - 2$ which is the most simple function in "theorem 2 in paper The formula of $\pi(N)$ " [[1](#page-19-0)] of myself then $\beta_g(6k-1) = \beta(6k-1) + \beta(6(n-k)-1) = \tau(6k-1) - 2 + \tau(6(n-k)-1) - 2$

$$
= \sum_{p=1}^{6k-1} \left(\left[\frac{6k-1}{p} \right] - \left[\frac{6k-2}{p} \right] \right) - 2 + \sum_{p=1}^{6(n-k)-1} \left(\left[\frac{6(n-k)-1}{p} \right] - \left[\frac{6(n-k)-2}{p} \right] \right) - 2
$$

$$
= \sum_{p=1}^{6k-1} \left(\left[\frac{6k-1}{p} \right] - \left[\frac{6k-2}{p} \right] \right) + \sum_{p=1}^{6(n-k)-1} \left(\left[\frac{6(n-k)-1}{p} \right] - \left[\frac{6(n-k)-2}{p} \right] \right) - 4
$$

2) When $N = 6n + 2 = P + T = (6p + 1) + (6t + 1)$

If we define $p_1 = 1, p_2 = 2, ...$, that is, $p_k = k$ then $P_k = 6p_k + 1 = 6k + 1$ and if we express [\(3.1\)](#page-8-3) by using this then the following equation is satisfied.

 $N = 6n + 2$

$$
P_1 + T_1 = (6p_1 + 1) + (6t_1 + 1) = (6 \times 1 + 1) + (6(n - 1) + 1)
$$

\n
$$
P_2 + T_2 = (6p_2 + 1) + (6t_2 + 1) = (6 \times 2 + 1) + (6(n - 2) + 1)
$$

\n...
\n
$$
P_r + T_r = (6p_r + 1) + (6t_r + 1) = (6r + 1) + (6(n - r) + 1)
$$

\n...
\n
$$
P_{n-2} + T_{n-2} = (6p_{n-2} + 1) + (6t_{n-2} + 1) = (6(n - 2) + 1) + (6 \times 2 + 1)
$$

\n...
\n
$$
P_{n-1} + T_{n-1} = (6p_{n-1} + 1) + (6t_{n-1} + 1) = (6(n - 1) + 1) + (6 \times 1 + 1)
$$

As the same with the above 1), $1 \le p_k \le [n/2]$ term and $[n/2] + 1 \le p_k \le n - 1$ term is all duplicated. And, it should be $p_k \ge 1$, $t_k \ge 1$ because $= p_k + t_k$, so, $n \ge 2$. If we apply the above contents to $(\overline{3.2})$, $(\overline{3.6})$, $(\overline{3.7})$ then

$$
\pi_g(6n+2) = \left[\frac{n}{2}\right] - \sum_{k=1}^{\lfloor n/2 \rfloor} \rho_g(6k+1)
$$
\n
$$
= \left[\frac{n}{2}\right] - \frac{2}{3} \sum_{k=1}^{\lfloor n/2 \rfloor} \left(\frac{\beta_g(6k+1)}{\beta_g(6k+1) - w}\right) - \frac{2}{3\pi} \sum_{k=1}^{\lfloor n/2 \rfloor} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi\beta_g(6k+1)}{\beta_g(6k+1) - w}\right)}{m}
$$
\n
$$
= \left[\frac{n}{2}\right] - \frac{2}{3} \sum_{k=1}^{\lfloor n/2 \rfloor} \left(\frac{\pi\beta_g(6k+1)}{\pi\beta_g(6k+1) - 1}\right) - \frac{2}{3\pi} \sum_{k=1}^{\lfloor n/2 \rfloor} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2\beta_g(6k+1)}{\pi\beta_g(6k+1) - 1}\right)}{m}
$$
\nIf we define $h(u) = \left\{1 - \rho_g(6[u/2] + 1), \text{ if } u \text{ is even number}\right\}$

If we define $b(u)$ \mathfrak{c} 0 , *if* u is odd number ſ

and arrange by using same method with 1) then (detail proof is omitted)

$$
\pi_g(6n-2) = \frac{1}{2} \left(n - 1 - \sum_{k=1}^{n-1} \rho_g(6k+1) + b(n) \right)
$$

=
$$
\frac{n-1+b(n)}{2} - \frac{1}{3} \sum_{k=1}^{n-1} \left(\frac{\beta_g(6k+1)}{\beta_g(6k+1) - w} \right) - \frac{1}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi\beta_g(6k+1)}{\beta_g(6k+1) - w}\right)}{m}
$$

=
$$
\frac{n-1+b(n)}{2} - \frac{1}{3} \sum_{k=1}^{n-1} \left(\frac{\pi\beta_g(6k+1)}{\pi\beta_g(6k+1) - 1} \right) - \frac{1}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2\beta_g(6k+1)}{\pi\beta_g(6k+1) - 1}\right)}{m}
$$

And, according to theorem $\begin{vmatrix} 1 & \beta_a(P_k) = \beta(P_k) + \beta(N - P_k)$ $\begin{vmatrix} 1 & \beta_a(P_k) = \beta(P_k) + \beta(N - P_k)$ $\begin{vmatrix} 1 & \beta_a(P_k) = \beta(P_k) + \beta(N - P_k)$, so,

$$
\beta_g(6k+1) = \beta(6k+1) + \beta(6n+2 - (6k+1)) = \beta(6k+1) + \beta(6(n-k)+1)
$$

Therefore, according to "theorem 2 in paper The formula of $\pi(N)$ " [[1](#page-19-0)] of myself $\beta_g(6k+1) = \beta(6k+1) + \beta(6(n-k)+1) = \tau(6k+1) - 2 + \tau(6(n-k)+1) - 2$

$$
= \sum_{p=1}^{6k+1} \left(\left[\frac{6k+1}{p} \right] - \left[\frac{6k}{p} \right] \right) + \sum_{p=1}^{6(n-k)+1} \left(\left[\frac{6(n-k)+1}{p} \right] - \left[\frac{6(n-k)}{p} \right] \right) - 4
$$

3) When $N = 6n + 0 = P + T = (6p - 1) + (6t + 1)$ or $(6p + 1) + (6t - 1)$ If we change p, t in $(6p + 1) + (6t - 1)$ then it is same as $(6p - 1) + (6t + 1)$. So, we study only $(6p - 1) + (6t + 1)$.

If we define $p_1 = 1, p_2 = 2, ...$, that is, $p_k = k$ then $P_k = 6p_k - 1 = 6k - 1$ and if we express [\(3.1\)](#page-8-3) by using this then the following equation is satisfied.

$$
N=6n+0
$$

$$
= \begin{cases} P_1 + T_1 = (6p_1 - 1) + (6t_1 + 1) = (6 \times 1 - 1) + (6(n - 1) + 1) \\ P_2 + T_2 = (6p_2 - 1) + (6t_2 + 1) = (6 \times 2 - 1) + (6(n - 2) + 1) \\ \dots \\ P_{n-2} + T_{n-2} = (6p_{n-2} - 1) + (6t_{n-2} + 1) = (6(n - 2) - 1) + (6 \times 2 + 1) \\ P_{n-1} + T_{n-1} = (6p_{n-1} - 1) + (6t_{n-1} + 1) = (6(n - 1) - 1) + (6 \times 1 + 1) \end{cases}
$$
(3.3.1)

As not same with the above 1) and 2), the duplicated term of $P_k = T_m$ and $P_m = T_k$ is not exist because $P_k \equiv -1 \pmod{6}$, $T_k \equiv 1 \pmod{6}$.

And, it should be $p_k \ge 1$, $t_k \ge 1$ because $=p_k + t_k$, so, $n \ge 2$.

If we apply the above contents to $(\overline{3.2})$, $(\overline{3.6})$, $(\overline{3.7})$ then

$$
\pi_g(6n+0) = n - 1 - \sum_{k=1}^{n-1} \rho_g(6k-1)
$$
\n
$$
= n - 1 - \frac{2}{3} \sum_{k=1}^{n-1} \left(\frac{\beta_g(6k-1)}{\beta_g(6k-1) - w} \right) - \frac{2}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi\beta_g(6k-1)}{\beta_g(6k-1) - w}\right)}{m}
$$
\n
$$
= n - 1 - \frac{2}{3} \sum_{k=1}^{n-1} \left(\frac{\pi\beta_g(6k-1)}{\pi\beta_g(6k-1) - 1} \right) - \frac{2}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2\beta_g(6k-1)}{\pi\beta_g(6k-1) - 1}\right)}{m}
$$

And, if we apply $(3.3.1)$ to the case of $P_k \equiv 1 \pmod{6}$, $T_k \equiv -1 \pmod{6}$ then the following equation is satisfied.

$$
N = 6n + 0
$$
\n
$$
P_1 + T_1 = (6p_1 + 1) + (6t_1 - 1) = (6 \times 1 + 1) + (6(n - 1) - 1)
$$
\n
$$
P_2 + T_2 = (6p_2 + 1) + (6t_2 - 1) = (6 \times 2 + 1) + (6(n - 2) - 1)
$$
\n...\n
$$
P_{n-2} + T_{n-2} = (6p_{n-2} + 1) + (6t_{n-2} - 1) = (6(n - 2) + 1) + (6 \times 2 - 1)
$$
\n
$$
P_{n-1} + T_{n-1} = (6p_{n-1} + 1) + (6t_{n-1} - 1) = (6(n - 1) + 1) + (6 \times 1 - 1)
$$
\n(3.3.2)

Because the above contents of $(3.3.2)$ is same as the contents of $(3.3.1)$ (detail proof is omitted)

$$
\pi_g(6n+0) = n - 1 - \sum_{k=1}^{n-1} \rho_g(6k+1)
$$
\n
$$
= n - 1 - \frac{2}{3} \sum_{k=1}^{n-1} \left(\frac{\beta_g(6k+1)}{\beta_g(6k+1) - w} \right) - \frac{2}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi\beta_g(6k+1)}{\beta_g(6k+1) - w}\right)}{m}
$$
\n
$$
= n - 1 - \frac{2}{3} \sum_{k=1}^{n-1} \left(\frac{\pi\beta_g(6k+1)}{\pi\beta_g(6k+1) - 1} \right) - \frac{2}{3\pi} \sum_{k=1}^{n-1} \sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2\beta_g(6k+1)}{\pi\beta_g(6k+1) - 1}\right)}{m}
$$

And, according to theorem $\left|1\right|$, $\beta_a(P_k) = \beta(P_k) + \beta(N - P_k)$, so,

$$
\beta_g(6k-1) = \beta(6k-1) + \beta(6n+0 - (6k-1)) = \beta(6k-1) + \beta(6(n-k)+1)
$$

Therefore, according to "theorem 2 in paper The formula of $\pi(N)$ " [[1](#page-19-0)] of myself $\beta_a($

$$
= \sum_{p=1}^{6k-1} \left(\left[\frac{6k-1}{p} \right] - \left[\frac{6k-2}{p} \right] \right) + \sum_{p=1}^{6(n-k)+1} \left(\left[\frac{6(n-k)+1}{p} \right] - \left[\frac{6(n-k)}{p} \right] \right) - 4
$$

And, $\beta_q(6k + 1) = \beta(6k + 1) + \beta(6n + 0 - (6k + 1)) = \beta(6k + 1) + \beta(6(n - k) - 1)$ $\beta_g(6k+1) = \beta(6k+1) + \beta(6(n-k)-1) = \tau(6k+1) - 2 + \tau(6(n-k)-1) - 2$

$$
= \sum_{p=1}^{6k+1} \left(\left[\frac{6k+1}{p} \right] - \left[\frac{6k}{p} \right] \right) + \sum_{p=1}^{6(n-k)-1} \left(\left[\frac{6(n-k)-1}{p} \right] - \left[\frac{6(n-k)-2}{p} \right] \right) - 4
$$

 \blacksquare

Theorem 4. $\pi_g(N)$ expression by using $\pi(6n + 1)$

Let us define $N(N > 2)$ as an even number $P = 6p \pm 1, T = 6t \pm 1, N = P + T, n \ge 2$. Let us define $\pi_{-}(M)$ as the number of $6m - 1$ type prime number of M or less, $\pi_+(M)$ as the number of $6m + 1$ type prime number of M or less. Let us define M be a set of that only one of P, T is prime. $a(n)$, $b(n)$ is same with function defined in theorem $\overline{3}$.

1) When $N = 6n - 2 = P + T = (6p - 1) + (6t - 1)$

$$
\pi_g(6n-2) = \frac{\pi_{-}(6(n-1)-1) + a(n)}{2} - \frac{1}{4} \sum_{M}^{n-1} (\rho(6k-1) + \rho(6(n-k)-1))
$$

$$
= \frac{\pi_{-}(6(n-1)-1)+a(n)}{2} - \frac{1}{6} \sum_{M}^{n} \left(\frac{\pi \beta (6k-1)}{\pi \beta (6k-1)-1} + \frac{\pi \beta (6(n-k)-1)}{\pi \beta (6(n-k)-1)-1} \right)
$$

$$
- \frac{1}{6\pi} \sum_{M}^{n} \left(\sum_{m=1}^{\infty} \frac{\sin \left(\frac{2m\pi^{2} \beta (6k-1)}{\pi \beta (6k-1)-1} \right) + \sin \left(\frac{2m\pi^{2} \beta (6(n-k)-1)}{\pi \beta (6(n-k)-1)-1} \right)}{m} \right)
$$

2) When $N = 6n + 2 = P + T = (6p + 1) + (6t + 1)$

 $\overline{}$

$$
\pi_g(6n+2) = \frac{\pi_+(6(n-1)+1)+b(n)}{2} - \frac{1}{4} \sum_{M}^{n-1} (\rho(6k+1)+\rho(6(n-k)+1))
$$

$$
= \frac{\pi_+(6(n-1)+1)+b(n)}{2} - \frac{1}{6} \sum_{M}^{n} \left(\frac{\pi \beta(6k+1)}{\pi \beta(6k+1)-1} + \frac{\pi \beta(6(n-k)+1)}{\pi \beta(6(n-k)+1)-1} \right)
$$

$$
1 \sum_{M}^{n} \left(\sum_{m}^{\infty} \frac{\sin \left(\frac{2m\pi^2 \beta(6k+1)}{\pi \beta(6k+1)-1} \right) + \sin \left(\frac{2m\pi^2 \beta(6(n-k)+1)}{\pi \beta(6(n-k)+1)-1} \right) \right)
$$

 \cdot)

 $\frac{1}{6\pi}$ \overline{m} \boldsymbol{m} 3) When $N = 6n + 0 = P + T = (6p - 1) + (6t + 1)$ or $(6p + 1) + (6t - 1)$

$$
\pi_g(6n+0) = \frac{1}{2} \left(\pi(6(n-1)+1) - 2 - \sum_{M}^{n-1} \left(\rho(6k-1) + \rho(6(n-k)+1) \right) \right)
$$

$$
= \frac{\pi(6(n-1)+1)-2}{2} - \frac{1}{3} \sum_{M}^{n} \left(\frac{\pi\beta(6k-1)}{\pi\beta(6k-1)-1} + \frac{\pi\beta(6(n-k)+1)}{\pi\beta(6(n-k)+1)-1} \right)
$$

$$
- \frac{1}{3\pi} \sum_{M}^{n} \left(\sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^{2}\beta(6k-1)}{\pi\beta(6k-1)-1}\right) + \sin\left(\frac{2m\pi^{2}\beta(6(n-k)+1)}{\pi\beta(6(n-k)+1)-1}\right)}{m} \right)
$$

Proof 4.

Let us define $N(N > 2)$ as an even number and $P = 6p \pm 1$, $T = 6t \pm 1$, $N = P + T$, $n \ge 2$. Let us define $\pi_{-}(M)$ as the number of $6m - 1$ type prime number of M or less, $\pi_+(M)$ as the number of 6m + 1 type prime number of M or less. Let us M be a set of that only one of P, T is prime . $a(n)$, $b(n)$ is same with function defined in theorem β . 1) When $N = 6n - 2 = P + T = (6p - 1) + (6t - 1)$

Let us define A as the number of pair of that P, T be all prime included duplication and if we regard prime as red apple and regard composite as green apple in "theorem 6 in The number of twin prime" $[4]$ then

$$
A = \frac{1}{2} \left(2\pi_{-}(6(n-1)-1) - \sum_{M}^{n-1} 1 \right) \dots \dots \dots \dots \tag{4.1.1}
$$

If we exclude duplication in $(\overline{4.1.1})$ according to theorem $\overline{3}$ then

$$
\pi_g(6n - 2) = \frac{1}{2}(A + a(n)) = \frac{1}{2}\left(\frac{1}{2}\left(2\pi_-(6(n - 1) - 1) - \sum_{M}^{n-1} 1\right) + a(n)\right) \to
$$

$$
\pi_g(6n - 2) = \frac{\pi_-(6(n - 1) - 1) + a(n)}{2} - \frac{1}{4}\sum_{M}^{n-1} 1 \to
$$

$$
\pi_g(6n-2) = \frac{\pi_{-}(6(n-1)-1) + a(n)}{2} - \frac{1}{4} \sum_{M}^{n-1} \rho_g(6k-1) \dots \dots \dots \dots \tag{4.1.2}
$$

When $6k - 1, 6(n - k) - 1 \in M$, $\rho_a(6k-1) = 1 = 1 + 0$ or $0 + 1 = \rho(6k-1) + \rho(6(n-k)-1)$, so, If we apply to $(4.1.2)$ then

$$
\pi_g(6n-2) = \frac{\pi_{-}(6(n-1)-1) + a(n)}{2}
$$

$$
-\frac{1}{4} \sum_{M}^{n-1} (\rho(6k-1) + \rho(6(n-k)-1)) \dots \dots \dots \dots \dots \dots \tag{4.1.3}
$$

If we arrange $(4.1.3)$ then (detail proof is omitted)

$$
\pi_g(6n-2) = \frac{\pi_{-}(6(n-1)-1) + a(n)}{2} - \frac{1}{6} \sum_{M}^{n} \left(\frac{\pi \beta (6k-1)}{\pi \beta (6k-1) - 1} + \frac{\pi \beta (6(n-k)-1)}{\pi \beta (6(n-k)-1) - 1} \right)
$$

$$
- \frac{1}{6\pi} \sum_{M}^{n} \left(\sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2 \beta (6k-1)}{\pi \beta (6k-1) - 1}\right) + \sin\left(\frac{2m\pi^2 \beta (6(n-k)-1)}{\pi \beta (6(n-k)-1) - 1}\right)}{m} \right)
$$

2) When $N = 6n + 2 = P + T = (6p + 1) + (6t + 1)$

Let us define A as the number of pair of that P, T be all prime included duplication and if we regard prime as red apple and regard composite as green apple in "theorem 6 in The number of twin prime" [\[4\]](#page-19-1) then

$$
A = \frac{1}{2} \left(2\pi_+ (6(n-1) + 1) - \sum_{M}^{n-1} 1 \right) \dots \dots \dots \dots \tag{4.2.1}
$$

If we exclude duplication in $(\sqrt{4.2.1})$ according to theorem $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ then

$$
\pi_g(6n+2) = \frac{1}{2}(A+b(n)) = \frac{1}{2}\left(\frac{1}{2}\left(2\pi_+(6(n-1)+1) - \sum_{M}^{n-1}1\right) + b(n)\right) \to
$$

$$
\pi_g(6n+2) = \frac{\pi_+(6(n-1)+1)+b(n)}{2} - \frac{1}{4}\sum_{M}^{n-1}1 \to
$$

$$
\pi_g(6n+2) = \frac{\pi_+(6(n-1)+1)+b(n)}{2} - \frac{1}{4} \sum_{M}^{n-1} \rho_g(6k+1) \dots \dots \dots \dots \tag{4.2.2}
$$

When $6k + 1,6(n - k) + 1 \in M$

 $\rho_g(6k + 1) = 1 = 1 + 0$ or $0 + 1 = \rho(6k + 1) + \rho(6(n - k) + 1)$, so, if we apply to $\left(\frac{4.2.2}{2}\right)$ then

$$
\pi_g(6n+2) = \frac{\pi_+(6(n-1)+1)+b(n)}{2}
$$

$$
-\frac{1}{4}\sum_{M}^{n-1} (\rho(6k+1)+\rho(6(n-k)+1)) \dots \dots \dots \dots \dots \dots \dots \tag{4.2.3}
$$

If we arrange $(4.2.3)$ then (detail proof is omitted)

$$
\pi_g(6n+2) = \frac{\pi_+(6(n-1)+1)+b(n)}{2} - \frac{1}{6} \sum_{M}^{n} \left(\frac{\pi \beta (6k+1)}{\pi \beta (6k+1)-1} + \frac{\pi \beta (6(n-k)+1)}{\pi \beta (6(n-k)+1)-1} \right)
$$

$$
- \frac{1}{6\pi} \sum_{M}^{n} \left(\sum_{m=1}^{\infty} \frac{\sin \left(\frac{2m\pi^2 \beta (6k+1)}{\pi \beta (6k+1)-1} \right) + \sin \left(\frac{2m\pi^2 \beta (6(n-k)+1)}{\pi \beta (6(n-k)+1)-1} \right)}{m} \right)
$$

3) When $N = 6n + 0 = P + T = (6p - 1) + (6t + 1)$ or $(6p + 1) + (6t - 1)$

Duplication is not exist unlike 1),2) and if we regard prime as red apple and regard composite as green apple in "theorem 6 in The number of twin prime" $[4]$ then

$$
\pi_g(6n+0) = \frac{1}{2} \Biggl(\bigl(\pi_-(6(n-1)-1) + \pi_+(6(n-1)+1) \bigr) - \sum_{M}^{n-1} 1 \Biggr) \cdots \cdots \cdots \tag{4.3.1}
$$

 $(\pi_-(6(n-1)-1)+\pi_+(6(n-1)+1)) = \pi(6(n-1)+1) - 2$, so, if we arrange $(\underline{4.3.1})$ then

$$
\pi_g(6n+0) = \frac{1}{2} \left(\pi(6(n-1)+1) - 2 - \sum_{M=1}^{n-1} 1 \right) \to
$$

$$
\pi_g(6n+0) = \frac{1}{2} \left(\pi(6(n-1)+1) - 2 - \sum_{M}^{n-1} \rho_g(6k-1) \right) \dots \dots \dots \dots \tag{4.3.2}
$$

When $6k - 1, 6(n - k) + 1 \in M$

$$
\rho_g(6k - 1) = 1 = 1 + 0 \text{ or } 0 + 1 = \rho(6k - 1) + \rho(6(n - k) + 1),
$$
 so, if we apply to (4.3.2) then

$$
\pi_g(6n+0) = \frac{1}{2} \left(\pi(6(n-1)+1) - 2 - \sum_{M}^{n-1} \left(\rho(6k-1) + \rho(6(n-k)+1) \right) \right) \dots \dots \dots \dots \tag{4.3.3}
$$

If we arrange $(4.3.3)$ then (detail proof is omitted)

$$
\pi_g(6n+0) = \frac{\pi(6(n-1)+1)-2}{2} - \frac{1}{3} \sum_{M}^{n} \left(\frac{\pi \beta (6k-1)}{\pi \beta (6k-1)-1} + \frac{\pi \beta (6(n-k)+1)}{\pi \beta (6(n-k)+1)-1} \right)
$$

$$
- \frac{1}{3\pi} \sum_{M}^{n} \left(\sum_{m=1}^{\infty} \frac{\sin \left(\frac{2m\pi^2 \beta (6k-1)}{\pi \beta (6k-1)-1} \right) + \sin \left(\frac{2m\pi^2 \beta (6(n-k)+1)}{\pi \beta (6(n-k)+1)-1} \right)}{m} \right)
$$

 $N = (6p + 1) + (6t - 1)$ is also same with the above contents,so,

$$
\pi_g(6n+0) = \frac{1}{2} \left(\pi(6(n-1)+1) - 2 - \sum_{M}^{n-1} \left(\rho(6k+1) + \rho(6(n-k)-1) \right) \right)
$$

$$
= \frac{\pi(6(n-1)+1) - 2}{2} - \frac{1}{3} \sum_{M}^{n} \left(\frac{\pi \beta(6k+1)}{\pi \beta(6k+1) - 1} + \frac{\pi \beta(6(n-k)-1)}{\pi \beta(6(n-k)-1) - 1} \right)
$$

$$
- \frac{1}{3\pi} \sum_{M}^{n} \left(\sum_{m=1}^{\infty} \frac{\sin\left(\frac{2m\pi^2 \beta(6k+1)}{\pi \beta(6k+1) - 1}\right) + \sin\left(\frac{2m\pi^2 \beta(6(n-k)-1)}{\pi \beta(6(n-k)-1) - 1}\right)}{m} \right)
$$

 \blacksquare

References

- [1] Oh Jung Uk, "The formula of $\pi(N)$ "[, http://vixra.org/pdf/1408.0041v1.pdf](http://vixra.org/pdf/1408.0041v1.pdf)
- [2] wikipedia, *Goldbach's conjecture*,

[http://ko.wikipedia.org/wiki/%EA%B3%A8%EB%93%9C%EB%B0%94%ED%9D%90%EC%9D%9](http://ko.wikipedia.org/wiki/%EA%B3%A8%EB%93%9C%EB%B0%94%ED%9D%90%EC%9D%98_%EC%B6%94%EC%B8%A1)

- [8_%EC%B6%94%EC%B8%A1](http://ko.wikipedia.org/wiki/%EA%B3%A8%EB%93%9C%EB%B0%94%ED%9D%90%EC%9D%98_%EC%B6%94%EC%B8%A1)
- [3] wikipedia, *floor functions*, http://ko.wikipedia.org/wiki/%EB%B0%94%EB%8B%A5_%ED%95%A8%EC%88%98 [4] Oh Jung Uk, "The formula of number of twin prime", <http://vixra.org/pdf/1408.0044v1.pdf>

Oh Jung Uk, South Korea (I am not in any institutions of mathematics) *E-mail address:* ojumath@gmail.com