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Abstract. Markov networks are models for compactly representing com-
plex probability distributions. They are composed by a structure and a
set of numerical weights. The structure qualitatively describes indepen-
dences in the distribution, which can be exploited to factorize the dis-
tribution into a set of compact functions. A key application for learning
structures from data is to automatically discover knowledge. In practice,
structure learning algorithms focused on “knowledge discovery” present
a limitation: they use a coarse-grained representation of the structure.
As a result, this representation cannot describe context-specific indepen-
dences. Very recently, an algorithm called CSPC was designed to over-
come this limitation, but it has a high computational complexity. This
work tries to mitigate this downside presenting CSGS, an algorithm that
uses the Grow-Shrink strategy for reducing unnecessary computations.
On an empirical evaluation, the structures learned by CSGS achieve com-
petitive accuracies and lower computational complexity with respect to
those obtained by CSPC.

Keywords: Markov networks, structure learning, context-specific inde-
pendences, knowledge discovery, canonical models.

1 Introduction

Markov networks are parametric models for compactly representing complex
probability distributions of a wide variety of domains. These models are com-
posed by two elements: a structure and a set of numerical weights. The structure
plays an important role, because it describes a set of independences that holds
in the domain, thus making assumptions about the functional form or factor-
ization of the distribution [5]. For this reason, the structure is an important
source of knowledge discovery because it depicts intricate patterns of proba-
bilistic (in)dependences between the domain variables. Usually, the structure of
a Markov network can be constructed by algorithms using observations taken
from an unknown distribution. Interestingly, the constructed structure can be
used by human experts for discovering unknown knowledge [16]. For this reason,
the problem of structure learning from data has received an increasing attention
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in machine learning [14, 9, 8]. However, Markov network structure learning from
data is still challenging. One of the most important problems is that it requires
weight learning that cannot be solved in closed-form, requiring to perform a
convex optimization with inference as a subroutine. Unfortunately, inference in
Markov networks is #P-complete [8].

As a result, structure learning algorithms seek the “best” approximation to
the solution structure, making assumptions about the form of the solution space
or the used objective function. The choice of these approximations depends on
the goal of learning used for designing learning algorithms [8, Chapter 16]. In
generative learning, we can find two goals of learning: density estimation, where
a structure is “best” when the resulting Markov network is accurate for an-
swering inference queries; and knowledge discovery, where a structure is “best”
when it is accurate for qualitatively describing the independences that hold in
the distribution. Depending on the goal of learning, we can categorize structure
learning algorithms in: density estimation algorithms [4, 11]; and knowledge dis-
covery algorithms [1, 15]. In this work, we are focusing in the knowledge discovery
goal.

In practice, knowledge discovery algorithms exploit the fact that the structure
can be viewed as a set of independences. Thus, for constructing a structure, such
algorithms successively make (in)dependence queries to data in order to restrict
the number of possible structures, converging toward the solution structure. To
achieve a good performance in this procedure, knowledge discovery algorithms
use a sound and complete representation of the structure: a single undirected
graph. A graph can be viewed as an inference engine which efficiently represents
and manipulates (in)dependences in polynomial time [14]. Unfortunately, this
graph representation cannot capture a type of independences known as context-
specific independences [6–8]. For these cases, knowledge discovery algorithms
cannot achieve good results in their goal of learning, because a single graph
cannot capture such independences, obscuring the acquisition of knowledge. To
overcome this limitation, a novel knowledge discovery algorithm has recently
been developed [3]. This algorithm, called CSPC, uses an alternative representa-
tion of the structure called canonical models, a particular class of Context Spe-
cific Interaction models (CSI models) [7]. Canonical models allow us to encode
context-specific independences by using a set of mutually independent graphs.
Using this representation, CSPC can learn more accurate structures than sev-
eral state-of-the-art algorithms. However, despite the benefits in accuracy, CSPC
presents an important downside: it has a high computational complexity, because
it must perform a large number of independence queries in comparison to tradi-
tional algorithms.

Therefore, this paper focuses on reducing the number of independence queries
required for learning canonical models. This reduction was thought in order to
achieve competitive accuracies with respect to CSPC, but avoiding unnecessary
queries. To achieve this, we present the CSGS algorithm, a knowledge discovery
algorithm that learns canonical models by using the Grow-Shrink strategy [12]
in a similar way to the GSMN algorithm, a Markov network structure learning
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algorithm [1]. Basically, under the assumption of bounded maximum degree, this
strategy constructs a structure in polynomial time by identifying local neighbor-
hoods of each variable [12]. On an empirical evaluation, the canonical models
learned by CSGS achieve competitive accuracies and lower time complexity with
respect to those obtained by CSPC.

The remaining of this work is structured as follows: Section 2 reviews essential
concepts. Section 3 presents our contribution: CSGS. Next, Section 4 shows our
empirical evaluation of CSGS on synthetic datasets. Finally, Section 5 concludes
with directions for future work.

2 Background

We introduce our general notation. Hereon, we use the symbol V to denote a
finite set of indexes. Lowercase subscripts denote particular indexes, for instance
a, b ∈ V ; in contrast, uppercase subscripts denote subsets of indexes, for instance
W ⊆ V . Let XV be a set of random variables of a domain, where single variables
are denoted by single indexes in V , for instance Xa, Xb ∈ XV where a, b ∈ V .
We simply use X instead of XV when V is clear from the context. We focus on
the case where X takes discrete values x ∈ Val(V ), that is, the values for any
Xa ∈ X are discrete: Val(a) = {x0

a, x
1
a, . . .}. For instance, for boolean-valued

variables, that is |Val(a)| = 2, the symbols x0
a and x1

a denote the assignments
Xa = 0 and Xa = 1, respectively. Moreover, we overload the symbol V to also
denote the set of nodes of a graph. Finally, we use X ⊆ Val(V ) for denoting an
arbitrary set of complete or canonical assignments, that is, all the variables take
a fixed value. For instance, xiV ≡ xi ∈ Val(V ).

2.1 Conditional and context-specific independences

A set of independence assumptions is commonly called the structure of a distri-
bution because independences determine the factorization, or functional form,
of a distribution. Two of the most known types of independences are conditional
and context-specific independences. The latter has received an increased inter-
est [6–8, 2, 3], because one conditional independence can be expressed as a set
of context-specific independences. Formally, context-specific independences are
defined as follows:

Definition 1. Let A,B,U,W ⊆ V be disjoint subsets of indexes, and let xW be
some assignment in Val(W ). Let p(X) be a probability distribution. We say that
variables XA and XB are contextually independent given XU and the context
XW = xW , denoted by I(XA, XB | XU , xW ), iff p(X) satisfies:

p(xA|xB , xU , xW ) = p(xA|xU , xW ),

for all assignments xA, xB, and xU ; whenever p(xB , xU , xW ) > 0.
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As a consequence, if I(XA, XB | XU , xW ) holds in p(X), then it logically
follows that I(xA, xB | xU , xW ) also holds in p(X) for any assignment xA, xB ,
xU . Interestingly, if I(XA, XB | XU , xW ) holds for all xW ∈ Val(W ), then we
say that the variables are conditionally independent. Formally,

Definition 2. Let A,B,U,W ⊆ V be disjoint subsets of indexes, and let p(X)
be a probability distribution. We say that variables XA and XB are condition-
ally independent given XU and XW , denoted by I(Xa, Xb | XU , XW ), iff p(X)
satisfies:

p(xA|xB , xU , xW ) = p(xA|xU , xW ),

for all assignments xA, xB, xU , and xW ; whenever p(xB , xU , xW ) > 0.

Thus, a conditional independence I(XA, XB | XU , XW ) that holds in p(X)
can be seen as a conjunction of context-specific independences of the form∧

xW
I(XA, XB | XU , xW ) for all xW ∈ Val(W ). Moreover, each context-specific

independence I(XA, XB | XU , xW ), that holds in p(X), can be seen as a condi-
tional independence I(XA, XB | XU ) that holds in the conditional distribution
p(XV \W |xW )[2].

2.2 Representation of structures

The independence relation I(·, · | ·) commonly assumes the Markov properties [9,
Section 3.1]; we also assume that probability distributions are positive1. Thus,
an isomorphic mathematical object that conforms to the previous properties
is an undirected graph [14]. An undirected graph G is a pair (V,E), where
E ⊂ V × V is a set of edges which encodes conditional independences by using
the graph-theoretic notion of reachability. As a result, the independence asser-
tion I(XA, XB | XU ) can be associated with the graphical condition: “every
path from A to B is intercepted by the nodes U”. Therefore, a graph G encodes
knowledge in a readily accessible way, that is, the graph is highly interpretable.
For instance, we can determine the adjacencies of a node a ∈ V , or its Markov
blanket MB(a : G) ⊆ V \ {a}2, from its neighboring nodes in the graph G. Un-
fortunately, the use of a single graph as representation presents an issue when
distributions hold context-specific independences, because it only encodes con-
ditional independences, leading to excessively dense graphs [2, 3].

In practice, for overcoming the previous limitation, an alternative represen-
tation of the structure consists in a set F = {f iD} of features, where each feature
is commonly represented as an indicator function (Kronecker’s delta), that is,
a boolean-valued function fD : Val(D) 7→ {0, 1}. Given an arbitrary assign-
ment x, a feature f iD(x) returns 1, if xD = xiD; and 0 otherwise. A set of fea-
tures is a more flexible representation than a graph, because the former can en-
code context-specific independences. For example, an independence of the form

1 A distribution p(X) is positive if p(x) > 0, for all x ∈ Val(V ).
2 We simply use MB(a) when the structure from which the Markov blanket is defined

is clear from the context.
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I(Xa, Xb | xW ) is encoded in F iff for any feature f iD ∈ F ′ = {f iD ∈ F : xW =
xiW ∧ W ⊆ D}, the variables Xa and Xb do not appear simultaneously in the
set D, that is, either a /∈ D or b /∈ D. From a set F of features, we can induce a
graph G by adding an edge between every pair of nodes whose variables appear
together in some feature f iD ∈ F [3]. In a similar way, following our previous
example, we can induce a graph from F ′ ⊆ F . This graph is known as an in-
stantiated graph G(xiW ) = (V,E, xiW ), namely, a graph G = (V,E) whose nodes
W ⊆ V are associated to the assignment xiW ∈ Val(W ) [6]. Unfortunately, a
set of features is not easily interpretable as a single graph, because we cannot
efficiently verify independence assertions, since we are required to check all the
features in F .

A graph representation for overcoming the previous limitations is canonical
models [3]. These models are a proper subset of the CSI models [6, 7], which
can capture context-specific independences in a more interpretable way than a
set of features. A canonical model Ḡ is a pair (G,X ), where G is a collection of
instantiated graphs of the form G = {G(xi) ∈ G : xi ∈ X ⊆ Val(V )}, and X
is a set of canonical assignments. These instantiated graphs are called canoni-
cal graphs, because every graph G(xi) is associated to a canonical assignment
xi ∈ Val(V ). In contrast to a single graph G, a canonical model requires several
canonical graphs for capturing both conditional and context-specific indepen-
dences. For instance, let us suppose that we want to encode the context-specific
independence I(Xa, Xb | xw) in a canonical model Ḡ. By Definition 2.1, this
independence implies a set of independences of the form I(xa, xb | xw), for all
the assignments xa, xb ∈ Val(a),Val(b). Then, each independence I(xa, xb | xw)
is captured by a particular G(xi) ∈ G, one whose context xi satisfies: xia = xa,
xib = xb, and xiw = xw.

2.3 Markov networks

A Markov network is a parametric model for representing probability distri-
butions in a compact way. This model is defined by a structure and a set of
potential functions {φk(XDk

)}k, where φk : Val(Dk) 7→ R+, and XDk
⊆ X is

known as the scope of φk. For discrete domains, a usual representation of the
potential functions is a table-based function. Markov networks can represent
a very important class of probability distributions called Gibbs distributions,
whose functional form is as follows: p(X = x) = 1

Z

∏
k φk(xDk

), where Z is a
global constant, called partition function, that guarantees the normalization of
the product. A Gibbs distribution p(X) factorizes over a graph G, if any scope
XDk

corresponds to a complete subgraph Dk (a.k.a. clique) of the graph G.
Without loss of generality, the Gibbs distribution is often factorized by using
the maximum cliques of the graph G. For positive distributions, one important
theoretical result states the converse [5], that is, p(X) can be represented as a
Gibbs distribution (Markov network) that factorizes over G, if G is an I-map3

3 A structure is an I-map for p(X) if every independence described by the structure
holds in p(X).
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for p(X). As a result, given a positive Gibbs distribution p(X), it can be shown
that every influence on any variable Xa ∈ X can be blocked by conditioning
on its Markov blanket MB(a : G), formally: p(Xa|XV \{a}) = p(Xa|XMB(a))

4.
Interestingly, an extension of the previous property provides a criterion for de-
termining the presence or absence of any edge (a, b) in an I-map graph G as
follows [15, Theorem 1]:

Proposition 1. Let p(X) be a positive Gibbs distribution. Then, for any a ∈ V :

1. the set of assertions {I(Xa, Xb | XMB(a)\{b}) : b ∈ MB(a)} is false in p(X),
presence of an edge (a, b), iff each assertion satisfies p(Xa, Xb|XMB(a)) 6=
p(Xa|XMB(a)) · p(Xb|XMB(a)).

2. the set of assertions {I(Xa, Xb | XMB(a)) : b /∈ MB(a)} is true in p(X),
absence of an edge (a, b), iff each assertion satisfies p(Xa, Xb|XMB(a)) =
p(Xa|XMB(a)) · p(Xb|XMB(a)).

Although a Gibbs distribution makes the structure explicit, it encodes the
potential functions as a table-based function, obscuring finer-grained structures
such as context-specific independences [8]. For this reason, a commonly used
representation of a Markov network is the log-linear model defined as p(x) =
1
Z exp

{ ∑
k

∑
i wi,kf

i
k(xDk

)
}
. A log-linear model can be constructed from a

Gibbs distribution as follows: for the ith row of the table-based potential function
φk, an indicator function f ik(·) is defined whose weight is wi,k = log φk(xiDk

).

3 Context-Specific Grow-Shrink algorithm

In this section we present CSGS (Context-Specific Grow-Shrink), a knowledge
discovery algorithm for learning the structure of Markov networks by using
canonical models as structure representation. The design of CSGS was inspired
by the search strategy used by CSPC for learning canonical models [3], and the
GS search strategy for learning graphs [12, 1]. Therefore, CSGS obtains a canon-
ical model by learning a collection G of mutually independent canonical graphs,
where each canonical graph G(xi) ∈ G is learned by using the GS strategy. More
precisely, GS obtains a graph in two steps: first, it generalizes an initial very spe-
cific graph (one that makes many independence assumptions) by adding edges.
Then, the resulting graph is specialized by removing spurious edges. In sum, Al-
gorithm 1 shows an overview of CSGS. In line 1 and 2, CSGS defines an initial
specific canonical model from a set of canonical assignments X . Subsequently,
lines 3 and 4 construct each canonical graph G(xi) ∈ G by using the GS strategy.
For determining the presence or absence of an edge, CSGS uses Proposition 1 as
criterion. The validation of this criterion is realized by eliciting context-specific
independences from data in a similar way to CSPC [3, Section 4.3]. Finally, in
a similar fashion to CSPC [3, Section 4.4], CSGS uses the resulting canonical

4 We further refer the readers to Section 3.2.1 in [9] and Section 4.3.2 in [8] for more
details about Markov properties on undirected graphs.
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model Ḡ for generating a set F of features in order to enable us to use standard
software packages for performing weight learning and inference. The remaining
of this section is structured by using the key elements of CSGS: i) Section 3.1
describes how the initial canonical model is defined; ii) Section 3.2 presents the
GS strategy for obtaining the canonical graphs; and iii) Section 3.3 concludes
analyzing the time complexity of CSGS.

Algorithm 1: Overview of CSGS
Input: domain V , dataset D

1 X ← Define the set of canonical assignments

2 G ← Define a set of initial graphs {G(xi): xi ∈ X}
3 foreach G(xi) ∈ G do
4 G(xi)← GS(G(xi), D)

5 F ← Feature generation from Ḡ = (G,X )

3.1 Initial canonical model

The definition of the initial canonical model consists, firstly, in the set of canon-
ical assignments X . In a similar fashion to CSPC [3], this set is composed by the
unique training examples in D. This definition is the consequence of using the
data-driven approach, that is, we use only contexts that appear in data, and for
the remaining contexts which do not appear in the data, we assume that they
are improbable due to the lack of other information. Lastly, once X is defined,
we associate the most specific graph G(xi) to each context xi ∈ X , namely, the
empty graph. As a result, in each initial canonical graph, every Markov blanket
is empty. The idea behind the GS strategy is to add edges, thus adding nodes
to each blanket.

3.2 Grow-Shrink strategy for learning canonical graphs

CSGS uses the GS strategy under the local-to-global approach [15, 11]. In this ap-
proach, the structure is obtained by constructing each Markov blanket MB(a), a ∈
V in turn. In this manner, for each node a, the strategy GS determines the
Markov blanket MB(a) in two phases: the grow phase and the shrink phase. The
grow phase adds a new edge (a, b) to E as long as Proposition 1.1 is satisfied
in data. However, due to the node ordering used [12, 1], the grow phase can
add nodes that are outside of the blanket, resulting in spurious edges. For this
reason, the shrink phase removes an edge (a, b) ∈ E as long as Proposition 1.2
is satisfied in data. Algorithm 2 shows a more detailed description of the con-
struction of the canonical graph G(xi). Initially, the canonical graph G(xi) is
empty, then it is generalized by using the local-to-global approach shown in the
loop of line 1. In this loop, the two steps of GS are performed: the grow phase,
starting in line 2; and the shrink phase, starting in line 5. In each iteration of
the main loop, line 4 and 7 change the Markov blanket by adding/removing new
edges to the current set E of edges. Once the main loop has finished, the Markov
blankets of each node are obtained and, in consequence, the resulting canonical
graph encodes context-specific independences.
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Algorithm 2: GS strategy

Input: graph G(xi) = (V,E, xi), dataset D
1 foreach node a ∈ V do
2 foreach node b ∈ V \ (MB(a : G(xi)) ∪ {a}) do
3 if I(Xa, Xb | xi

MB(a : G(xi))
) is false in D then

4 E ← E ∪ (a, b)

5 foreach b ∈ MB(a) do
6 if I(Xa, Xb | xi

MB(a : G(xi))\{b}) is true in D then

7 E ← E \ (a, b)

8 return G(xi)

3.3 Asymptotic complexity

As is usual in knowledge discovery algorithms, we analyze the complexity of
CSGS by determining the number of independence tests performed for con-
structing a structure from data. Let m be the number of unique examples in the
dataset, the complexity of performing a test is linear in m. However, this cost can
be particularly high if m is large. In our implementation of CSGS, we reduce this
cost by using ADTree [13]. We assume that nodes in line 1 in Algorithm 2 are
taken in an unspecified but fixed order, and we bound the maximum degree of a
node to k = argmaxG(xi)∈G argmaxa∈V (|MB(a : G(xi))|). Let n be the number

of variables, and let G(xi) = (V,E, xi) be an empty canonical graph, we can
decompose the analysis into the number of tests performed by grow and shrink
phases. In the grow phase, a test is performed for each edge (a, b) /∈ E, resulting
in O

(
n2
)

tests. At the end of the grow phase, the size of a blanket is k at worst,

thus shrink phase performs O
(
nk
)

tests. Additionally, Algorithm 1 performs the
GS strategy m times, one per each initial canonical graph. Therefore, the total
complexity is O

(
m(n2 + nk)

)
independence tests.

4 Empirical evaluation

This section shows experimental results obtained from the structures learned by
CSGS and several structure learning algorithms on synthetic datasets. Basically,
the goals of our experiments remark the greatly practical utility of our algorithm
in a two-fold manner. First, we compare the accuracy of the structures learned
by CSGS and CSPC, as well as by other state-of-the-art structure learners. Sec-
ond, we compare the computational complexity between CSGS and CSPC. For
evaluating the accuracy of the learned structures, we use the underlying distri-
butions that were sampled to generate the synthetic datasets; since there is a
direct correlation between the correctness of the structure and the accuracy of
the distribution[5], the accuracy of a structure can be measured by comparing
the similarity between the learned and underlying distributions. On the other
hand, for evaluating the computational complexity, we report the number of tests
performed for constructing the structures5. Lastly, an open source implementa-

5 Additional empirical results are available in the online appendix http://dharma.

frm.utn.edu.ar/papers/iberamia14/supplementary-information-on-csgs.pdf



The Grow-Shrink strategy for learning Markov network structures 9

tion of CSGS algorithm as well as the synthetic datasets used in this section are
publicly available6.

4.1 Datasets

The datasets of our experiment are used in [2, 3] and were sampled from Markov
networks with context-specific independences for different n numbers of variables
that range from 6 to 9, varying their sizes from 20 to 100k datapoints. For
each n, 10 datasets were sampled from 10 different Markov networks with fixed
structure but randomly choosing their weights. For more details, we refer the
readers to [3, Appendix B]. Roughly speaking, the underlying structure of these
models encodes independence assertions of the form I(Xa, Xb | x1

w) for all pairs
a, b ∈ V \ {w}, becoming dependent when Xw = x0

w. In this way, the underlying
structure can be seen as two instantiated graphs: a fully connected graph G(x0

w),
and a star graph G(x1

w) whose central node is x1
w. Despite the simplicity of this

structure, this cannot be correctly captured by using a single graph, yet it can
be captured by sets of features or canonical models. On the other hand, as the
maximum degree of the underlying structure is equal to n, learning the structure
is a challenging problem [2, 15]. The generated datasets are partitioned into: a
training set (70%) and a validation set (30%). The validation set is used by
density estimation algorithms to set their tuning parameters. Specifically, they
use different tuning parameters for learning several structures from the training
set, selecting one whose pseudo-likelihood on the validation set is maximum. In
contrast, CSGS, CSPC, GSMN and IBMAP-HC algorithms do not use tuning
parameters, thus they learn structures by using the whole dataset, i.e. the union
of training and validation sets.

4.2 Methodology

In this subsection we explain the methodology used for evaluating our approach
against several structure learning algorithms. First, we explain which structure
learning algorithms are used as competitors and their configuration settings, and
then we describe the method used for measuring the accuracies of the learned
structures: Kullback-Leibler divergence (KL) [8, Appendix A].

CSGS is compared against CSPC (Context-Specific Parent and Children)
algorithm and two representative algorithms for knowledge discovery and den-
sity estimation goals. The knowledge discovery algorithms are: GSMN (Grow-
Shrink Markov Network learning algorithm) [1], and IBMAP-HC (IBMAP Hill-
Climbing) [15]. For a fair comparison, we use the Pearson’s χ2 as the statistical
independent test with a significance level of 0.05 for CSGS, CSPC and GSMN,
but not for IBMAP-HC which only works with the Bayesian statistical test with
a threshold equal to 0.5. On the other hand, the density estimation algorithms
are: GSSL (Generate Select Structure Learning) [4], and DTSL (Decision Tree
Structure Learner) [11]. For a fair comparison, we replicate the recommended

6 http://dharma.frm.utn.edu.ar/papers/iberamia14
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tuning parameters for both algorithms detailed in [4], and [10], respectively. KL
divergence is a “distance measure” widely used to evaluate how similar are two
distributions. Thus, using the learned structures, we obtain Markov networks by
learning their weights with pseudo-likelihood7, measuring their KL divergences
with respect to the underlying distribution. Lower values of KL divergence indi-
cate better accuracy.

4.3 Results of experimentation

Figure 1 presents the KL divergences computed from the structures learned by
the different algorithms. For comparison reasons, Figure 1 also shows the KL di-
vergence computed by using a Markov network whose structure is the underlying
one, showing the best KL divergence that can be obtained. In these results, we
can see three important trends. First, the structures learned by CSGS reach sim-
ilar divergences in most cases to CSPC. Second, in most cases, the divergences
obtained by CSGS and CSPC are better than those obtained by the other struc-
ture learners. Finally, the divergences of CSGS and CSPC are closer to the diver-
gences obtained by the underlying structure. These trends allow us to conclude
that the structures learned by CSGS and CSPC can encode the context-specific
independences present in data, resulting in Markov networks more accurate than
those obtained by the remaining algorithms. Figure 2 presents the number of
tests performed by CSGS and CSPC for learning the structures used previously
for computing the KL divergences. As shown, the number of tests performed by
CSGS is smaller than those performed by CSPC. The difference between both
dramatically increases as data increases. These results show the great impact of
using the GS strategy for learning canonical models. In conclusion, the results
shown in both figures show that CSGS is an efficient alternative to CSPC for
learning canonical models.

5 Conclusions and future work

In this work we presented CSGS, a new knowledge discovery algorithm for learn-
ing Markov network structures by using canonical models. CSGS is similar to
the CSPC algorithm [3], except that CSGS uses an alternative search strategy
called Grow-Shrink [12, 1], that avoids performing unnecessary independence
tests. We evaluated our algorithm against CSPC and several state-of-the-art
learning algorithms on synthetic datasets. In our results, CSGS learned struc-
tures with similar accuracy to CSPC but performing a reduced number of tests.
The directions of future work are focused on further reducing the computational
complexity and improving the quality of the learned structures using alternative
search strategies. For instance, IBMAP-HC on the side of knowledge discovery
algorithms [15], and GSSL on the side of density estimation algorithms [4].

7 Weight learning was performed using version 0.5.0 of the Libra toolkit (http://
libra.cs.uoregon.edu/).
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Fig. 1. KL divergences over increasing amounts of data for structures learned by sev-
eral learning algorithms. For comparison reasons, the KL divergence of the underlying
structure is shown. Every point represents the average and standard deviation over ten
datasets with a fixed size. Lower values indicate better accuracy.
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