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Abstract. In this paper, we assume that weaker Hardy-Littlewood Con-
jecture, we got a better upper bound of the exceptional real zero for a class
of prime number module.
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Goldbach’s conjecture is one of the oldest and best-known unsolved prob-
lems in number theory and in all of mathematics. It states: Every even
integer greater than 2 can be expressed as the sum of two primes.

In 1923, Hardy and Littlewood conjectured

∑
3≤p1,p2≤N
p1+p2=N

1 ≈ N

ϕ(N)

∏
p †N

(
1− 1

(p− 1)2

)
N

log2N

where N is even integer and N ≥ 6, p1, p2 are the prime numbers, ϕ(n)
is Euler function.

Under a weaker assumption, we got a better upper bound of the excep-
tional real zero for a class of the prime number module.

Weaker Hardy-Littlewood Conjecture. Let N is even integer and N ≥ 6,
p1, p2 are the prime numbers. There is an absolute constant δ > 0 , we have
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∑
3≤p1,p2≤N
p1+p2=N

1 ≥ δN

log2N

Under the above conjecture, we have the following theorem

Theorem. Let q is a prime number and q ≡ 3 (mod 4), it has exceptional
real character χ, and its Dirichlet L(s, χ) function has an exceptional real
zero β. If Weaker Hardy-Littlewood Conjecture is correct, then there is a
positive constant c , we have

β ≤ 1− c

log2 q

Now, we do some preparation work.

Lemma 1.

m∑
k=1

e

(
kn

m

)
=

{
m if n ≡ 0 (mod m)
0 otherwise

where e(x) = e2πix

The lemma 1 is obvious

Lemma 2. There is a constant c1 > 0 such that

π(x) = Lix+O
(
x exp(−c1

√
log x)

)

uniformly for x ≥ 2. Where Lix =
∫ x
2

du
log u

, and exp(x) = ex

The lemma 2 follows from the References [2], Theorem 6.9 of the page 179.

It is easy to see that

Lix =

∫ x

2

du

log u
=

x

log x
+O

(
x

log2 x

)
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Lemma 3. Let c2 be the positive constant. if (a, q) = 1, then

π(x; q, a) =
Lix

ϕ(q)
− χ(a)

ϕ(q)

∫ x

2

uβ−1

log u
du+O

(
x exp(−c2

√
log x)

)

when there is an exceptional character χ modulo q and β is the concomi-
tant zero.

The lemma 3 follows from the References [2], Corollary 11.20 of the page
381

It is easy to see that∫ x

2

uβ−1

log u
du =

xβ

β log x
+O

(
xβ

log2 x

)

Lemma 4. if (n,m) = 1, then

m∑
k=1

(k,m)=1

e

(
nk

m

)
= µ(m)

where µ(m) is Möbius function.
The lemma 4 follows from the References [1], the page 45.

Lemma 5. if χ is a primitive character modulo m, then

m∑
k=1

χ(k)e

(
nk

m

)
= χ(n)τ(χ)

where τ(χ) =
∑m

k=1 χ(k)e( k
m

).
The lemma 5 follows from the References [1], the page 47.

Lemma 6. if m is odd square-free and χ is a primitive real character
modulo m, then
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τ(χ) =

{ √
m if m ≡ 1 (mod 4)

i
√
m if m ≡ 3 (mod 4)

The lemma 6 follows from the References [1], the theorem 3.3 of the page
49.

PROOF OF THEOREM.

The first part.

By Lemma 1, when x ≥ q4, we have

q∑
k=1

( ∑
3≤p≤x

e

(
kp

q

))2

=

q∑
k=1

∑
3≤p1≤x

∑
3≤p2≤x

e

(
k(p1 + p2)

q

)

=
∑

3≤p1≤x

∑
3≤p2≤x

q∑
k=1

e

(
k(p1 + p2)

q

)
= q

∑
3≤p1,p2≤x
p1+p2≡(q)

1 ≥ q

[ x
2q

]∑
n=1

∑
3≤p1,p2≤x
p1+p2=2nq

1

by Weaker Hardy-Littlewood Conjecture, the above formula

≥ q

[ x
2q

]∑
n=1

δ2nq

log2 2nq
≥ q

[ x
2q

]∑
n=1

δ2nq

log2 x
≥ 2δq2

log2 x

[ x
2q

]∑
n=1

n

=
2δq2

log2 x
·

[ x
2q

]([ x
2q

] + 1)

2
≥ δx2

4 log2 x
+O

(
xq

log2 x

)

The second part.
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When 1 ≤ k ≤ q − 1, we have

∑
3≤p≤x

e

(
pk

q

)
=
∑
3≤p≤x
(p,q)=1

e

(
pk

q

)
+ 1 = 1 +

q∑
a=1

(a,q)=1

e

(
ak

q

) ∑
3≤p≤x
p≡a(q)

1

by Lemma 3, Lemma 4, Lemma 5 and Lemma 6, the above formula

= 1 +

q∑
a=1

(a,q)=1

e

(
ak

q

)(
Lix

ϕ(q)
− χ(a)

ϕ(q)

∫ x

2

uβ−1

log u
du+O

(
x exp(−c2

√
log x)

))

=
µ(q)Lix

q − 1
− τ(χ)χ(k)

q − 1

∫ x

2

uβ−1

log u
du+O

(
qx exp(−c2

√
log x)

)

= −
i
√
q χ(k)

q − 1

∫ x

2

uβ−1

log u
du+O

(
x

q log x
+ qx exp(−c2

√
log x)

)

therefore ( ∑
3≤p≤x

e

(
pk

q

))2

=

(
−
i
√
q χ(k)

q − 1

∫ x

2

uβ−1

log u
du

)2

+O

(
x2

q
3
2 log2 x

+ q2x2 exp(−c2
√

log x

)
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= − q

(q − 1)2

(∫ x

2

uβ−1

log u
du

)2

+O

(
x2

q
3
2 log2 x

+ q2x2 exp(−c2
√

log x

)

= − q

β2(q − 1)2
x2β

log2 x
+O

(
x2

q log3 x
+

x2

q
3
2 log2 x

+ q2x2 exp(−c2
√

log x

)

therefore

q∑
k=1

( ∑
3≤p≤x

e

(
pk

q

))2

=

( ∑
3≤p≤x

1

)2

+

q−1∑
k=1

( ∑
3≤p≤x

e

(
pk

q

))2

by Lemma 2, the above formula

=
x2

log2 x
− q x2β

β2(q − 1) log2 x
+O

(
x2

log3 x
+

x2
√
q log2 x

+ q3x2 exp(−c3
√

log x)

)

We integrated the first part and second part

x2β

log2 x
≤ (1− δ

4
)
x2

log2 x
+O

(
x2

log3 x
+

x2
√
q log2 x

+ q3x2 exp(−c3
√

log x)

)

x2β−2 ≤ 1− δ

4
+O

(
1

log x
+

1
√
q

+ q3 log2 x exp(−c3
√

log x)

)
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we take log x = ( 4
c3

log q)2, then

x2β−2 ≤ 1− δ

4
+

c4

log2 q

we take log q ≥
√

8c4
δ
, then

x2β−2 ≤ 1− δ

8

β − 1 ≤
log(1− δ

8
)

2 log x
= −

log( 8
8−δ )

2 log x

therefore

β ≤ 1− c

log2 q

This completes the proof of Theorem.
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