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Abstract. In this paper, we assume that weaker Hardy-Littlewood Con-
jecture, we got a better upper bound of the exceptional real zero for a class
of prime number module.
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Goldbach’s conjecture is one of the oldest and best-known unsolved prob-
lems in number theory and in all of mathematics. It states: Every even
integer greater than 2 can be expressed as the sum of two primes.

In 1923, Hardy and Littlewood conjectured
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where N is even integer and N > 6, py, ps are the prime numbers, ¢(n)
is Euler function.

Under a weaker assumption, we got a better upper bound of the excep-
tional real zero for a class of the prime number module.

Weaker Hardy-Littlewood Conjecture. Let /N is even integer and N > 6,
p1, P2 are the prime numbers. There is an absolute constant § > 0 , we have
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Under the above conjecture, we have the following theorem

Theorem. Let ¢ is a prime number and ¢ = 3 (mod4), it has exceptional
real character y, and its Dirichlet L(s, x) function has an exceptional real
zero 3. If Weaker Hardy-Littlewood Conjecture is correct, then there is a
positive constant ¢ , we have
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Now, we do some preparation work.

Lemma 1.
ie kn\ _ [ m if n=0 (mod m)
" \m | 0 otherwise

where e(z) = ™

The lemma 1 is obvious

Lemma 2. There is a constant ¢; > 0 such that

m(x) = Liz + O (m exp(—c; @))

uniformly for z > 2. Where Liz = [ %, and exp(z) = e*
The lemma 2 follows from the References [2], Theorem 6.9 of the page 179.

It is easy to see that
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Lemma 3. Let ¢y be the positive constant. if (a,q) = 1, then
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when there is an exceptional character y modulo ¢ and /3 is the concomi-
tant zero.

The lemma 3 follows from the References [2], Corollary 11.20 of the page
381
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Lemma 4. if (n,m) = 1, then

where p(m) is Mobius function.
The lemma 4 follows from the References [1], the page 45.

Lemma 5. if x is a primitive character modulo m, then
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where 7(x) = YL, x(k)e(£).
The lemma 5 follows from the References [1], the page 47.

Lemma 6. if m is odd square-free and x is a primitive real character
modulo m, then
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The lemma 6 follows from the References [1], the theorem 3.3 of the page
49.

T(X)Z{ vm if m=1 (mod 4)

PROOF OF THEOREM.
The first part.

By Lemma 1, when z > ¢*, we have
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by Weaker Hardy-Littlewood Conjecture, the above formula
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The second part.



When 1 < k < q—1, we have
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by Lemma 3, Lemma 4, Lemma 5 and Lemma 6, the above formula
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by Lemma 2, the above formula
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We integrated the first part and second part
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we take logz = (é log q)?, then
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we take logq > 4/ =*, then
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This completes the proof of Theorem.
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