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Abstract. This paper use Nevanlinna’s Second Main Theorem of the
value distribution theory, we got an important conclusion by Riemann hy-
pothesis.
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First, we give some notations, definitions and theorems in the theory of
value distribution, its contents see the references [1] and [2].

We write

log+ x =

{
log x 1 ≤ x
0 0 ≤ x < 1

It is easy to see that log x ≤ log+ x.

Let f(z) is a non-constant meromorphic function in the circle |z| <
R , 0 < R ≤ ∞ . n(r, f) represents the number of poles of f(z) on the
circle |z| ≤ r ( 0 < r < R ) , the multiplicity of poles is included. n(0, f)
represents the order of pole of f(z) in the origin. For arbitrary complex
number a 6=∞ , n(r, 1

f−a) represents the number of zeros of f(z)−a in the

circle |z| ≤ r ( 0 < r < R ) , the multiplicity of zeros is included. n(0, 1
f−a)

represents the order of zero of f(z)− a in the origin.

We write

m(r, f) =
1

2π

∫ 2π

0

log+
∣∣f(reiϕ)

∣∣ dϕ
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N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt + n(0, f) log r

and T (r, f) = m(r, f) + N(r, f) .
T (r, f) is called the characteristic function of f(z).

LEMMA 1. If f(z) is a analytical function in the circle |z| < R ( 0 <
R ≤ ∞ ), we have

T (r, f) ≤ log+ M(r, f) ≤ ρ+ r

ρ− r
T (ρ , f)( 0 < r < ρ < R)

where M(r, f) = max|z|=r |f(z)|
The lemma 1 follows from the References [1], page 57.

LEMMA 2. Let f(z) is a non-constant meromorphic function in the circle
|z| < R ( 0 < R ≤ ∞) . aλ (λ = 1, 2, ..., h ) and bµ (µ = 1, 2, ..., k ) are the
zeros and poles of f(z) in the circle |z| < ρ ( 0 < ρ < R ) respectively, each
zero or pole repeated according to their multiplicity, and z = 0 is neither
zero nor pole of the function f(z), then, in the circle |z| < ρ, we have the
following formula

log | f(0) | =
1

2π

∫ 2π

0

log
∣∣f(ρeiϕ)

∣∣ dϕ − h∑
λ=1

log
ρ

|aλ|
+

k∑
µ=1

log
ρ

|bµ|

this formula is called Jensen formula.
The lemma 2 follows from the References [1], page 48.

LEMMA 3. Let f(z) is the meromorphic function in the circle |z| ≤ R ,
and

f(0) 6= 0, ∞, 1, f ′(0) 6= 0

when 0 < r < R , we have

T (r, f) < 2

{
N(R,

1

f
) + N(R, f) + N(R,

1

f − 1
)

}
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+ 4 log+ |f(0)| + 2 log+ 1

R|f ′(0)|
+ 24 log

R

R− r
+ 2328

This is a form of Nevanlinna’s Second Main Theorem.
The lemma 3 follows from the References [1], the theorem 3.1 of the page

75.

Now, we make some preparations.

LEMMA 4. if f(x) is a function of the nonnegative degressive, we have

lim
N→∞

(
N∑
n=a

f(n) −
∫ N

a

f(x) dx

)
= α

where 0 ≤ α ≤ f(a) . in addition, if x→∞ , f(x)→ 0 , we have

∣∣∣∣∣ ∑
a≤n≤ξ

f(n) −
∫ ξ

a

f(ν) dν − α

∣∣∣∣∣ ≤ f(ξ − 1) , ( ξ ≥ a+ 1 )

The lemma 3 follows from the References [3], the theorem 2 of the page 91.

Let s = σ + it is the complex number, when σ > 1 , Riemann Zeta
function is

ζ(s) =
∞∑
n=1

1

ns

When σ > 1 , we have

log ζ(s) =
∞∑
n=2

Λ(n)

ns log n

where Λ(n) is Mangoldt function.

LEMMA 5. If t is any real number, we have
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(1)
0.0426 ≤ | log ζ(4 + it) | ≤ 0.0824

(2)
| ζ(4 + it) − 1 | ≥ 0.0426

(3)
0.917 ≤ | ζ(4 + it) | ≤ 1.0824

(4)
| ζ ′(4 + it) | ≥ 0.012

PROOF.

(1)

| log ζ(4 + it) | ≤
∞∑
n=2

Λ(n)

n4 log n
≤

∞∑
n=2

1

n4
=

π4

90
− 1 ≤ 0.0824

| log ζ(4 + it) | ≥ 1

24
−

∞∑
n=3

1

n4
= 1 +

2

24
−

∞∑
n=1

1

n4
=

9

8
− π4

90
≥ 0.0426

(2)

| ζ(4 + it)− 1 | =

∣∣∣∣∣
∞∑
n=2

1

n4+it

∣∣∣∣∣ ≥ 1

24
−

∞∑
n=3

1

n4

= 1 +
2

24
−

∞∑
n=1

1

n4
=

9

8
− π4

90
≥ 0.0426

(3)

| ζ(4 + it) | =

∣∣∣∣∣
∞∑
n=1

1

n4+it

∣∣∣∣∣ ≤
∞∑
n=1

1

n4
=

π4

90
≤ 1.0824

| ζ(4 + it) | =

∣∣∣∣∣
∞∑
n=1

1

n4+it

∣∣∣∣∣ ≥ 1−
∞∑
n=2

1

n4
= 2−

∞∑
n=1

1

n4
= 2− π4

90
≥ 0.917
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(4)

| ζ ′(4 + it) | =

∣∣∣∣∣
∞∑
n=2

log n

n4+it

∣∣∣∣∣ ≥ log 2

24
−

∞∑
n=3

log n

n4

by Lemma 4, we have

∞∑
n=3

log n

n4
=

∫ ∞
3

log x

x4
dx + α

where 0 ≤ α ≤ log 3
34

∫ ∞
3

log x

x4
d x = − 1

3

∫ ∞
3

log x d x−3 =
log 3

34
+

1

3

∫ ∞
3

x−4 d x

=
log 3

34
− 1

32

∫ ∞
3

d x−3 =
log 3

34
+

1

35

therefore

∞∑
n=3

log n

n4
≤ log 3

34
+

1

35
+

log 3

34

| ζ ′(4 + it) | ≥ log 2

24
− 2 log 3

34
− 1

35
≥ 0.012

This completes the proof of Lemma 5.

Let δ = 1
100

, c1, c2, ... , is the positive constant.

LEMMA 6. When σ ≥ 1
2
, |t| ≥ 2 , we have

| ζ(σ + it)| ≤ c1 |t|
1
2

The lemma 6 follows from the References [4], the theorem 2 of the page
140.

LEMMA 7. If f(z) is the analytic function in the circle |z − z0| ≤ R ,
0 < r < R , in the circle |z − z0| ≤ r , we have
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| f(z)− f(z0) | ≤
2r

R− r
(A(R)−Ref(z0) )

where A(R) = max|z−z0|≤R Ref(z).
The lemma 6 follows from the References [4], the theorem 2 of the page 61.

Now, we assume that Riemann hypothesis is correct, and abbreviation
as RH. In other words, when σ > 1

2
, the function ζ(σ + it) has no zeros.

The function log ζ(σ + it) is a multi-valued analytic function in the region
σ > 1

2
, t ≥ 1. we choose the principal branch of the function log ζ(σ + it),

therefore, if ζ(σ + it) = 1, then log ζ(σ + it) = 0.

LEMMA 8. If RH is correct, when δ = 1
100

, σ ≥ 1
2

+2δ , t ≥ 16, we have

| log ζ(σ + it) | ≤ c2 log t+ c3

proof. In Lemma 7, we choose f(z) = log ζ(z + 4 + it), z0 = 0, R =
7
2
− δ, r = 7

2
− 2δ, t ≥ 16 . Because log ζ(z + 4 + it) is the analytic function

in the circle |z| ≤ R, by Lemma 7, in the circle |z| ≤ r, we have

| log ζ(z + 4 + it) − log ζ(4 + it) | ≤ 7

δ
( A(R)−Re log ζ(4 + it) )

therefore

| log ζ(z + 4 + it) | ≤ 7

δ
( A(R) + | log ζ(4 + it) | ) + | log ζ(4 + it) |

by Lemma 6, we have

A(R) = max
|z−z0|≤R

log | ζ(z + 4 + it) | ≤ 1

2
log t + log c1

by Lemma 5, we have

| log ζ(z + 4 + it) | ≤ c2 log t + c3

therefore, when σ ≥ 1
2

+ 2δ, we have

| log ζ(σ + it) | ≤ c2 log t + c3
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This completes the proof of Lemma 8.

LEMMA 9. If RH is correct, when δ = 1
100

, t ≥ 16 , ρ = 7
2
− 2δ, in the

circle |z| ≤ ρ, we have

N

(
ρ ,

1

ζ(z + 4 + it) − 1

)
≤ log log t + c4

proof. In Lemma 2, we choose f(z) = log ζ(z + 4 + it), R = 7
2
− δ, ρ =

7
2
− 2δ, aλ (λ = 1, 2, ..., h) are the zeros of the function log ζ(z + 4 + it) in

the circle |z| < ρ, each zero repeated according to their multiplicity. Because
the function log ζ(z + 4 + it) has no poles in the the circle |z| < ρ , and
log ζ(4 + it) is not equal to zero, we have

log | log ζ(4 + it) | = 1

2π

∫ 2π

0

log
∣∣ log ζ(4 + it+ ρeiϕ)

∣∣ dϕ − h∑
λ=1

log
ρ

|aλ|

by Lemma 5 and Lemma 8, we have

h∑
λ=1

log
ρ

|aλ|
≤ log log t + c4

because z = 0 is neither zero nor pole of the function log ζ(z + 4 + it), if
r0 is a sufficiently small positive number, we have

h∑
λ=1

log
ρ

|aλ|
=

∫ ρ

r0

(
log

ρ

t

)
d n(t,

1

f
) =

[(
log

ρ

t

)
n(t,

1

f
)

] ∣∣∣∣ρ
r0

+

∫ ρ

r0

n(t, 1
f
)

t
d t =

∫ ρ

0

n(t, 1
f
)

t
d t = N

(
ρ ,

1

f

)

= N

(
ρ ,

1

log ζ(z + 4 + it)

)
≥ N

(
ρ ,

1

ζ(z + 4 + it)− 1

)
This completes the proof of Lemma 9.

7



THEOREM. If RH is correct, when σ ≥ 1
2

+ 4δ , δ = 1
100

, t ≥ 16 , we
have

| ζ(σ + it) | ≤ c8 ( log t )c6

proof. In Lemma 3, we choose f(z) = ζ(z + 4 + it), t ≥ 16, R =
7
2
− 2δ, r = 7

2
− 3δ. by Lemma 5, we have f(0) = ζ(4 + it) 6= 0, ∞, 1,

and |f ′(0)| = |ζ ′(4+it)| ≥ 0.012 , | f(0) | = | ζ(4 + it) | ≤ 1.0824. because
ζ(z + 4 + it) is the analytic function, and it have neither zeros nor poles in
the circle |z| ≤ R, we have

N

(
R ,

1

f

)
= 0 , N (R , f) = 0

therefore, by Lemma 9, we have

T ( r , ζ(z + 4 + it) ) ≤ 2 log log t + c5

In Lemma 1, we choose R = 7
2
− 2δ , ρ = 7

2
− 3δ, r = 7

2
− 4δ. by the

maximal principle, in the circle |z| ≤ r, we have

log+ | ζ(z + 4 + it) | ≤ c6 log log t + c7

therefore, when σ ≥ 1
2

+ 4δ, we have

log+ | ζ(σ + it) | ≤ c6 log log t + c7

log | ζ(σ + it) | ≤ c6 log log t + c7

| ζ(σ + it) | ≤ c8 ( log t )c6

This completes the proof of Theorem.
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