
 

 1 

 
Khmelnik S. I. 

Lorentz Force, Ampere Force and 
Momentum Conservation Law 

Quantitative. 
Analysis and Corollaries. 

 

Abstract 
It is known that Lorentz Force and Ampere force contradicts 

the Third Newton Law, but it does not contradict the more 
general Law of Momentum Conservation, as the electromagnetic 
field has a momentum. From this it follows that the Lorentz and 
Ampere forces must be balanced by the flow of electromagnetic 
field momentum. However, as far as the author knows, there is no 
corresponding quantitative comparison and therefore it is 
discussed below. In particular, it is shown that some of the 
corollaries of the Momentum Conservation Law can be found. 
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1. Introduction 
It is known that Ampere force contradicts the Third Newton Law, 

but it does not contradict the more general Law of Momentum 
Conservation, as the electromagnetic field has a momentum. It is 
important to note that a stationary electromagnetic field can also have a 
momentum and therefore the Ampere force does not contradict law of 
conservation of momentum, also in the case when it occurs in 
conjunction with a permanent magnetic field. From this it follows that 
the Ampere force must be balanced by the flow of electromagnetic field 
momentum. However, as far as the author knows, a quantitative 
comparison of the Ampere force with the flow of electromagnetic field 
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momentum does not exist. Therefore this comparison will be discussed 
below.  Here we shall also define some parameters, and taking them into 
account we shall show that the Lorentz force and Ampere force can be 
regarded as corollaries of the existence of electromagnetic field 
momentum and the law of momentum conservation.  

 

2. The Field’s Configuration 
For an electromagnetic field let us denote: 

W  - the energy density (scalar), kg·m-1·s−2, 

S  - the energy flow density (vector), kg·s−3, 
p  - the momentum density (scalar), kg·m−2·s−1, 

f  - the electromagnetic field momentum density (vector), kg·m-

1·s−2, 

V  - the electromagnetic field volume (scalar), m3. 

The fig. 1 shows conductor carrying current I  and length of L  

that is located in a magnetic field with induction B  and is moving at the 

speed v  under the action of the Ampere force F . Vectors of the 

intensity E  of the current-creating electric field, and of the induction B  
- are mutually perpendicular. 

Therefore there appears a flow of electromagnetic energy with a 

density S , shown in the fig. 1 by circles. It may be presented in the form 
of two spheres, united in the body of conductor and penetrating the 
conductor in the vertical direction. This flow is equivalent to the flow of 

an electromagnetic field momentum f . 

I

F

B

S

L  
Fig. 1. 

Fig. 1a clearly shows several lines of current, induction and flow. 
The"forest" of brown lines of the flow begins at the intersection points 
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of the lines of current and the lines of induction, as shown by circles. The 
flow lines penetrate the body, pass out of the body and are closed as 
shown by horizontal arrows. On Fig. 1 these closing lines are shown by 
circles.  
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Fig. 1а. 
 
It is known [1, 2], that 

Wf  .     (1) 

cWS  ,     (2) 

cWp  , 
2

cSp  ,    (3) 

cpf  , cSf  .    (4) 

The integral of the density by volume will be denoted as  

 
V

V dVAA .     (4а) 

The energy flow VS  may exist also in a stationary electromagnetic field 

[3]. Therefore the momentum flow Vf  exists also in a stationary 

electromagnetic field created by direct current and permanent magnetic 
field. 

The law of momentum conservation for a device interacting with 
electromagnetic field can be written in a following form [3]: 

    fVpV
t

J
t










 ,    (5) 

where 

J  – mechanical momentum of the device, 
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V   - the volume of device; volume in which the electromagnetic field 
momentum interacts with the device (the summary momentum 
flow in all volume of the field is equal to zero).  

It is known that the force acting on the device is  

 J
t

F



 .     (6) 

Consequently, 

  












 VV fp

t
F .    (7) 

Combining (7) and (3, 4), we get: 
























c

S

c

S

t
F VV

2
.    (8) 

Thus, if the device is in the flow of electromagnetic energy VS , then it is 

influenced by a force (8), depending only on the flow of electromagnetic 

energy VS . This force exists also for a permanent flow VS , and then 

c

S
F V .     (9) 

In this case, if the flow of electromagnetic energy electromagnetic 
energy flux is distributed in the material with relative permittivity   and 
permeability , then in the formulas (8, 9) the light speed c  in vacuum 

should be replaced by the light speed in material  



c
cs         (10) 

Let us consider the case (shown on the fig. 1), when vector of 

permittivity E  and permeability H  are perpendicular. Then 

EHS         (11) 

Let also the field in the device is uniform and is concentrated in the 

volumeV . Then from (8, 10, 11) we get 





























c

EH

c

EH

t
VF


2

.   (12) 

If, besides that, the field is permanent, then 

c

EH
VF


 .     (13) 
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3. The Lorentz Force 
Let us consider the magnetic Lorentz force, acting on a body with 

charge q , moving with speed v  perpendicularly to the vector of magnetic 

inductivity B : 

qvBFL  .     (14) 

We shall neglect the intrinsic magnetic induction field of a moving charge 
(compared with the induction of an external magnetic field) and its own 
momentum moving charge. Then we have to accept that the force (14) is 
caused by the flow momentum of electromagnetic field that penetrates 
the body of the charge. Thus from (13, 14), we obtain: 

c

EH
VFL


 .    (15) 

where V  – is the body volume. From this we get: 

c

EH
VqvB


     (16) 

or, for HB o , 

o

VE
qvc



 /
 .    (17) 

Consequently, inside the body there should be electric field intensity 
directed along the velocity, and equal to 





/V

qvc
E o .     (18) 

Let us note that 

377
o

o
oc




       (19) 

and 

v
V

q

V

qvc
E o 377






.    (20) 

Consequently, inside a charged body, moving in a magnetic field and 
being under the influence of Lorentz force, there exists an intensity of 
electric field proportional to the movement speed. 

The example with an Electron  

It has a charge 19106.1 oq , classical radius 15108.2 or , a 

volume corresponding to this radius, 
45

3

1092
3

4  o
o

r
V


. Also 
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vE  26107



. One may also say that on the diameter of the 

electron along the speed direction, there exists a potentials 

difference – a voltage 



vrEU ooo  121042 . Considering the 

arguments of Feynman [3] on the internal forces of the electron, 
restraining the electron charges on the surface of the sphere, we 
can see that this voltage is the force which "pulls" lagging charges 
to their place on the sphere when they move under the action of 
the Lorentz force  

 

4. The Ampere Force 
Let us consider the Ampere force acting on a conductor with 

current I , дmoving with speed v  perpendicularly to the vector of 

magnetic induction B : 

IBLFA  .     (21) 

If this force is caused by the flow of the momentum of electromagnetic 
field permeating the conductor, then  

c

EH
VFA


 ,    (22) 

where V  –is the conductor’s volume. From this we find: 

c

EH
VIBL


     (23) 

or, for HB o , 

c

EH
VIHL o


  .    (24) 

Therefore, the intensity of electric field in this case will be   





/V

ILc
E o .                  (24а) 

If s  is the section area, L  - the conductor length, then  

sLV  .       (25) 

If the voltage on the conductor is permanent and equal toU , then 

LUE / .       (26) 

If the specific resistance of the conductor is equal to  , then 

LjsLIU       (27) 

and  
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jE  .     (28) 

Then 






/s

jsc
j o      (29) 

or 







2









 oc

.     (30) 

Thus, the permittivity of the conductor with current depends only on   

and  .  

For example, for 6102,1   (om*m) we find 

that 16107  . 
For verification let us substitute (30) into (22) or into (13), we shall get  



 VEB
VEHF o

A  .    (31) 

and further, taking into account (28), we get (21). Similarly, substituting 
(30, 28) into (12), we get 




















































































 oooo
A EHEH

tc
V

c

EH

c

EH

t
VF

2

or 

  IBLIB
tc

L
F o

A 








.    (32) 

Hence, the Ampere force must depend also on the speed of current 
change or on magnetic induction. These changes may be caused by 
current change of by the change of current position relative to the field. 
Practically such dependence can be detected only for very high frequency 

(due to the coefficient 15104 
c

o ). 

 

5. Discussion 
From the above said it follows that the Ampere force may be 

considered as a corollary of the existence of electromagnetic field 
momentum and of the momentum conservation law. But in this case it 
should also be assumed that the permittivity of the current-carrying 
conductor depends on   and   according to (30). In this case the 

dependence of the Ampere force on the speed of current change and/or 
magnetic induction can be revealed. 
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Combining (20) and (30), we find 

V

qvcc
E oo 













.    (33) 

or 

V

vq
E


 .     (34) 

Qualitatively, this effect can be explained by the fact that the free 
electrons "lag" from the body and accumulate in the "tail" of accelerating 
body - a phenomenon considered by Feynman for accelerating electron 
[3]. Electrical resistance of the material slows uniform charge 
distribution. For this consumes energy.  Consequently, the motion of the 
charged body at a constant speed occurs with the expenditure of energy 
for thermal losses. This ensures constancy of the energy of the electric 
field inside a charged body.  

Thus, the the Lorentz force can be regarded as a corollary of the 
existence of electromagnetic field momentum and of the momentum 
conservation law. But in this case it should also be assumed that inside 
the charged moving body exists the intensity of electric field of the form 
(34), proportional to the movement speed. 

Thus, the charged body moving with a certain speed in a magnetic 
field, turn out to be in an electromagnetic field with a: 

 electromagnetic energy flow,  

 electromagnetic field momentum 

 electromagnetic field momentum flow.  
From the law of momentum conservation it follows that the time 
derivative of the mechanical momentum of the body (i.e., the force 

acting on the body) depends on: 
1) the time derivative of electromagnetic field momentum, and 
2) the momentum flow of electromagnetic field  

This force is exactly the Lorentz force. 
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