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Abstract 

 

The theory presented here is able to explain all attributes of cuprate-based High-temperature-

Superconductors in the normal- and in the SC-state as well. More than 300 experimentally 

measured values will be compared with the predictions of theory. In more than 90% there is 

quantitative, otherwise qualitative accordance between experiment and theory. For the 

theoretical calculations parameters gained by experiments only are used.  

Reluctance is senseless: This theory will succeed.  
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1. Introduction 

 

In 1987 superconductors with critical TC-values above 100 K were discovered. According to 

some estimations TC-values exceeding 40 K cannot be explained by electron-phonon 

interaction, because for creating even higher TC-values the interactions will be so heavy, that 

they will cause rearrangements of the lattice. Up to now there does not exist any universally 

acknowledged theory which explains these TC-values. Certain is only, that in all superconduc-

tors known up to now the superconductivity current is transported by pairs of charge-carriers. 

Therefore the main task of any theory will be to explain the unusual thermal stability of  these 

pairs in HTSC.  

Up to now quite a few possible explanations have been debated. Naturally at first scientists 

tried to apply the model of electron-phonon-interaction to HTSC despite the difficulties 
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mentioned above 1 . For some time a model was debated which was based on the separation of 

electron-spin and -charge 32et . At present many scientists assume that magnetic interactions 

play the dominant part 4 . All these models however are not able to explain simultaneously the 

superconducting and the completely unusual normally conducting attributes of HTSC: 

 

In most cases in the normal state the electrical resistance follows a linear temperature law 

down to deepest temperatures –in contradiction to the Landau-theory of Fermi-liquid 

(chapters 6. to 8.). The conduction-electrons obviously do not create a Fermi-liquid. 

Accordingly an anomaly in the thermal conductivity appears too. Oddly enough with most of 

the HTSC –also in a normally conducting state- there will be an energy gap in the density of 

states (DOS), the so-called “pseudo-gap”. 

In HTSC with a low density of holes a huge isotope effect is noticed: With increasing density 

of holes the effect decreases continuously for strong increasing again above optimal doping 

 

Therefore an interaction must be discovered which  

a) leads to the formation of hole-pairs at high temperatures 

b) is equally responsible for the “non-Fermi-liquid-behaviour” 

c) also creates a gap in the density of state (DOS) of the mobile charge-carriers in the 

normal state  

d) permits a sufficiently plausible explanation as regards the isotope effects 

 

All these phenomena (and some more) will be brought in connection and explained by this 

theory.  

  

 

 2. The Pseudogap 
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2.1 Definition 

In this work the conduction charge carriers will generally be called “holes”. The quasi-bound 

charge carriers in the lower Cu-3d-band of HTSC will always be called electrons (abbreviated 

as “El”). When speaking of “El” there will always be referred to these quasibounded electrons 

in the lower Cu-3d-band. 

 

 

2.2. The Hubbard model and HTSC 

 

This abstract is based on the idea that the Hubbard model of theoretical solid state physics 5  

can also be applied to HTSC. According to this model the valence band of HTSC is split into 

three partial bands: two Cu-3d-bands and one oxygen-2p-band. If each lattice site (of ions) is 

occupied by exactly one electron , then (if  T = 0K) the oxygen band and the lower Cu-3d-

band are totally unoccupied. As the bands do not overlap –but are separated from each other 

by energy gaps –then there will be an antiferromagnetic insulator.  

These energy gaps are of a different origin than the energy gaps in semi-conductors: They 

originate from the mutual Coulomb repel of the electrons. This Coulomb repel prevents the 

delocalization of the El and links them –similar to atomic rests- to destinated sites in the 

lattice.  

This status is similar to a Wigner lattice in two dimensions. For memory: In two dimensions a 

Wigner lattice will exist at high densities of electrons only 6 : 

T

N

Tk
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B
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0
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 (1) 

Thereby is NS the density of electrons per square metre. If Γ is large enough the mutual repel 

will overcome the attraction and it is assumed that there will be a diffraction pattern as a 
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periodic lattice 6 . In HTSC the occupied Cu-3d-band is created in a different way than in band 

insulators: in a band insulator no states can be occupied immediately above the upper band 

edge. In HTSC the occupied Cu-3d-band is the result of the mutual Coulomb repel of the El. 

This repel does not exclude the stimulation of small oscillations of the El. If and when El are 

stimulated to such “lattice” oscillations, these El will occupy states above the occupied Cu-

3d-bands. Similarly to atomic residues these quasi-crystallized EL, which were studied here, 

can be excursed out of their positions. The fact, that the EL are localized at a lattice site does 

not prohibit the excursion out of their normal positions.   

When the system is doped with oxygen, the oxygen band will loose electrons and the system 

will be doped with holes. With increasing doping the ferromagnetism disappears, the Fermi-

energy moves into the region of the oxygen band, the system becomes metallic. In this system 

now a band appears which contains freely moving holes. A second band will appear, the 

lower Cu-3d-band containing electrons which repel each other because of the Coulomb 

interaction. 

The upper Cu-3d-band remains unoccupied. For the understanding of the following please 

keep in mind that the abbreviation EL used in connection with HTSC always refers to the  

Cu-3- 22
yx

d
−

-electrons, quasi-bound to Cu- or O-ions in the lower Cu-3d-band. The mobile 

charge-carriers in the oxygen band will be referred to as “holes”.  

If energy is added, both types of charge carriers –holes and El- can be scattered into 

unoccupied levels of energy.  

 

 

 

 

2.3 Application of the Hubbard-model to HTSC 
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The existing theories of solid state physics consider a metal as a skeleton of ions surrounded 

by a gas of charge carriers. By interaction between these charge carriers and the ions the latter 

will be stimulated to virtual lattice oscillations. In contrast to the ions the mobile charge 

carriers in a metal cannot cause such oscillations, because there is not any restoring force, 

having an effect on a gas. (Plasma-oscillations of the charge carriers are no lattice 

oscillations.) In this essay it is assumed that the typical theories of metals do not work at the 

HTSC, but the EL in the Cu-3d-band, charging the highest energy can be shifted relatively to 

the ions. Because of the special electron-configuration in the HTSC, this quasibounded EL 

can make fast oscillations relatively to the much inert atomic rests. Because of these 

oscillations of quasibounded EL a polarization will be generated which is relaying an 

attraction between two holes. Thereby these oscillations of EL play the same role for HTSC 

as the oscillations of the atomic lattice play for conventional superconductivity.  

In this connection should be remembered that according to the simplest theory of 

conventional superconductivity the critical temperature is inversely proportional to the root of 

the mass of oscillating particles 7 . Therefore the small mass of the electrons (EL) can manage 

to generate very high TC´s. Thus the high TC´s can be explained qualitatively at least. 

At this point it will be remarked, that the virtual “lattice-oscillations” of Cu-3d-EL are 

Bosons, not obeying the Pauli-Principle. Perhaps this is a bit puzzling, because the carriers of 

this “lattice-oscillations are electrons, strictly obeying the Pauli-Principle. But lattice-

oscillations do not possess a rest mass. A particle without rest mass possesses a whole-number 

spin and thereby obeys the Bose-Einstein-statistic. This is valid for lattice-oscillations in 

frozen hydrogen or in hydrides, too. And this is valid at every temperature, although the 

protons are fermions. In context with impact processes between protons and electrons, p. e. in 

Pd-H-systems, the protons appear as classical particles, because the protons are fixed at 

defined lattice-sites and because of this can be identified. From that the building in of  

statistical distributed protons in metals only leads to a largely T-independent RRR. 
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In contrary for impact processes of single movable holes with the Cu-3d-system in the HTSC 

the Fermi-Dirac-statistic is valid, because the holes and the Cu-3d-EL  cannot be identified 

and possesses rest-masses with half-whole-number spin. Towards it results the dominating 

contribution to the electrical normal-state-resistance in the HTSC. 

 

 

 

2.4   Quantitative derivating of the pseudogap and the formation of hole-pairing: 

 

Quantitative the dielectrical function will be calculated by the following formulation: 

−⋅
2

2

dt

xd
m CX = eE 

By their moving through the crystal the holes are “hauling” at the localized Cu-3d-EL with 

the force:   
2

2

dt

xd
mEL ⋅ .            By the repulsion of the Cu-3d-EL against another, there results 

a restoring force CX to this EL. The whole force, which has an effect at the EL`s, is = eE.  

The resolution of this fluxion-equation is X(t) = 
2ωm

eE
 = 2

t
m

eE
. 

Proof: 
2

2

dt

xd
= 2eE/m and CX(t) = eE. Therefore this solution is correct mathematically. 

Physically it is not strongly correct, really it is valid: C = 
)2/(sin4 2

2

Ka

mω
. 

But as an approximation it is useful. 

With X(t) = 
2ωm

eE
 and polarization P = -nex you receive P = E

m

ne
2

2

ω
− . 

And: )0,(ωε = 1+
E

P
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⋅
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In this equation ωh  is the energy of the incident wave.  

 

 

 

2.5  What means ELωh  and what is the maximum pseudogap? 

 

In conventional superconductors the energy-exchange necessary for pair-formation is 

mediated by zero-point-modes of atomic rests. This theory demonstrated here supposes in the 

HTSC an intermediating of this energy-exchange by oscillations of Cu-3d-EL. Therefore the 

characteristic energy- scale is the energy, which the EL can absorb in form of oscillation-

energy. In a gas of free electrons the magnitude of this energy can be determined easily: It is 

the well-known energy of plasma-oscillations. In a HTSC the Cu-3d-EL do not create a gas of 

free electrons. For a longer time it has been assumed, that in the HTSC the “Hubbard-model” 

in two dimensions is realized. This assumption is taken into account in this theory. Probably 

the oscillation-energy, which the Cu-3d-EL maximal can absorb, is identical with the so-

called “Hubbard-energy” of the EL. Therefore it is assumed:  
U

t
EL

2

≡ωh  = MPG = 

Maximum Pseudogap  

It is well-known, that the HTSC`s have a two-dimensional layer-structure. They show a strong  

 

anisotropy in their normal and superconducting characteristics parallel or crossover to the 

lattice-  

 

layers. This two-dimensionality must be regarded in every approximation.  

Thereby it is valid in HTSC: 
ωω

ω
ωε

hh

h UtEL /
1)0,(

2

=−= .   

 
At this point it should be emphasized, that this is a pure assumption only, which cannot be  
 
deduced.  
 
The author explicitly remarks, that this interrelationship only was guessed by himself.  This  
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interrelationship between “Hubbard-Energy” and dielectrical function )0,(ωε will be 

discussed in  
 
the following.  
 
The letter “t” in the nominator does not mean a time, but means the energy of the plasma-

oscillations of the EL, considering the statically shielding. As mentioned at the beginning, 

there exists a similarity between cuprates and a Wigner-crystal. Therefore the EL also can 

create a sort of “lattice-vibrations”. In case of this kinetic energy is valid:  

22
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And the quantity U in the denominator is the difference between the direct (“naked”) and the 

shielded collective Coulomb-interaction of the EL together.  

 

Remark: The statically shielding is calculated for three dimensions, because it is generated 

from the Coulomb-interaction, and the long-ranging Coulomb-interaction is working in all 

three space-dimensions, that also means crossways to the lattice-layers.)  

From all that results:  
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MPG ( )ionMa ⋅−∝ 1    [Nm] 

ionM  is the atomic mass and a the lattice-constant. At once it is visible, that MPG is 

depending on the numbers of the neutrons in the nucleus and depending on the pressure. The 

result is an isotope-effect and a pressure-dependency of the MPG. As demonstrated in the 

following chapter 3.  there exists a strong dependence of the critical temperatures on the 
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magnitude of MPG. This dependence can explain the isotope-effect (see chapter 4.) and the 

dependence of the Tc-values on pressure.  

At last we take a glance to the magnitudes of MPG:   

With q 910≈ and ≈
2

2

Dω

ω
0,36 is received for 

U

t
EL

2

≡ωh  = MPG a value of about 6,4 2110−⋅  J.  

This corresponds to 40 meV. In experiments values between 10 and 140 meV were found.  

So this really is in the calculated magnitude.  

 

 

 

 

2.6  What is the “variable” pseudogap PSL ? 

 

As it is demonstrated above, it is valid: 
ω

ωε
h

MPG
−= 1)0,( .  

If the energy of the incident wave is smaller than MPG, then the dielectrical function is 

negative. Also the conduction-electrons in a HTSC –almost holes– have wave-characteristics. 

As long as the kinetically energy (i. e. the Fermi-Energy) is smaller than MPG, so long 

)0,(ωε is negative, directing to an attractive interaction between the holes. Therefore at 

sufficient low temperatures hole-pairs are formed. At higher temperatures or in strong 

magnetic fields these pairs cannot exist, but in the DOS of the holes an energy gap will 

appear. That results from the total-reflection of incident waves with a frequency lower than 

the Eigen-frequency of the EL. (For a similar reason light in the visible region is reflected by 

metals.)  

The cause of conducting the electrical current by HTSC for all that is, that the full total-

reflection occurs only parallel to the connecting axis of nearest-neighboured Cu-ions.  

Then only there are the EL, which can excited to vibrations. Other EL cannot interact, 

because possessing the same spin-position. An –although reduced- electrical current can flow 

apart of these connecting axes. Therefore an important experimental consequence is 

produced: pseudo-energy-gap and superconductivity are directional. Or, in a scientifical 

expression, both possess d-wave symmetry. This so-called “Pseudo-Gap” only can exist in the 

presence of conduction-electrons (mostly holes). It does not exist from the first. Instead of this 

it is generated by the interaction between conduction-electrons (mostly holes) and Cu-3d-EL. 
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So this (variable) pseudogap appears in the system, respectively in the DOS, of the 

conduction-electrons (mostly holes). And nowhere else.  

 

Explanation of ωh :  

ωh  is the kinetic energy of the incidenting wave, in our case the energy of the holes. Because 

the pairing holes possess energies at the Fermi-Energy, one can equate the kinetic energy of 

the holes with the Fermi-Energy: )0,(ωε = 1
ω

ω

h

h EL− = 
FE

MPG
−1 . 

This expression will play an important role in the quantitative calculations in chapter 3.5  and 

has consequences, verifiable by experiment: 

 

a) If the Fermi-Energy is approaching zero, the pseudogap will reach its maximum value: 

  −=− ELFEL E ωω hh 0 = ELωh  = MPG. 

But that means, the maximum pseudogap has the value ELωh . Or, on the other hand, ELωh and 

the maximum pseudogap MPG are not the same (not identical), but they have the same value 

and the same dimension. MPG is defined as the pseudogap in the case of  the Fermi-Energy 

zero, respective the doping of zero. 

b) In the Cuprates also in the normal conducting state appears an energy gap of the magnitude 

FEL E−ωh  = MPG FE− . This energy gap MPG FE−  naturally means nothing else as the 

„Pseudogap“.  

c) With increasing hole-concentration, standing for augmenting doping, the Fermi-Energy is 

raising, also. By that the (Pseudo-)energy-gap decreases and disappears final totally. When 

FE  is big enough, than )0,(ωε at first will be zero and will become positive at last. In the case 

of a positive )0,(ωε is resulting a stronger repulsion between the holes. In consequence the 

superconductivity either leaves with vanishing of the energy-gap or at moderate higher 

doping. 
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d) The relevant energy-shell of pair-building is identical with MPG FE− , which is the 

pseudogap (Isotope Effect!)  

e) At a doping of zero the pseudogap reaches their maximum value MPG.  

f) Because of  collisions between holes and Cu-3d-EL the electrical resistance is 

increasing linearly with temperature. This will be explained in chapters 6. to 8. 

g) The pseudogap is of another origin as the “superconduction-gap”. In the HTSC`s this 

“superconduction-gap” appears besides the pseudogap. 

 

 

 

 

3. Quantitative description of formation of hole-pairs in HTSC: 

 

In this capital will be derivated an equation for the quantitative connections between 

parameters of metals and characteristic features of superconducting. 

3.1 I)  We will begin with the self-consistency-equation of the BCS-theory 7 . This equation is 

applicable for all well-known superconductors, independent of the pair-building mechanism, 

here also:                 
Tk

T

T

V

B

SCk

k
SCk

2

)(
tanh

)(

1

2

22

22

∆+
⋅

∆+
⋅∑

ε

ε
 = 1.   

Thereby kε is the kinetic energy of the paired holes, measured by the Fermi-energy of the 

unpaired holes. )(TSC∆ doesn`t mean the pseudogap, but the “superconduction gap”, 

generated by the interaction of the pairs with themselves. 

In accordance to BCS-theory 7 the matrix-element of the interaction of two holes is described 

as: 
)0,(

1

)(

1
22

0

2

ωεε
⋅

+
⋅=

TF

èff

kk
kq

e

Vol
V .  There is nothing new in our model.  
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II) But new is the expression of )0,(ωε [see chapter. 2.4, “variable”Pseudogap]:  

In the HTSC`s is valid:  )0,(ωε = 1
FE

MPG
−  = 1 

F

F

E

PSLE +
−  = 1 








+−

FE

PSL
1 .  

(The abbreviation PSL means “Pseudo-Lücke”. For better distinction between this variable 

pseudogap on the one hand and the maximum pseudogap MPG on the other, this borrow was 

taken from the German language.) 

In the expression 1 







+−

FE

PSL
1  the One in front of the parenthesis belongs of the repulsive 

Coulomb-interaction. One can see that by setting PSL as zero. That means, in vacuum or in 

the model of the empty box without a pseudogap, the dielectrical function = +1( 0ε⋅ ). 

Therefore the One in front of the parenthesis only can belong to the Coulomb-repulsion and 

the content of the parenthesis only can belong to the Coulomb-attraction. Therefore by the 

parenthesis-expression 







+

FE

PSL
1  = 

F

F

E

PSLE +
 = 

FE

MPG
 the attractive part of the Coulomb-

interaction of the holes only will be described. This lengthy expression is necessary, because 

in the dielectrical function in the Matrixelement èff

kkV of the holes the attractive interaction 

only appears. The repulsive Coulomb-interaction has no influence on Tc. This is well-known 

as “Cooper-approximation”. 

Therefore èff

kkV is proportional to 
.)(

1

anzε
 = 

MPG

EF . 

 

III) Approximately is valid: 
Lö

F

TF
N

E

kq

e

Vol 3

2
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1
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0

2

≈
+

⋅
ε

.  

In this equation LöN  means the number of the holes and it is supposed, that q<< k TF . 

Connecting II) and III), we resume èff

kkV = ⋅
+

⋅
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1
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0

2
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Vol ε
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1
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E

N

E F

Lö

F ⋅
3
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3.2 Now we substitute èff

kkV in the self-consistency-equation: 

In the case of temperature = Tc, the “superconduction gap” )( CSC T∆ becomes zero and the 

following equation is valid: ∝⋅⋅
⋅

∑ )
2

tanh(
1)3/2(

2

1 2

TkMPGN

E

B

k

k kLö

F ε

ε
1 

Then it is necessary to pass over from summation to integration. Because it is integrated about 

the kinetic energy of the holes, we need the mean DOS of the holes: 
F

Lö

F
E

N
ED

2

3
)( ∝  

N/E ist the DOS of energetic twice-occupied s-states of free conduction electrons. But this 

approximation is useful, because the experimental known DOS`s, divided through the number 

of holes are proportional to 1/E also 98et .  

By that we get:  1)
2

tanh(
1

2

1 2

∝⋅⋅
⋅

⋅ ∫ k

cB

k

kF

Lö

Lö

F d
TkE

N

MPGN

E
ε

ε

ε
 

For evaluating the integral, we set: ≡
cB

k

Tk2

ε
X 

 

 

3.3   Setting the limits of integrating: 

In chapter 2.6 it was shown, that )0,(ωε is negative, exactly when the Fermi-energy is lower 

than the maximum pseudogap MPG. In the virtual pairing-state the energy of the holes is 

lying higher than FE  (because of the Pauli-principle!) and smaller than MPG. In all other 

cases the interaction either does not exist or is repulsive. Therefore one receives as 

integration-limits )( FEMPG −± . )0,(ωε becomes zero, that means, attracting and repulsing 

interaction are exactly compensated, when PSL goes to zero. Therefore Tc goes to zero, when 

PSL goes to zero. By that the relevant energy-shell will become still smaller with increasing 

doping. (Here a remarkable distinction to conventional SC appears: In conventional SC the 

relevant energy-shell has the fixed value Dωh , independent of doping or Fermi-energy.) It is 

in the nature of such an approximation, that it is not always correct. But as a rule of thumb it 

is useful. The pseudogap is identical with the term MPG FE− . 
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3.4   Fundamental Equation of HTSC 

Made out this equation is: 1
tanh

2

2

2

∝⋅ ∫

−
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It will be turned out, that in practical results is valid: For all doping the energy of pseudogap 

is always significant higher than cBTk . Than the worth of the integral = 

2[ 
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∝
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This can be transformed in: Exp(MPG/ FE ) = 1,14 






 −

CB

F

Tk

EMPG
,  

respective cBTk = 1,14










−

F

F

E

MPG

EMPG

exp

.   

Identifying the expression MPG FE−  as pseudogap, results: 

∝CBTk 1,14
( )FEMPG

Pseudogap

/exp
⋅ . 

 

This equation is the Fundamental Formula of HTSC (This eq. will be nominated as FF at 

now.) It is the fundamental quantitative relation between the parameters evaluated by 

experiment. She is the principal quantitative connection between the experimentally 

measurable parameters of the HTSC.  

From this formula results an additional connection of interesting: As lower the densities of 

states (DOS) per hole are in the undisturbed state, as bigger has to be MPG and as higher will 

be the critical temperatures. There is a difference to the DOS at the edges of the pseudogap in 

the state with interaction. As higher this DOS are, as higher are the critical temperatures.  
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3.5 Comparison between theory and experiment 

  

If the characteristic reference-energy of pair-building is identified as the energy of the 

pseudogap, seven(!) quantitative relations, which can be proved by experiment, are received.  

Annotation: The quantity of MPG/ FE  can be received with the assistance of the measured 

and the maximum pseudogap:  

If  MPG FE−  =  Pseudogap, than FE /MPG = 1-(PSL/MPG) = 1
MPG

PSL
− .   

And: MPG/ FE  =  















−

MPG

PSL
11  

Thereby was used the (not always correct) approach, that the pseudogap disappears, when the 

Fermi-energy is reaching the energy of the maximum pseudogap.  

 

 

I) The critical temperatures and their dependence on doping 

In 3.4 it was derived the Fundamental Formula for HTSC:  

 

( )F

CB
EMPG

PSL
Tk

/exp
14,1∝  = 1,14

( )F

F

EMPG

EMPG

/exp

−
  (6) 

 

(Remark: In the case of some HTSC this simple equation does not succeed.  

In case of 732 OCuYBa , (YBCO), the following formula is valid: 

 










+
∝

F

CB

E

MPG

MPGPSL
Tk

2

3
exp

3/
14,1 .  

In the case of YBCO this equation was taken for calculations. Why the YBCO shows a 

deviation is not yet known.)  
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Considering the Fundamental Formula for calculating the critical temperatures, you verify, 

that the Tc`s do not depend on doping like a parabola, but similar to a parabola. That means, 

with increasing doping, Tc also is increasing in the beginning, to go down at more higher 

doping. The maximum of Tc will be reached at FE /MPG = 0,62. That means, if superconduc-

tivity appears on doping ≤ 0,27, the maximum is reached at 0,17. Above a discrete doping 

(that implies above discrete Fermi-energies) all Cuprates only show normal-state-conduction 

at all temperatures. (Physical explanation see under 2.6 “variable”  Pseudogap c). 

These forecasts of theory are confirmed by experiments (till now). The following tables allow 

a comparison between theory and measured quantities. 

 

 

II) The relation between PSL and Tc 

 

Following the Fundamental Equation, we find out: 







⋅∝

FCB E

MPG

Tk

PSL
exp75,1

2
.   

  

Here are presented tables for I) and II): 

Table I. Critical temperatures and the relation between PSL (= Pseudogap) and Tc for Bi2212

 MPG (extrapolated) = 90 meV 1210−   

Doping ≈ 0,105 0,12 0,13 0,16 0,18 0,19 0,2 0,21 0,26* 

Measured PSL [meV] 49 46,4 44 36 35,5 31 39,3  25 26 

MPG/ FE  (calc., see above) 2,2 2,064 1,96 1,67 1,65 1,525 1,775 1,38 1,48 

Tc (calculated) [K] 72 78 82 90 90 89 88 83 60 

Tc (experimental) [K] 64 80 85 90 88 86 79 76 57 

CBTk

PSL2
=1,75exp(MPG/ FE ), 

calculated 

15,8 13,8 12,4 9,3 9,1 8,0 10,3 7,0 7,7 

CBTk

PSL2
 (experimental) 

17,5 13,2 12,0 10,0 9,35 8,6 11,3 8,7 10,6 
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Lit.:10   

Author: Hans Chr. Haunschild, born Ffm 20. 2. 1964 

 

Table II. Critical temperatures and the relation between PSL (= Pseudogap) and Tc for LSCO 

 MPG(extrapolated) = 38 meV 12,10  

Doping 0,04 0,05 0,06 0,075 0,08 0,086 

Measured PSL [meV] 33 31,5 30 27,5 27 26 

MPG/ FE  (calc., s. above) 7,6 5,85 4,75 3,62 3,46 3,17 

Tc (calculated) [K] 0,2 1,2 3,4 9,7 11,3 14,5 

Tc (experimental) [K] [Null] 1813et  

  

[Zero] 15  

 

8 14  

5,5
15

 

8,5 15   

21,2 13  

24 16    

19 15   

19,6 17  

29,7 18   

22,25 17  

 

CBTk

Psl.2
=1,75exp(

FE

MPG
) 

3500 608 202 65 56 42 

CBTk

Psl.2
 (experimentell) 

∞  ∞  103 31 27 30 

 

 

Doping 0,09 0,1 0,105 0,11 0,113 0,115 0,12 

Measured PSL [meV] 25 23 22,75 22,5 22,3 22,25 22 

MPG/ FE  (calc., s. above) 2,9 2,53 2,5 2,45 2,42 2,41 2,375 

Tc (calculated) [K] 17,8 24 25 25,6 26,2 26,4 27 

Tc (experimental) [K] 27,5 14  

29,3 16  

[1615 ]  

29,2 16  

26,2 19   

 

27,8 14   26,1 20  

[13,9 21 ]  

29,1 16   

29,6 13   27,3 20   30,2 20  

29,4 16   

CBTk

PSL2
=1,75exp(MPG/ FE ) 

32 22 21,3 20,3 19,7 19,5 18,8 

CBTk

PSL2
 (experimental) 

22 21 22 20 18,5 19,9 17,75 

 

 

 

Doping 0,125 0,13 0,14 0,15 0,16 0,17 0,18 
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Measured PSL [meV] 21,5 21 20,5 16,6 14 11,75 11 

MPG/ FE  (calc., s. above) 2,3 2,235 2,17 1,775 1,58 1,44 1,4 

Tc (calculated) [K] 28,4 30 31 37 38 35 35,6 

Tc (experimental) [K] 28,4 22  

27,8 23   

34,4 16   36,9 16  

40 12  

35 24   

34,5 22 33,5 25  

28,6 19 38,0 23  

37,0 14  36,5 13  

33,0 27 31,5 18  

Φ =34,5K 

39,0 26  

 

34 15   40 12  

35 24   

CBTk

PSL2
=1,75exp(MPG/ FE ) 

18,35 16,4 15,3 10,3 8,5 7,4 7,1 

CBTk

PSL2
 (experimental) 

18,35 14,6 11,2 11,2 9,5 7,5 6,2 

 

 

Doping 0,188 0,2 0,225 0,24 0,25 0,263 0,3 

Measured PSL [meV] 8,5 7 5 4 3 Ca. 2 Zero 

MPG/ FE  (calc., s. above) 1,3 1,226 1,15 1,12 1,086 1,06 Ca. 1 

Tc (calculated) [K] 31,0 27,2 21 17,3 13,4 9,2 Zero 

Tc (experimental) [K] 34,4 13   [18,9] 19  

33,5 15  

30,4 18   

23 13  

25 12   

19 18   10,1 21   8 13   [15,219 ] 

CBTk

PSL2
=1,75exp(MPG/ FE ), 

calculated 

6,35 6 5,5 5,4 5,2 5 4,8 

(theor. 

value) 

CBTk

PSL2
 (experimental) 

6,65 5,8 5,8 5,6 [9,2] 5,8 [1,5] 

Literature: The values of pseudogaps are from 1211et . 

 

Experimental Tc-values in brackets are ”freak values”, resp. “runaways”, probably measuring 

faults. Take note of the phenomenon, that a “plateau-region” between the dopings of 0,1 and 

0,13 is predicted in theory. This predicted “plateau-region” is confirmed by experiment. 
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III) The magnitude of the Pseudogap in dependence of doping   

 

In the case of doping zero ( FE  = 0) is valid: MPG FE−  = MPG- 0 = MPG. Following this  

theory the pseudogap must reach his maximum -defined as MPG- by zero doping.  

This assumption is confirmed by experiment 9,8 .    

 The maximal Tc is reached at:  ≈
−

= MPGEF
2

15
0.618 MPG.  

This is exactly the formula of the “Golden Section”, which cannott be only a coincidence. 

That means, when superconduction appears at doping ≤ 0.27, the theoretical Tc-maximum 

will be reached at a doping of 0.62*0.27 = 0.167. The most HTSC have their Tc-maximum at 

a doping of 0.16. That is not valid in the case of  YBCO and PCCO. For this both the second 

eq. mentioned in 3.5 I) must be taken. In this cases the Tc`s reach their maxima at ≈FE 0.85 

MPG, which is confirmed exactly by experiment 9,8 .  

 

 
 

IV)  The relation between the maximum pseudogap and that value of pseudogap,  

 found at optimal doping 

If 
MPG

TE CF )( max

= 0,62, then is MPG )( max

CF TE− = 0,38 MPG.   (8) 

From the relation: MPG )( max

CF TE− = 0,38 MPG = pseudogap at max

CT , results:  

MPG =
38,0

)( max

CTPSL
 = 2,63 )( max

CTPSL⋅ .    (9) 

 

But that causes, the maximum pseudogap is 2,63 times higher than the pseudogap at optimal 

doping.  

Table III.  Relations of pseudogaps 

Substance LSCO Bi2212 Bi2223 Hg1201 Hg1212 Hg1223 PCCO 

PSL( max

CT ) [meV] 

Experimental 

14 36 45 33 50 46 11 (?) 
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38,0

)( max

CTPSL
=MPG 

calculated [meV] 

37 95 118 87 132 120 29 

MPG, 

extrapolated from 

experiment [meV] 

38 90 110 97 123 131 23 

 

Substance YBCO 
842 OCuYBa  NdCCO Tl2201 

PSL( max

CT ) [meV] 

Experimental 

22 24,4 4,6 35,5 

37 15  

38,0

)( max

CTPSL
=MPG 

calculated [meV] 

58 64 12 93 

9715   

MPG, 

extrapolated from 

experiment [meV] 

92 81 18,5 100 

All values without 15  are from 1210et . 

 

 

 

V) Coherence between Tc and pseudogap at optimal doping 

 

⋅⋅=−⋅⋅= 2,014,1)62,0/1exp()(14,1 maxmax

CCB atTPSLTk PSL( max

CT )   

Then max

CT is the value of the pseudogap [measured in meV] multiplied with 2,64. (10) 

 

Table 5.  Coherence between Tc and pseudogap at optimal doping 

Substance LSCO Bi2212 Bi2223 Hg1201 Hg1212 Hg1223 PCCO 

max

CT experiment.[K] 37 90 111 97 123 131 23 

PSL( max

CT ) [meV] 

Experimental 

14 36 45 33 50 46(measuring 

fault ?) 

11 (?) 

])[(

][
max

max

meVatTPSL

KT

C

C  
2,64 2,5 2,47 2,9 2,5 2,85 2,1 
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Substance YBCO 
842 OCuYBa  NdCCO Tl2201 

max

CT experim.[K] 92 81 18,5 90 

PSL( max

CT ) [meV] 

Experimental 

22 24,4 4,6 35,5 

37 15  

])[(

][
max

max

meVatTPSL

KT

C

C  
4,2 3,3 4,0 2,54 

2,43 15  

Lit. 1510et  

  

 

VI)  The maximum Tc, measured in K, has the same numerical value like the maximum 

pseudogap, measured in meV. 

From V)   results, that max

CT [in K] = 2,64 )( max

CTPSL⋅  [in meV] 

From IV) results, that MPG [meV] = 2,63 )( max

CTPSL⋅ [meV] 

In consequence of the results of  IV) and V) results, that  max

CT [in K] = ⋅
63,2

64,2
MPG [in meV]. 

That means, with increasing MPG (by pressure, for example), max

CT also increases.  

 

Table V.  Ratio between MPG and max

CT  

Substance LSCO Bi2212 Bi2223 Hg1201 Hg1212 Hg1223 PCCO 

max

CT experiment.[K] 37 90 111 97 123 Ø =131 23 

MPG [meV] 37 90 Not deter- min- ed 20 (?) 

max

CT /MPG 1,0 1,0     1,15 

 

Substance YBCO 
842 OCuYBa  NdCCO Tl2201 

max

CT experiment.[K] 92 81 18,5 90 

MPG [meV] unknown 71 unknown 100 

max

CT /MPG  1,14  0,9 

Literature: 10  
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VII)   Relationship between energy-gap of superconduction SC∆ (T=0)  

and critical temperature Tc. 

About the presupposition, that the energy kε , transferred between the holes is situated in the 

area of the pseudogap, results from BCS-theory 7 : 

 

Superconducting-energy-gap = SC∆ (T=0) = 
])(/1sinh[ VED

Pseudogap

F

 = 
]/sinh[ FEMPG

Pseudogap
 

Und: 2 SC∆ (T=0)/ CBTk = 
]/sinh[

2

FEMPG

Pseudogap⋅

Pseudogap

EMPG F

⋅
⋅

14,1

)/exp(
 5,3

)/exp(14,1

)/exp(22
≈

⋅
≈

F

F

EMPG

EMPG
. 

Since in the Cuprates the d-wave-pairing appears, it is necessary to multiplie this value with 

1,21306 28 .  In consequence appears a value of 3,52*1,21306 = 4,27. This value of 4,27 is 

valid for underdoped substances. In case of overdoped substances results a value of 

4,0*1,21306 = 4,85. That means, with augmenting doping SC∆  increases circa about a 

seventeenth. Measured are values between 4 and 6 3029et , and in fact the experimental mean-

values are augmenting with increasing doping about a seventeenth.  

On Tl2201 seems to exist a recognizable deviation: Possible here are measured values 

between 8 and 11 30 . 

 

 

 

3.6 Evaluation 

 

Theory and experiment are in satisfying accordance. Distinct deviations between theoretical 

predictions and experimental measurements appear at the Yttrium-compounds and at NdCCO. 

For these classes of substances accordance between theory and experiment is available, if 

there are used modified formulas of the FF. This theory not only makes qualitatively, but 

quantitatively exactly right predictions. That is so more surprising, if it is bored in mind, how 

strong simplifications are included. An unequivocal relation between the pseudogaps, 

Maximum Pseudogap, doping and superconductivity is shown.  
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IV. Explanation of the Isotope-Effects (IE) of the HTSC 

 

For completing, the isotope-effect in HTSC should be discussed. 

That the HTSC at all show an IE, is a sure hint, that phonons are playing an important role in 

the pair-building.  

Probably (see chapter 2.6 in this work) the magnitude of the maximum pseudogap MPG is 

depending on the atomic-mass-number of Cu- and oxygen. For proving this assumption, it`s 

really necessary to examine the PSL as a function of the atomic mass. In sight of the big 

variableness of the values of the single pseudogaps this way doesn`t make sense. That is why 

we will go now an indirect way and compare the critical temperatures of Bi2212 and LSCO. 

Indeed, this two substances are not distinguishing in their atomic-mass-numbers, but in the 

magnitudes of their MPG`s. If the Tc`s really are depending on the MPG`s and the latter are 

depending on the atomic masses, then every other variation of MPG should generate similar 

consequences for the Tc-values like the variation of the atomic-masses. That means, an 

augmentation of MPG will produce similar results as a reducing of the atomic-mass-numbers. 

So is telling the theory. Wether this prediction is holding, this can be ascertained by 

concerning together the critical temperatures of Bi2212 and LSCO:  









−⋅=

FFC

C

E

BiMPG

E

LSCOMPG

LSCOPSL

BiPSL

LSCOT

BiT )2212()(
exp

)(

)2212(

)(

)2212(
 (14) 

Taking this equation, results Table 6):  
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Doping 

)(

)2212(

LSCOPSL

BiPSL
 

FE

MPG
(LSCO)

FE

MPG
− (Bi2212) 

)(

)2212(

LSCOT

BiT

C

C  

theoretical 

)(

)2212(

LSCOT

BiT

C

C  

experimental 

0,06*  2,0 4,75 -3,0 = 1,75 11,5* unknown 

0,08* 2,0 3,46-2,5 = 0,96 5,2* unknown 

0,105 2,154 2,5-2,2 = 0,3 2,9 2,3 

0,12 2,11 2,533-2,064 = 0,47 3,4 2,7  

(rel. Max.) 

0,13 2,1 2,235-1,96 = 0,14 2,4 2,47 

0,16 2,67 1,5-1,67 = – 0,17 2,25 2,3  

(rel. Min.) 

0,18 3,23 1,4-1,64 = –0,25 2,5 2,35 

0,19 3,65 1,3-1,525 =  –0,225 2,9 2,5 

0,2 5,6 1,226-1,775 =  –0,55 3,2 2,47 

0,21* 4,0 1,2-1,38 =  –0,18 3,34* 2,6 

0,25* 5,8 1,0875 -1,241 =  –0,1557 5,0* unknown 

PSL und Tc`s with * are unknown partially, the values are estimated.  

[Lit.: chapter 3.5, tables I) und II) in this work] 

 

Considering the big differences between the magnitudes of the the pseudogaps of Bi2212 and 

LSCO the variableness of these magnitudes can hardly falsify the results. The relations of the 

experimental Tc`s are consistent in the framework of measuring-accuracy. One could expect 

such a result considering the success of the theory till now. It is more interesting, that the 

relation of Tc in dependence of doping demonstrates the same behaviour as the IE in 

dependence of doping: Table 7) is showing the experimental OIE in LSCO:  

 

Doping Pseudogap 

[meV] 

MPG/ FE  CT∆− [%] 

experimental 

)( 16
OTC  

[K] 

CT∆−  

[K] 

0,06 30 4,75 12,5 20  8,0 1,0 
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0,075 28 3,8 3,9 3013et (rel. Min.) 20,1 0,76 

0,08 27 3,46 5,5 17   19,6 1,1 

0,086 26 3,17 5,3 17  20,0 1,07 

0,09 24,5 2,9 5,1 2032et  24,4 1,6 

≈ 0,105 23,75 2,67 5,75 33;21;20  28,5 1,7  

0,11 23,5 2,62 6,1 2033et  26,1 1,6 

≈ 0,114 23,3 2,585 7,7 33;20;13  29,6 u. 20,1 1,9 u. 1,46 

0,12 23 2,88 7,6 33;31  25,4 2,25 

0,125 22 2,375  9,4 23;22 (rel. Max.) 27,6  2,0  

0,13 21 2,235 6,4 32  29,8  2,0  

0,14 20,5 2,17 1,85 32  32,4 0,6 

0,15 16,6 1,775 1,9 32;2320;13 −  37  0,7 

0,166 12 1,46 1,4
35

(rel. Min.) 35 0,5 

0,175 11,4 1,43 1,85 32  16,2 0,3 

0,19 8 1,27 0,6 13  34,4  0,21  

0,2 7 1,266 3,9 21  28,4 1,1 

0,225 5 1,15 1,0 13   23  0,23 

0,25 3 1,086 3,0 21  10,1 0,3 

0,263 Ca. 2 1,06 2,75 13  8,0 0,22 

The values of the pseudogaps see chapter III. in this work 

 

In the diagrams belonging to the IE`s, are drawn:  

a) experimental ratio between the Tc`s of Bi2212 and LSCO and  

b) experimental OIE of LSCO in % 

Considering the diagrams the qualitative similarity of the slopes a) and b) is striking. Every 

time in both slopes depending on p ≈ 1/8 appears a relatively maximum and depending on 

optimal doping every time a relatively minimum. There are absolutely mimima at optimal 

doping every time. In the overdoped region both slopes are increasing steep with increasing 

doping.  
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In the strong underdoped region  (p = 0,06) the experimental OIE-values are extremely 

raising. That is also predicted by this theory. 

These remarkable accordances can demonstrate, that an augmentation of atomic mass is 

producing a reduction of MPG and lower critical temperature by this way. 

That the ratio between Tc(Bi2212) and Tc(LSCO) is increasing much faster than the OIE of 

LSCO is no tragedy: That is the consequence of the fact, that the ratio of the MPG`s of this 

both substance-classes is much higher (bigger) than the mass-ratio between 18
O / 16

O . 

Beginning at optimal doping, both slopes are increasing with increasing and with decreasing 

doping. Indeed, both slopes do not reach the value of zero at any time, although there is 

pretended the contradiction in many textbooks (compendia).  

Comparing theory and experiment it is established, that the predictions of theory are satisfied 

in general. The prediction of a decreasing maximum pseudogap MPG with increasing atomic 

weight is reliable, resulting in an Isotope Effect.  

 

 

 

5. Influence of impurities upon the superconducting parameters 

 

Nearly with discovering of HTSC it was established, that the substitution of copper by 

paramagnetic ions suppresses the Tc-values. This could be expected by the well-known 

theories of superconductivity at this time. But it was not provided for a stronger sinking of 

critical temperatures by substitution of copper by unmagnetically zinc-ions. There are no hints 

for changing the (maximum) pseudogap by impurities. By that a decreasing of the pair-

density by impurities can be supposed. Quantitatively: The impurities increase the argument 

of the exponential-function in the denominator of the FF. If this assumption is true, than with 
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increasing doping the influence of the impurities is decreasing. Someone very similar we got 

to know upon the IE. In accordance with the FF is valid: Tc = 1,14*PG*exp(MPG/ FE ).  

This simple equation only is valid without substitutions. With substituting impurities is  

Tc = 1,14*Psl.*exp(
FE

MPG
F ⋅ ). 

In this formula is F > 1 and proportional to the portion of impurities. It is in the nature of such 

an approximation, that the worth of F depends on the type of impurities, too.  

The result is:  ( ) 







−=

FE

MPG
F

Tc

Tc
1exp

2

1 .   If we point out 1-F = f, we get: 

 

Tc2/Tc1 = exp[-f( FEMPG / )].  (15) 

 

The size of “f” is an other for every metal (and probably for every class of substances, too) 

and must searched by experiment. In contrary the size of “f” should not depend on doping.  

For the class of LSCO-substances the following tabulas will show the quantitative comparison 

between theory and experiment:  

 

Zink: 4)1(15,085,1 OZnCuSrLa xx− :  

MPG/ FE = 1,6  Parameter = 4 und F = 1+
4

%Zn
  Therefore is valid: 

 

Tc2/Tc1 = ( ) 







−

FE

MPG
F1exp = 
















−−

FE

MPGZn

4

%
11exp  = exp( Zn%

4

6,1
⋅− ) 

 

Zn-portion 

in % 
Zn%

4

6,1
⋅  

Tc2/Tc1 

Theory 

Tc2/Tc1 

Experiment 

0,4 0,16 0,85 1,0 

0,8 0,32 0,73 0,76 

1,2 0,48 0,62 0,63 
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1,6 0,64 0,53 0,51 

2,2 0,9 0,4 0,36 

  Lit. 3736et  

 

 

Nickel:  

4)1(15,08,1 ONiCuSrLa xx− : MPG/ FE = 1,6  Parameter = six 

und 4)1(2,08,1 ONiCuSrLa xx−  MPG/ FE = 1,25  Parameter = six 

 

 for opt. doping  for over- Doping 

Ni-portion 

in % 

Tc2/Tc1 

Theory 

Tc2/Tc1 

Experiment 

 Tc2/Tc1 

Theory 

Tc2/Tc1 

Experiment 

0,5 0,88 0,92  0,9 0,91 

1,0 0,77 0,8  0,81 0,82 

1,5 0,67 0,69  0,73 0,74 

2,0 0,59 0,59  0,66 0,65 

  Lit. 3736et  

 

 

Iron: 

4)1(15,085,1 OFeCuSrLa xx−  MPG/ FE = 1,6 Parameter = 3,2.  

Therefore is valid:  

Tc2/Tc1 = exp( Fe%
2,3

6,1
⋅− ) = exp(-0,5 multiplied with the %-portion of  Fe) 

and 4)1(2,08,1 OFeCuSrLa xx−  MPG/ FE = 1,25  Parameter = 3,2.  

Here is valid: Tc2/Tc1 = exp( Fe%
2,3

25,1
⋅− ) = exp(-0,4 multiplied with the %-portion of Fe). 

 

Fe-portion 

in % 

Tc2/Tc1 

Theory 

Tc2/Tc1 

Experiment 

 Tc2/Tc1 

Theory 

Tc2/Tc1 

Experiment 

0,3 0,86 0,9  0,89 0,94 

0,5 0,78 0,82  0,82 0,85 
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0,7 0,71 0,7  0,76 0,81 

0,8 0,67 0,66   unknown. 

0,9 0,64 0,53   unknown 

1,0 0,61 0,45 38    0,68 0,69 

  Lit. 3836−  

 

     

Result: 

The theory predicts a linear decrease of critical temperatures by increasing portions of  

impurities. The dependency of the optimal doped HTSC (and probably of the underdoped, 

too) is bigger than the dependency of the overdoped. Again a nearly quantitative agreement 

between theory and experiment exists.  

Diagrams to these tables you can find in the supplement.  

 

In contrary to copper the zinc possesses a closed 3d-shell. Therefore the substitution with  

zinc-ions prevents the “conditional-hopping-interaction” of the EL, leading to a decreasing of  

density of pairs. Naturally the reduction of density of pairs leads to lower critical 

temperatures. 

The explanation of reducing the density of pairs by paramagnetic ions is a part of the BCS-

theory and must not discussed here. 

 

 

 

 

6.  The temperature-dependency of normal state resistance of HTSC 

 

It is well-known [Lit. see chapter 7.] that in overdoped HTSC the normal state resistance  is 

increasing linear with temperature over a large range of temperature –especially down to the 
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lowest temperatures. This behaviour cannot be explained by the conventional models of 

electron-phonon- or electron-electron-interactions. In the following a possible explanation of 

this unusual behaviour will be presented:  

In a totally periodical lattice no electrical resistance appears. The electrical resistance always 

is generated by a disturbance of the periodicity of lattice. Thereby in HTSC must appear 

disturbances whose number or whose scattering cross-section is increasing linearly with 

increasing temperature.  In a metal the density of charge-carriers, which are thermally excited 

above a discrete energy, is increasing linearly with temperature. It`s nearby, searching this 

extra-ordinary temperature-dependence of resistance in this connection. 

Therefore it is reasonable to search for the extraordinary temperature-dependence in this 

context.  

As mentioned in chapter 2.2, in the HTSC the EL (not the holes) do not behave as part of the 

electron gas but behave similarly to particles of a lattice. These electrons, which are 

stimulated about the higher band edge behave similarly to irregularly distributed lattice-sites. 

These irregularly distributed “lattice-sites” disturb the periodicity of lattice. Since the holes 

are not only particles, but also are waves, they are scattered at these lattice deformations. By 

that the quasi-impulse hk∆ is translated upon the total crystal, this means upon all Cu-3d-EL 

in the crystal. Therefore these thermal stimulated EL act as disturbances of the periodicity of 

lattice –that means of scattering centres for the holes.  

As the mass of all EL is bigger than the mass of  one hole, it is a nearly elastic collision.  

Translating of energy is negligible. In the last resort, the hole will be scattered into a state 

with similar energy (about EF), but another (that means a negative) wave-vector. But that 

means that electrical energy will be converted in warmth, because the translated quasi impulse  

hk∆ will be absorbed by the whole crystal.  By that, no charge can be transmitted.  

That means that the charge, which had been transported by the hole, reverses its direction of 

motion. This process is noted as electrical resistance. Due to the Pauli-principle only these 



 32 

Cu-3d-EL, which are nested in the vicinity or above the upper edge of the band can 

temporarily take energy and linear momentum. Cu-3d-El in lower levels of the band do not 

come into consideration as targets for the holes. 

In the HTSC the interaction between holes and thermal excited El. gives rise to an 

electrical resistance. 

Although the scattering is nearly elastic, the total angle of impact between hole and pushed 

EL is always 90°. This results from the conservation of energy and impulse: In the beginning 

the hole strikes with the EL and after that the EL translates energy and impulse upon the 

lattice. By that the total angle of impact between hole and pushed EL always has a size of 90° 

(classical physic).  

Therefore the hole is scattered in an angle smaller than 90°. This small angle scattering 

between holes and EL only can exist, if one of the partners of scattering (in our case hole or 

EL) was excited about the band edge before scattering. Otherwise no push is coming about, 

since the hole would forced to be scattered in already occupied states. 

The densities of EL and holes, which are thermally excited about the band edges, are both 

growing linearly with temperature. Naturally the sum of both densities also grows linearly 

with temperature. From this fact the equation for the electrical resistance in the HTSC 

includes the well-known linear therm. 

The elastically interaction of holes with thermal excited EL in the HTSC  is leading to an 

electrical resistance, increasing linear with temperature.  

In conventional metals there is a pure electron gas, whose constituents cannot be excited to 

(“lattice site”)-oscillations because of absence of restoring force. Therefore the mechanism of 

resistance –described above- cannot exist in conventional metals. 

The density of El which are thermally excited above the Cu-3d-band increases linearly with 

increasing temperature. Accordingly the density of scattering frequency and because of that 
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the normal state resistance also increases linearly with increasing temperature, what is in 

agreement with experiments. [Literature at chapter 7.] 

This argumentation assumes that the interaction between mobile holes and immobile but 

excited El does not depend on temperature and that the density of state of the El does not 

depend on their energy. The well-known interaction between holes and phonons is more than 

a factor of hundred smaller than the explained interaction between holes and bound El and 

does not matter. 

For completeness it should be remarked, that this consideration are not available for metallic 

hydrogen and for palladium-hydrogen-systems. In such systems the protons are installed at fix 

lattice sites and can be identified by that. Therefore as many as you like of protons can occupy 

the same state. The conduction electrons of these substances can be scattered on every proton 

irregularly installed in the lattice. Therefore results a T-independent RRR and no linear T-

dependent resistivity can be observed.  

 

 

 

 

7. Numerical calculation of temperature-dependence of the normal state resistivity  

 

7.1 Calculation of the density of thermal above the Fermi-energy stimulated El. 

In this section we will make a quantitative calculation of the normal state resistivity. 

In a certain subject the number (not the density) of thermal excited El. is:  

Nth = ∫
− F

F

EE

E

dEEDEf )()(  
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In a two-dimensional crystal the electronic density of states D(E) does not depend on the 

energy of the states of electrons. Therefore D(E) does not depend on carried thermal energy or 

of temperature. That is why D(E) can be taken before the integral:  

   Nth = D(E) ∫
−

+






 −

F

F

EE

E

B

F

Tk

EE

dE

1exp

 

 

We now take EF as zero point of energy and define E/kBT =X.  Now it is possible to write: 

Nth = D(E) kBT ∫
∞

+
0

1

dx
xe

 =  D(E) kBT [x -ln(1+ xe )] ∞

0  

The limitation of the integral is received by the following considerations: At very low 

temperatures x will reach infinite quantity. For high temperatures x will reach zero. 

The DOS of a two-dimensional electron gas is: D(E) = 
π2

h

Ame  

(In reality this formula is acceptable only for s- and not for d-electrons. The real DOSes are 

larger and additionally depending on the density of d-El. in the ground state. But to show that 

the normal state resistivity really can be brought about by this described mechanism, this 

primitive formula is sufficient.) 

    By that Nth 
π2

7,0
h

Ame≈  kBT. 

And the density nth of thermal excited El.: 

  nth = 
A

thN
= 0,22

2

em

h
 kBT  =  2,5 21410 −⋅








⋅⋅ m

K

T
.  (16) 

Therefore the density of thermal super EF excited El. the theoretical value of  2,5 1410⋅ El. on 

square meter and Kelvin. By that the density of excited El. in a CuO2-area of a HTSC depends 

only on temperature, but not on the electronic density in the ground state. 
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7.2 Probability of interaction between holes and EL 

 As explained in section 6., the thermal excited El are disturbing the periodicity of the lattice 

site by which is generated an electrical resistivity. With the results of the density of thermally 

excited El in section 7.1 it is now possible to make a numerical calculation of the resistivity 

generated by the hole-El.-scattering: 

τ
ρ

2

0

holem

en
=   

l

vF=
τ

1
 and  l =

0

..

1

σthn
meter

oflln
⋅

 

Because of calculation of nth in
2−m , it was necessary to convert in 3−m . Therefore it was 

multiplicated with the number of lattice-layers per meter (n. of ll./meter). 

Intermediate notice: 

0n is the concentration of holes in the dimension 3−m and τ  is the relaxation rate, that is the 

time between two collisions. Meant are the collisions between the mobile holes and the 

immobile El. vF is the Fermi-velocity. As the holes can only move in two directions of space, 

it is necessary to calculate vF for a two-dimensional electron gas. That is why 

A

N

m
v

Lö

F π2
h

= . 

nth means the density of thermally excited d-El. at the Cu-sites (not the density of the holes) in 

two-dimensional metals. 0σ is the cross-section for interactions between the mobile holes and 

the thermally excited, but localized El.  

With 
4

5

0

102

Fv

⋅
=σ  (see chapter 6.3) results for reluctance: 

4

5

2

Lö 102..

..

m

F

thF
v

n
meter

GsdZ
v

meter

GSdZ

A

N
e

dT

d ⋅
⋅⋅⋅⋅

⋅⋅

=
ρ
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With ( )
2

3

2
3

3

3
3 2 








⋅=

A

N

m
v

Lö

F π
h

  the final result for resistivity is: 

⋅=⋅=
2

0

2

0

Lö 1m

en

m

en

Lö

τ
ρ 0

.../2
σ

π
⋅⋅⋅

⋅

meter

GsdZ
n

m

AN
th

Lö

h
. (17) 

 

Example: 

In 9,632 OCuYBa  1,7 910⋅ current-carrying lattice-layers are paralleled 39 . 

. The density of holes amounts to, what is (numerical): 218

19

327

107,2
107,1

106,4 −

−

−

⋅=
⋅

⋅
= m

m

m

A

N
. 

nth multiplicated by the number of lattice-layers per meter: 14105,2 ⋅ 2−m 191 107,1 −− ⋅⋅ mK . 

From this results as conductivity 0

91057,1 σρ
meterK

Ω
⋅= . 

With 218

0 109,3 m
−⋅=σ (For calculation of cross-section 0σ look at 5.3) results an increase of 

resistivity of ca. 6 910−⋅ Ωm/K = 0,6 µΩcm/K. On assumption, that shielding reduces the 

resistivity an increase of 0,1 µΩcm/K results. Measured are values between 0,25 and 

1,46 910−⋅ µΩcm/K 4540− . 

 In the middle, this is about 0,85 µΩcm/K. Theory and experiment are not in agreement as 

well. The very strong simplifications made by this model are a possible reason. In the case of 

LSCO better agreements between theory and experiment are received (look at VIII, Table 

11.). It should be remarked, that doping of 2CuO -planes of the same substance with 

171024,2 ⋅  Cobaltions per squaremeter leads to a RRR of  ca. 270 cmµΩ 46 .   

Therefore 2,5 1410⋅ excited EL per squaremeter and Kelvin should make an increase of 

resistivity of 0,3 µΩcm/K. This result makes confidence into the actual insure calculation. 

 

 

7.3  Calculation of collision cross-section 0σ . 
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0σ will be calculated with the following equation from plasmaphysics: 

45

422

0

42

0 102
)4(

−⋅=
∈

= F

FLö

v
vm

eZ

π

π
σ  [squaremeters]   (18) 

Fv  is the Fermi-velocity (in two dimensions), because only the holes on the Fermi-surface 

can be scattered. Z is equal one (charge of holes) and Löm is the mass of holes (= mass of 

electrons).  

The attentive reader will find fault with something:  

1. This equation only considers the large-angle-scattering. 

2. In this formula a cross-section is calculated. Consequently in a two-dimensional hole-gas a 

perimeter ought to be calculated. But the interaction between holes and El. will be produced 

by the Coulomb-interaction. Although the holes cant leave their lattice-layers, nevertheless 

they are in interaction with the El from neighbouring lattice-layers and will be shielded by 

themselves. 

3. The Coulomb-interaction of El. with the holes reduces the cross-section of collision. In this 

work will be used as an approximate calculation the theory of Thomas-Fermi. It`s possible to 

deduce this theory indeed for two dimensions. But this is senseless, because the Coulomb-

shielding exists also cross to the lattice-layers. The shielding reduces the resistance to about 

15%. 

 

 

8. The temperature-dependence of normal state resistivity of some HTSC at low 

temperatures for example. 

 

Summarizing all just terms factors for calculation of resistivity, results the following equation: 

  Kcm
A

N

dT

d
/1027,7

5,2

45 Ω







⋅⋅=

−

µ
ρ

.   (19) 



 38 

Apart from shielding, which has to be considered for each HTSC separately, this formula is 

valid for all HTSC, independently of the chemical composition , the stoichiometry or density 

of holes. In any case, if the approximation of quasi-free holes is acceptable and conventional 

scattering mechanisms are only playing a subordinate part. Therefore the formula above is 

very suitable for proving the usability of the represented theory. With this formula for ρ  the 

plot of the measured resistivity values against 5,2)/( −AN  will make a straight line with an 

ascending gradient of 451035,7 ⋅ . Additional regarding the shielding (shielding factor see  

chapter 7.3 c), then we should get a straight line with the ascending gradient of 

≈⋅ 4510
6

35,7
1,2 163710 −Ω⋅ Km .  (20) 

With this equal were set up the following schedules. In all cases the hole concentration was 

calculated with 37 .  

Table 11. dTdρ in dependence on the density of holes, by example of LSCO. 

Sr-

doping 

x      

    

N/A 

[ 21810 −
m ] ]10[

)/(
546

5,2

m

AN

−

−

 
ρ [ Kcm /Ωµ ] 

Calculated 

without 

shielding 

ρ [ Kcm /Ωµ ] 

Calculated with 

shielding 

ρ [ Kcm /Ωµ ] 

experimental 

0,1 0,7 24,4 18 3,0 2,2 47  

0,12 0,84 15,5 11,4 1,9 2,0 47  

0,15 1,05 8,85 6,5 

 

1,1 1,3 47 ; 1,4 48 ; 

1,4 49 ; 0,8 49 ; 

1,3 18  

0,17 1,19 6,5 4,78 0,8 0,9 48  

0,20 1,4 4,3 3,16 0,53  1,0 49 ; 0,8 18  

0,22 1,54 3,4 2,5 0,42 0,45 48  

0,24 1,68 2,73 2,0 0,33 0,9 18  

0,25 1,75 2,46 1,8 0,3 0,66 51 ; 0,7 51  

0,3 2,1 1,565 1,15 0,2 0,63 49 ; 0,43 18  
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Table 12.  dTdρ  for the substance Bi2Sr2CaCu2O8+x  (=Bi2212) 

Oxygen 

doping x 

N/A 

[ 21810 −
m ]  ]10[

)/(
246

5,2

m

AN

−

−

 
ρ [ Kcm /Ωµ ] 

calculated 

with shielding  

ρ [ Kcm /Ωµ ] 

experimental 

0,2135 0,73 22 2,7 2,6 

0,217 0,74 21,2 2,6 2,3 

0,22 0,75 20,5 2,5 1,83 

0,24 0,82 16,4 2,0 1,5 

0,25 0,85 15 1,84 1,3 

0,255 0,87 14 1,7 1,17 

0,26 0,887 13,5 1,65 1,08 

0,27 0,92 12,3 1,5 0,8 

 

The calculated resistivities already regard the shielding by a factor of six. Experimental values 

from 52 . 

 

Table 13. Comparison between theory and experiment: 

 

Class of substances 
5,2)/( −∆

∆

AN

ρ
 

]10[ 1637 −Ω Km  

Experimental 

5,2)/( −∆

∆

AN

ρ
 

]10[ 1637 −Ω Km  

theoretical 

LSCO 1,1 1,2 

Bi2212 1,26 1,2 

 

According to the formula for ρ , the outline of resistance values in Kcm /Ωµ  against 

5,2)/( −AN should make a straight line with an ascending gradient of  1,2 163710 −Ω Km .  

The deviations between theory and experiment are lower than 10%. 

Regarding the amounts on has to take into account that an explicit theoretical and simplified 

model was taken as a basis. In addition to that, measured values differ between authors. 
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Nevertheless this model can describe the unusual dependence of the normal state resistivity 

qualitatively true and quantitatively well.  

 

 

 

 

9.  The heat conduction in HTSC 

 

Preliminary remark: 

 The following explanations belong to the normal- and not to the SC-state.  

 

9.1 The model of electrical resistivity which was explained in sections 6.-8. also is 

applicable  to thermal resistance. Hence it follows that the thermal resistance must increase 

with the density of the thermally excited EL, that means likewise linearly with temperature. 

As the electronic contribution to thermal conduction likewise proportional follows to the 

density of the thermally excited El, that means by a linear temperature law, the thermal 

stipulated increasing of density of thermal conducting particles and the increasing of  thermal 

resistance must counterbalance each other (in the normal state).  

But that mean, that the hole-induced part of thermal conduction in HTSC should show a 

constant quantity. This quantity is independent of temperature. A deviation only will occur at 

low temperatures: At low temperatures the thermal-resistance will be generated by defects of 

lattice and impurities. Therefore in the low-temperature region the thermal conductivity 

should increase with  increasing temperature like in normal metals. In the temperature-region 

between 0 and 30 K the thermal conductivity should increase linearly with temperature and 

then reach its constant maximum value. This temperature-region is mentioned explicit, 

because normal metals show a different behaviour: In normal metals at temperatures which 
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are not too low the electrical and thermal resistivity is dominated by scattering of conduction-

electrons at phonons, leading to the phenomenon of a maximum thermal conductivity in the 

just mentioned temperature-region. 

In accordance to these considerations in many HTSC the thermal resistance is dominated by 

interaction (that means scattering) between EL and holes. In consequence, between 10 and 30 

K the heat conduction does not decrease with increasing temperature.  

Meanwhile this prediction is confirmed. Up to 30 K the heat-conductivity of HTSC is 

increasing steep. At higher temperatures it is nearly independent of temperature. (This does 

not work in the SC-state, naturally.)  

From the formula of heat-conduction in two dimensions by movable charge-carriers: 

l
vm

Tnk
K

Fh

b

h ⋅=
3

22π
 and with 

0

...

1

σthn
meter

GsdZ
l

⋅

=  results 

actorshieldingf
meterGsdZn

v

vm

Tnk
K

th

F

Flö

b

Lö ⋅
⋅⋅

⋅=
/...1023 5

422π
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With 
A

N
vF ⋅⋅= −4109,2    results   actorshieldingf

mK

W

A

N
K Lö ⋅








⋅⋅= −

5,2

45106,33 . 

 

...1023 5

422

GsdZn

v

vm

Tnk

th

F

Fh

b

⋅⋅
⋅=

π
 and 

A

N
vF ⋅⋅= −4109,2  

 

results  

5,2

461036,3

−

−








⋅⋅=

A

N
K h .  (21) 

 

Table 14. Thermal conduction coefficient in various HTSC 
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Substance 

    

N/A 

[ 21810 −
m ] ]10[

)/(
245

5,2

m

AN

+

+

 
LöK [ mKW / ] 

calc., without 

shielding 

LöK [ mKW / ] 

calc., with 

shielding 

LöK [ mKW / ] 

experimental 

value 

LSCO,  

x =0,17  

1,19 1,55 0,5 2,5 4,5 15  

LSCO,  

x =0,2 

1,4 2,3 0,8 3 Circa 3 53   

YBCO6,3     1,9 54  

YBCO6,53     2,3 54  

YBCO6,7 1,36 2,2 0,7 

 

     3 5,0 54 ; 2,5 55  

 

YBCO6,77 1,83 4,5 1,5 4 2,9 54  

YBCO6,9 2,7 12 4,0 8,0 8,0 53 ; 2,5 54 ; 

3,5 56 ; 4,0 57 ;  

 

On heat-conduction also exists convergence between theory and experiment, if it is 

considered, that the experimental values show a big variation and the phonons are also 

contributing to the heat-conduction.  

For Bi2Sr2CaCu2O8-y  the thermal-conduction-coefficient also has a small temperature-

dependence 58 .  

 

 

9.3 Wiedemann-Franz-law 59  and Lorenz-number 

 

The theoretical relation between heat-conduction and electrical conductivity is:  

2

5,2

37

5,2

46
0 1035,71036,3 −

−

− Ω







⋅⋅⋅








⋅== KW

A

N

A

N

T

K
L Lö

σ
 = 281047,2 −− Ω⋅ KW . 

For 9,632 OCuYBa was measured: 28

0 105,10 −− Ω⋅= KWL  )53( .  bzw. 28105 −− Ω⋅ KW  )46( .  

It is characteristic, that these measured quantities do not depend on temperature, 

corresponding to the represented theory. Unfortunately for other HTSC no values are 

available. Oddly the value of the Lorenz-number is the double as in conventional metals. It is 
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not yet possible, to answer, why. Also the values of 0L  only show a small dependence of 

temperature, what is also predicted by theory.  

 

 

9.4  Result 

In conventional metals between 10 and 30 K you receive no solid Lorenz-number, but a so-

called “Lorenz-relation”, starting decreasing with increasing temperature, than reaching a 

minimum and then increasing again 60 . This conclusion is very important: 

It proves that in the HTSC electrical resistance and thermal resistance (of the holes) are 

created by processes with the same effectiveness at every temperature. By that both types of 

collision processes are of the same effectiveness, an elastically or nearby elastically scattering 

is necessary. In HTSC the thermal and the electrical resistance come about by elastically 

scattering. That is established by obeying the Wiedemann-Franz-law at all temperatures. From 

this reason, inelastically scattering can be excluded. Therefore the scattering of holes comes 

about by elastically scattering processes with a collision cross-section 0σ or a frequency 

increasing linearly with temperature. Scattering of conduction-electrons (in HTSC almost 

holes) always is inelastic and by that is not useful as an explanation. Attempting to explain 

this result by dynamical elastic scattering of holes at bosons, the density of this bosons also 

has to increase at the lowest temperatures linearly with the temperatures. (In HTSC the 

resistance is increasing linearly with T at the lowest temperatures.) That is possible only, if 

the characteristic exciting-energy of this bosons is going to zero. That is sizeable unrealistic, 

but thinkable. But if the excitement-energy is in the near of zero, the matrix-element of the 

hole-boson-coupling goes to zero. And with a coupling-constant near zero the electrical 

resistance also is going to zero, at every temperature.  

The extra-ordinary temperature-dependence of resistivity cannot be explained by an 

interaction with bosons. Then the only explanation is the elastic interaction with fermions. 
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The number or the collision cross-section 0σ of these fermions also has to increase linearly 

with the temperature. The one and only fermions in HTSC with these presuppositions are the 

thermal excited CU-3d-EL. It is significant, that these types of electrical and thermal 

resistivity and the anomalies in the WF-law only exist in the HTSC. Indeed, in the heavy-

fermion –superconductors the resistivity at low temperatures increases (nearly) with the 

temperature, but it is proved, that this scattering is inelastic 61 .  

In principle a scattering of holes at ordered areas in the crystal is possible. But then the 

ordering in the crystal must increase with temperature, what is in contradiction to the second 

main theorem of thermodynamic. It only rests the solution, that the holes are scattered at the 

thermal excited Cu-3d-EL. 

This does not prove the coming about of superconductivity by interactions between holes and 

Cu-3d-EL, but it is obvious. 

  

 

 

10. Conclusion 

 

10.1 It was demonstrated in sections 6. to 9., that electrical resistance and heat resistance in 

HTSC are created by interaction between mobile holes and localized Cu-3d-electrons. High-

temperature-superconductivity is explained by a closely related mechanism. Furthermore the 

mechanism presented in this abstract also can explain all the other experimental results 

qualitatively and quantitatively. This theory of HTSC is closed, quantified and able to explain 

the phenomenas connected with the cuprate-based superconductivity.  

The here presented relations between experimental verified metal-parameters and the 

superconductivity are totally more quantitative than all, which was offered till now by the 

theory of superconductivity. 

Apart from that the theory is unusually, there is no doubt on her correctness. 
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It should remarked for completeness, that this mechanism is also appreciable to electron-

doped HTSC. But it is true, that the interaction between negative loaded Cu-3- 22
yx

d
−

-EL and 

conduction-electrons is weaker than with positive loaded holes, leading to lower critical 

temperatures. 
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