Semicontinuous filter limits of nets of lattice groupvalued functions

Antonio Boccuto and Xenofon Dimitriou

ABSTRACT: Some conditions for semicontinuity of the limit function of a pointwise convergent net of lattice group-valued functions with respect to filter convergence are given. In this framework we consider some kinds of filter exhaustiveness.

Definitions 1 Let *X* be a Hausdorff topological space.

(a) A function $f: X \to R$ is *upper semicontinuous* at a point $x \in X$ iff there is an (*O*) -sequence $(\sigma_p)_p$ (depending on *x*) such that for each $p \in \mathbb{N}$ there is a neighborhood U_x of x with $f(z) \le f(x) + \sigma_p$ whenever $z \in U_x$. We say that $f \in R^X$ is *lower semicontinuous* at *x* iff $−f$ is upper semicontinuous at *x*. A function $f \in R^X$ is *continuous* at *x* iff it is both upper and lower semicontinuous at *x*. If the (*O*)-sequence $(\sigma_p)_p$ can be chosen independently of *x*∈ *X* , then we say that *f* is *globally upper semicontinuous* (resp. *globally lower semicontinuous*) on *X*. A function $f \in R^X$ is *globally continuous* on *X* iff it is both globally upper and globally lower semicontinuous on *X* .

(b) Let $x \in X$. We say that a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is \mathcal{F} -upper *exhaustive* (or F -backward exhaustive) at x iff there is an (O) -sequence $(\sigma_p)_p$ such that for any $p \in \mathbb{N}$ there exist a neighborhood *U* of *x* and a set *F* ∈ *F* such that for each $\lambda \in F$ and $z \in U$ we have $f_{\lambda}(z) \le f_{\lambda}(x) + \sigma_{p}$. We say that $(f_{\lambda})_{\lambda}$ is F-lower exhaustive (or F-forward exhaustive) at x iff $(-f_{\lambda})_{\lambda}$ is *F*-upper exhaustive at *x*.

(c) A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *weakly F -upper exhaustive at x* iff

there is an (*O*)-sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ there is a neighborhood *U* of *x* such that for every $z \in U$ there is $F_z \in \mathcal{F}$ with $f_{\lambda}(z) \le f_{\lambda}(x) + \sigma_{p}$ whenever $\lambda \in F_{z}$. We say that $(f_{\lambda})_{\lambda}$ is *weakly F -lower exhaustive at x* iff $(-f_{\lambda})_{\lambda}$ is weakly *F* -upper exhaustive at *x*.

(d) We say that $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *weakly F*-upper (lower) *exhaustive on X* iff it is weakly $\mathcal F$ -upper (lower) exhaustive at every $x \in X$ with respect to a single (O) -sequence, independent of $x \in X$.

(e) We say that $(f_{\lambda})_{\lambda}$ is weakly F-exhaustive at x (resp. on X) iff it is both weakly $\mathcal F$ -upper and weakly $\mathcal F$ -lower exhaustive at x (resp. on X).

(f) We say that the net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *F*-*almost below a function* $f: X \to R$ *around a point* $x \in X$ iff there exists an (*O*) -sequence $(\sigma_p)_p$ such that for every $p \in \mathbb{N}$ there is a neighborhood *U* of *x* such that for each $z \in U$ there is a set $F_z \in \mathcal{F}$ with $f_\lambda(z) \le f(x) + \sigma_p$ whenever $\lambda \in F_z$. We say that $(f_{\lambda})_{\lambda}$ is F-almost above f around x iff $(-f_{\lambda})_{\lambda}$ is F-almost below − *f* around *x* .

Theorem 2 *Let* $\mathcal F$ *be a* (Λ) *-free filter of* Λ *,* X *be a Hausdorff topological space,* $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, *be a net of functions,* (ROF) *convergent to* $f: X \to R$ *with respect to a single (O) -sequence* $(\sigma_p^*)_p$ *, and x*∈ *X be a fixed point. Then the following are equivalent:*

(i) $(f_{\lambda})_{\lambda}$ *is weakly* \mathcal{F} *-upper exhaustive at x;*

- (*ii*) f *is upper semicontinuous at x* ;
- (*iii*) $(f_{\lambda})_{\lambda}$ *is* \mathcal{F} *-almost below f around x.*

Theorem 3 *Let* \mathcal{F} , Λ , X *be as in Theorem 2,* $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, *be a function net,* (ROF) *-convergent to* $f: X \rightarrow R$ *, and* $x \in X$ *. Then the following are equivalent:*

- (*i*) $(f_{\lambda})_{\lambda}$ *is weakly F -lower exhaustive at x;*
	- (*ii*) f *is lower semicontinuous at* x ;
- (*iii*) $(f_{\lambda})_{\lambda}$ *is F -almost above f around x.*

Definitions 4 (a) A net $(f_{\lambda})_{\lambda}$ is (ROF) *-upper convergent to f* iff there is an (*O*) -sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ and $x \in X$ there is a set $F \in \mathcal{F}$ with $f(x) \le f_{\lambda}(x) + \sigma_{p}$ whenever $\lambda \in F$. We say that $(f_{\lambda})_{\lambda}$ is (*ROF*)-lower convergent to f iff $(-f_{\lambda})_{\lambda}$ is $(RO\mathcal{F})$ -upper convergent to $-f$, and that $(f_{\lambda})_{\lambda}$ is (ROF) -convergent to iff it is both (ROF) -upper and $(RO\mathcal{F})$ -lower convergent to f.

(b) A net $(f_{\lambda})_{\lambda}$ is said to be $(F - T^s)$ -upper convergent to f iff there is an (*O*)-sequence $(\sigma_p)_p$ such that $(f_\lambda)_\lambda$ (*ROF*)-converges to *f* with respect to $(\sigma_p)_p$ and for each $p \in \mathbb{N}$ and $x \in X$ there is a set $F \in \mathcal{F}$ such that for every $\lambda \in F$ there is a neighborhood *U* of *x* such that $f(z) \le f_\lambda(z) + \sigma_\lambda$ whenever $z \in U$. We say that $(f_{\lambda})_{\lambda}$ is $(\mathcal{F} - \mathcal{T}^s)$ -lower convergent to f iff $(-f_{\lambda})_{\lambda}$ is (*F* - *T*^{*s*})-upper convergent to $-f$, and that $(f_{\lambda})_{\lambda}$ is (*F* - *T*^{*s*})*convergent to f* iff $(f_{\lambda})_{\lambda}$ is both $(\mathcal{F} - \mathcal{T}^s)$ -upper and $(\mathcal{F} - \mathcal{T}^s)$ -lower convergent to *f* ,

Theorem 5 *Let X be a Hausdorff topological space,* $f: X \rightarrow R$ *be globally upper semicontinuous on X*, $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, *be a net of functions globally lower semicontinuous on X with respect to a single* (*O*) *-sequence independent of* ^λ *, and* (*RO*F) *-upper convergent to f . Suppose that*

(*i*) $(f_{\lambda})_{\lambda}$ *is F -almost below f around every point* $x \in X$ *with respect to a single* (*O*) *-sequence, independent of x .*

Then $(f_{\lambda})_{\lambda}$ *is* $(F - T^s)$ *-upper convergent to f .*

Corollary 6 *Let X be a Hausdorff topological space,* $f: X \rightarrow R$ *be* globally upper semicontinuous on X , $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a net of *functions, globally lower semicontinuous on X with respect to a single* (*O*) *sequence independent of* λ *, and (ROF) -convergent to f.*

Then $(f_{\lambda})_{\lambda}$ *is* $(F - T^s)$ *-upper convergent to f .* **Theorem 7** Let *X*, *R* and *f* be as in Corollary.6, $f_{\lambda}: X \rightarrow R$,

^λ ∈Λ *, be a net of functions, globally continuous on X with respect to a single* (*O*) *-sequence independent of* λ *, (ROF) <i>-convergent to f and* (\mathcal{F} *-T*^{*s*}) *upper convergent to f .*

Then $(f_{\lambda})_{\lambda}$ *and f satisfy condition* (*i*) *of Theorem 5.*