Strong uniform continuity and filter exhaustiveness of nets of cone metric space-valued functions

A. Boccuto and X. Dimitriou

A cone metric space is a nonempty set R endowed with a "distance" function $\rho : R \times R \to Y$, where Y is a Dedekind complete lattice group.

A function $f : X \to R$ is globally continuous on X iff there exists an (O)-sequence $(\sigma_p)_p$ in Y such that for any $p \in \mathbb{N}$ and $x \in X$ there is a neighborhood U_x of x with $\rho(f(x), f(z)) \leq \sigma_p$ for each $z \in U_x$.

Let X be a uniform space and $\emptyset \neq B \subset X$. A function $f: X \to R$ is strongly uniformly continuous on B iff there is an (O)-sequence $(\sigma_p)_p$ in Y such that for every $p \in \mathbb{N}$ there exists an entourage D with $\rho(f(\beta), f(x)) \leq \sigma_p$ whenever $x \in X, \beta \in B$ and $(x, \beta) \in D$.

Let \mathcal{B} be a bornology on X. We say that a function $f : X \to R$ is strongly uniformly continuous on \mathcal{B} iff it is strongly uniformly continuous on B for every $B \in \mathcal{B}$, with respect to a single (O)-sequence independent of B.

Let (Λ, \geq) be a directed set. A filter \mathcal{F} of Λ is said to be (Λ) -free iff $M_{\lambda} \in \mathcal{F}$ for each $\lambda \in \Lambda$, where $M_{\lambda} := \{\zeta \in \Lambda : \zeta \geq \lambda\}$. The filter $\mathcal{F}_{\text{cofin}}$ is the filter of all subsets of \mathbb{N} whose complement is finite.

If X is any Hausdorff topological space, \mathcal{F} is a (Λ) -free filter of Λ , $x \in X$ and $(x_{\lambda})_{\lambda \in \Lambda}$ is a net in X, then we say that $(x_{\lambda})_{\lambda} \mathcal{F}$ -converges to $x \in X$ (in brief, $(\mathcal{F}) \lim_{\lambda} x_{\lambda} = x$) iff $\{\lambda \in \Lambda : x_{\lambda} \in U\} \in \mathcal{F}$ for each neighborhood U of x.

Let Ξ be any nonempty set. A family $\{(x_{\lambda,\xi})_{\lambda} : \xi \in \Xi\}$ (*ROF*)-converges to $x_{\xi} \in R$ (as λ varies in Λ) iff there exists an (*O*)-sequence $(\sigma_p)_p$ in *Y* with $\{\lambda \in \Lambda : \rho(x_{\lambda,\xi}, x_{\xi}) \leq \sigma_p\} \in \mathcal{F}$ for each $p \in \mathbb{N}$ and $\xi \in \Xi$.

We say that a net $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, is strongly weakly \mathcal{F} -exhaustive on B iff there is an (O)-sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ there is an entourage D such that, for every $x \in X$ and $\beta \in B$ with $(x,\beta) \in D$, there is $F \in \mathcal{F}$ (depending on x and β) with $\rho(f_{\lambda}(x), f_{\lambda}(\beta)) \leq \sigma_p$ whenever $\lambda \in F$.

Given a bornology \mathcal{B} on X, we say that $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, is said to be *strongly (weakly)* \mathcal{F} -exhaustive on \mathcal{B} iff it is strongly (weakly) \mathcal{F} -exhaustive on every $B \in \mathcal{B}$ with respect to a single (O)-sequence, independent of B.

We say that $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, is *(weakly)* \mathcal{F} -exhaustive on X iff it is (weakly) \mathcal{F} -exhaustive at every $x \in X$ with respect to a single (O)-sequence, independent of $x \in X$.

A family \mathcal{V} of subsets of X is a *cover* of a subset $A \subset X$ iff $A \subset \bigcup_{V \in \mathcal{V}} V$. We say that a family \mathcal{Z} of subsets of X refines \mathcal{V} iff for every $Z \in \mathcal{Z}$ there is $V \in \mathcal{V}$ with $Z \subset V$.

An open cover \mathcal{V} of X is called a \mathcal{B} -uniform cover of X iff for every $B \in \mathcal{B}$ there is an entourage D such that the family $\{D(x) : x \in B\}$ refines \mathcal{V} . If it is possible to choose D in such a way that $\{D(x) : x \in B\}$ refines a finite subfamily of \mathcal{V} , then we say that \mathcal{V} is a \mathcal{B} -finitely uniform cover of X.

A net $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, (\mathcal{FB}) -converges to $f : X \to R$ iff there exists an (O)-sequence $(\sigma_p)_p$ in Y such that $(f_{\lambda})_{\lambda}$ is $(RO\mathcal{F})$ -convergent to f with respect to $(\sigma_p)_p$, and for every $B \in \mathcal{B}$ and $p \in \mathbb{N}$ there is $F \in \mathcal{F}$ with $\rho(f_{\lambda}(x), f(x)) \leq \sigma_p$ for each $x \in B$ and $\lambda \in F$.

A net $f_{\lambda}: X \to R, \lambda \in \Lambda$, converges \mathcal{F} -strongly uniformly to f on \mathcal{B} (and we write $f_{\lambda} \stackrel{\mathcal{F}-\mathcal{T}_{\mathcal{B}}^{s}}{\to} f$), iff there is an (O)-sequence $(\sigma_{p})_{p}$ with the property that for every $p \in \mathbb{N}$ and $B \in \mathcal{B}$ there exists $F \in \mathcal{F}$ such that for each $\lambda \in F$ there is an entourage D with $\rho(f_{\lambda}(z), f(z)) \leq \sigma_{p}$ whenever $z \in D(B)$.

We say that $(f_{\lambda})_{\lambda}$ converges \mathcal{F} -strongly uniformly to f $(f_{\lambda} \xrightarrow{\mathcal{F}-\mathcal{T}^s} f)$ iff there is an (O)-sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ and $x \in X$ there is a set $F \in \mathcal{F}$ such that for every $\lambda \in F$ there is a neighborhood U of x with $\rho(f_{\lambda}(z), f(z)) \leq \sigma_p$ for each $z \in U$.

We say that a net $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, is (\mathcal{FB}) -Alexandroff convergent to $f : X \to R$ (shortly $f_{\lambda} \stackrel{(\mathcal{FB})-Al.}{\to} f$) iff there is an (O)-sequence $(\sigma_p)_p$ in Y such that for every $p \in \mathbb{N}$ and $F \in \mathcal{F}$ there are an infinite set $\Lambda_0 \subset F$ and a \mathcal{B} -finitely uniform open cover $\{U_{\lambda} : \lambda \in \Lambda_0\}$ of X with $\rho(f_{\lambda}(z), f(z)) \leq \sigma_p$ for each $\lambda \in \Lambda_0$ and $z \in U_{\lambda}$.

We say that $(f_{\lambda})_{\lambda}$ is \mathcal{F} -Alexandroff convergent to f $(f_{\lambda} \xrightarrow{\mathcal{F}-Al.} f)$ iff there exists an (O)-sequence $(\sigma_p)_p$ such that for every $p \in \mathbb{N}$ and $F \in \mathcal{F}$ there exist a set $\Lambda_0 \subset F$ and an open cover $\{U_{\lambda} : \lambda \in \Lambda_0\}$ of X such that for every $\lambda \in \Lambda_0$ and $z \in U_{\lambda}$ we have $\rho(f_{\lambda}(z), f(z)) \leq \sigma_p$.

A net $f_{\lambda} : X \to R, \ \lambda \in \Lambda$, is said to be (\mathcal{FB}) -Arzelà convergent to $f : X \to R$ (shortly $f_{\lambda} \stackrel{(\mathcal{FB})-Arz.}{\to} f$) iff there exists an (O)-sequence $(\sigma_p)_p$ in Y such that $(f_{\lambda})_{\lambda} (\mathcal{FB})$ -converges to f with respect to $(\sigma_p)_p$ and for every $B \in \mathcal{B}, \ p \in \mathbb{N}$ and $F \in \mathcal{F}$ there are a finite set $\{\lambda_1, \ldots, \lambda_k\} \subset F$ and an entourage D such that for each $z \in D(B)$ there is $j \in [1, k]$ with $\rho(f_{\lambda_j}(z), f(z)) \leq \sigma_p$.

We say that $(f_{\lambda})_{\lambda}$ is \mathcal{F} -Arzelà convergent to f (shortly $f_{\lambda} \xrightarrow{\mathcal{F}-Arz} f$) iff there exists an (O)-sequence $(\sigma_p)_p$ such that $(f_{\lambda})_{\lambda}$ (RO \mathcal{F})-converges to f with respect to $(\sigma_p)_p$, and for each $x \in X$, $p \in \mathbb{N}$ and $F \in \mathcal{F}$ there exist a finite set $\{\lambda_1, \lambda_2, \ldots, \lambda_k\} \subset F$ and an open neighborhood U_x of x such that for every $z \in U_x$ there is $j \in [1, k]$ with $\rho(f_{\lambda_j}(z), f(z)) \leq \sigma_p$.

Theorem 0.1. Let \mathcal{F} be a (Λ) -free filter of Λ , X be a uniform space, \mathcal{B} be a bornology on X, $f_{\lambda}: X \to R, \lambda \in \Lambda$, be a net of functions, strongly uniformly continuous on \mathcal{B} with respect to a single (O)-sequence independent of $\lambda \in \Lambda$, and (\mathcal{FB}) -convergent to $f: X \to R$. Then the following are equivalent:

- (i) $(f_{\lambda})_{\lambda}$ is strongly weakly \mathcal{F} -exhaustive on \mathcal{B} ;
- (ii) f is strongly uniformly continuous on \mathcal{B} ;
- (*iii*) $f_{\lambda} \stackrel{\mathcal{F}-\mathcal{T}_{\mathcal{B}}^{s}}{\rightarrow} f;$

(iv) $f_{\lambda} \xrightarrow{(\mathcal{FB})-Al.} f;$ (v) $f_{\lambda} \xrightarrow{(\mathcal{FB})-Arz.} f.$

Theorem 0.2. Let Λ , \mathcal{F} , X, R be as above, $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, be a net of functions, $(RO\mathcal{F})$ convergent to $f : X \to R$ and such that the f_{λ} 's are globally continuous with respect to a single
(O)-sequence independent of λ . Then the following are equivalent:

- (i) $(f_{\lambda})_{\lambda}$ is weakly \mathcal{F} -exhaustive on X;
- (ii) f is globally continuous on X;
- (iii) $f_{\lambda} \stackrel{\mathcal{F}-\mathcal{T}^s}{\to} f;$
- (iv) $f_{\lambda} \stackrel{\mathcal{F}-Al.}{\to} f;$
- (v) there exists an (O)-sequence $(\sigma_p)_p$ in Y such that for every nonempty compact subset $C \subset X$, for each $p \in \mathbb{N}$ and $F \in \mathcal{F}$ there are a finite set $\{\lambda_1, \lambda_2, \ldots, \lambda_k\} \subset F$ and an open set $U \supset C$, such that for every $z \in U$ there is $j \in [1, k]$ with $\rho(f_{\lambda_j}(z), f(z)) \leq \sigma_p$;
- (vi) $f_{\lambda} \stackrel{\mathcal{F}-Arz.}{\to} f$.