
Building a Foolproof Navigation System  Subhajit Ganguly 

1 
 

Building a Foolproof Navigation System: Fuzzy Logic 

Emulating the Brain 

 

Subhajit Ganguly 

Email: gangulysubhajit63@gmail.com  

© 2013 Subhajit Ganguly 

 

 

 Abstract: 

Our aim is to help build a machine that can reduce the possibility of mishaps in 

navigation to zero. For that devise a new system of numbers, in which the real numbers 

are represented on the y-axis and complex numbers on the x-axis. Inside such a system, 

we incorporate the equivalent Ideal Fuzzy Logic that can be used by the machine to 

predict and avoid mishaps.  

 

Introduction: 

Natural processes are vastly emergent phenomena and each new result is always the 

source of new emergence. To cope with nonlinear control problems, binary logic is no 

longer sufficient.  What we need is an ideal Fuzzy Logic that not only can process 

complex numbers with utmost efficiency, but also ‘thinks’ in terms of complex 

numbers. Such a system also needs to be as simple as possible for us and for machines 

to work with.  
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A perfectly efficient navigation system will be able to receive inputs that have all sets of 

possible values. These values may be real or imaginary. Such a system will be 

particularly efficient in dealing with imaginary numbers and will be able to reduce the 

probability of a mishap to zero.  

The Fuzzy logic that we have today is yet to incorporate imaginary numbers with the 

desired level of satisfaction, and many serious problems remain in this.  

We develop a new system of numbers that can make use of the equivalent Fuzzy Logic 

inside it. A machine that runs on such a system will be able to predict and avert 

mishaps completely.  

Let us consider a system of numbers, where all complex numbers are real and all real 

numbers are complex, i.e., 

RC                                                                                           ...(1), 

R and C being real numbers and complex numbers, respectively. 

In such a system, all individual positive numbers are negative and all individual 

negative numbers are positive, for complex numbers, while all original real numbers 

are multiplied by i. 

Thus, 

C=x+iy => C’=-x+ 1(-y) = -(x±𝑦) ∈ R                                            …(2.1) 

And 

R => R’=-iR =-(0+iR) ∈ C                                                                   …(2.2). 

Thus, in such a system, we have two lines of numbers: 
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1. The set of originally complex numbers, transformed into real ones, represented 

on the x-axis. 

2. The set of originally real numbers, transformed into complex ones, represented 

on the y- axis. 

The original system transforms, therefore, into two separate and mutually 

perpendicular number lines, with individual numbers being points on the 

corresponding lines.  

 

An Ideal Navigation System: 

 

                                                                           R                          . P (L=c+ir) 

 

                                                                     (0,0)                                                           

                                                                                                                       C 

                                                                                                                       

 

Fig. 1: A simple illustration of signal-processing by a machine running on the new 

system. 

Fig. 1 shows a simple illustration of signal processing by a machine. The set of complex 

numbers on the x-axis and the set of real numbers on the y-axis give rise to the 

parameter L for any given point P in the super-imaginary complex plane of decision 
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making. The parameter L represents both the real and the imaginary parts of the signal 

and incorporates them into the abstract decision making/perception plane.  

In the complex decision/perception plane: 

L=c+ir                                                                                                …(3). 

c and r being the complex and real coordinates for the point P. 

The basic difference between classical sets and fuzzy sets is that while classical sets allow 

only a dual degree of membership, a fuzzy set can incorporate any real value between 

the dual states concerned. A characteristic membership function assigns 0 to an element 

that is not a member of a given classical set, while it assigns a value of 1 to an element 

that is a member of that set. The degree of membership to a fuzzy set can take any value 

in the real unit interval [0, 1]. 

In our decision/perception plane a fuzzy set LF  may be defined as: 

LF : L→[0,1],                                                                                                            …(4). 

where L is a domain of elements (universe of discourse).  

For every particular value of a variable Li ∈ L the degree of membership to fuzzy set 

LF  is LF  (Li). 

 

Equation (4) describes how we can incorporate a fuzzy complex number or FCN in our 

decision/perception plane. 

 

LF  in the universe of discourse L is defined by the complex membership grade function 

𝜇LF(Li). The complex membership grade function or CMG is defined as: 

𝜇LF(Li)= LF(Li)𝑒
𝑖𝑐                                                                                    …(5). 
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The Cartesian representation of CMG for 𝜇LF(Li)= 𝜇LF(𝑐𝑖+i𝑟𝑖) is: 

𝜇(𝑐𝑖 , 𝑟𝑖)= 𝜇(𝑐𝑖)+i𝑟𝑖                                                                                     …(6) 

And, the polar representation is: 

𝑐𝑖𝑒
𝑖𝑠𝑟                                                                                                         …(7), 

the scaling factor s being in the interval (0,2𝜋]. 

The degree of fulfillment or DOF of any given proposition follows CMG and lies in the 

interval [0,1]. 

 

According to the definition of transformation of coordinates: 

𝜇(𝑐𝑖 , 𝑟𝑖) 𝑐𝑖𝑒
𝑖𝑠𝑟   

The operators ∧ and ∨ defining t-norm and s-norm respectively and Li being the set of 

fuzzy numbers concerned, the fuzzy set of a function of  Li has the membership 

function: 

 

𝜇 𝑐𝑖
′, 𝑟𝑖

′ =  [𝜇(𝑐1, 𝑟1𝑐𝑖
′=𝑓(Li ) )  𝜇(𝑐2, 𝑟2)  𝜇(𝑐3, 𝑟3)… 𝜇(𝑐𝑛 , 𝑟𝑛)]        …(8). 

         

          

Operators and Functions in the New Logic: 

OR: 

The maximum s-norm (smax) may be used to calculate the DOF concerned. P and Q 

being two possible values under consideration,  
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DOF(L= 𝑃 + 𝑄)= 𝑠𝑚𝑎𝑥 𝐷𝑂𝐹 𝑃 , 𝐷𝑂𝐹 𝑄  = max 𝐷𝑂𝐹 𝑃 , 𝐷𝑂𝐹 𝑄     …(9). 

Truth Table 

P Q max(L)=max(P,Q) 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

AND: 

The minimum t-norm (tmin) may be used to calculate the DOF concerned. P and Q 

being two Possible values under consideration, 

DOF(L= 𝑃 ∙ 𝑄)= 𝑡𝑚𝑖𝑛 𝐷𝑂𝐹 𝑃 , 𝐷𝑂𝐹 𝑄  = min 𝐷𝑂𝐹 𝑃 , 𝐷𝑂𝐹 𝑄       …(10). 

Truth Table 

P Q min(L)=min(P,Q) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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NOT: 

The complement or negation is used to calculate the DOF concerned. 𝐿  being the 

complement of L, 

DOF(𝐿 ) = 1-DOF(L)                                                                                        …(11). 

Truth Table 

L 𝐋  

0 1 

1 0 

 

De Morgan’s Operations: 

De Morgan’s Involution holds as: 

¬(P ∧ Q) = ¬P ∨ ¬Q  

and  

¬¬L = L                                                                                   …(12).           

where  ¬ is the NOT operator.  

Also, De Morgan’s laws hold as: 

NOT P AND Q   NOT P  OR (NOT Q) 

And 

NOT  P OR Q   NOT P  AND (NOT Q)                                      …(13).                         
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Now, the relations (13) also translate to: 

1 − min 𝐷𝑂𝐹 𝑃 , 𝐷𝑂𝐹 𝑄  max 1 − 𝐷𝑂𝐹 𝑃 , 1 − 𝐷𝑂𝐹 𝑄    

And 

1 − max 𝐷𝑂𝐹 𝑃 , 𝐷𝑂𝐹 𝑄  min 1 − 𝐷𝑂𝐹 𝑃 , 1 − 𝐷𝑂𝐹 𝑄        …(14). 

 

Chaotic Fuzziness: 

In order to incorporate chaotic instances, the ideal Fuzzy Logic may start with a basic 

starting measure as the standard reference, from which it will calculate the required 

differences with respect to other values. It may even take one attractor as its reference. 

However, the manners of functionality of the fuzzy operations that both will follow will 

be just the same.  

For a given transport of parameterization of the degree of membership between an 

initial and a final point in consideration, let the trajectory of the initial point of reference 

𝐿𝑜 = 𝐿(𝑜) be denoted by, 

 

𝐿 𝑡 = 𝑓𝑡(𝐿𝑜) 

 

Expanding 𝑓𝑡(𝐿𝑜 + 𝛿𝐿𝑜) to linear order, the evolution of the distance to a 

neighbouring trajectory 𝐿𝑖(𝑡) + 𝛿𝐿𝑖(𝑡) is given by the Jacobian matrix 𝐽, 

 

𝛿𝐿𝑖 𝑡 =  𝐽𝑡(𝐿𝑜)𝑖𝑗

𝑑

𝑗=1

 𝛿𝐿𝑜𝑗 , 
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𝐽𝑡(𝐿𝑜)𝑖𝑗 =
𝜹𝑳𝒊 𝒕 

𝜹𝑳𝒐𝒋
                                                                                           …(15). 

 

A trajectory of the shift in degree of membership as moving on the decision/perception 

plane is specified by two position coordinates and the direction of motion. The Jacobian 

matrix describes the deformation of an infinitesimal neighbourhood of 𝐿 𝑡  along the 

shift.  

 

Holding the hyperbolicity assumption (i.e., for large 𝑛 the prefactors 𝑎𝑖 , reflecting the 

overall size of the system, are overwhelmed by the exponential growth of the unstable 

eigenvalues 𝛬𝑖 , and may thus be neglected), to be justified, we may replace the 

magnitude of the area of the 𝑖th strip |𝐵𝑖 | by 
1

|𝛬𝑖 |
 and consider the sum, 

 

⌈𝑛 =   
1

 𝛬𝑖  

𝑛

𝑖

; 

 

Where the sum goes over all periodic points of period 𝑛. We now define a generating 

function for sums over all periodic orbits of all lengths, 

 

⌈𝑧 =  ⌈𝑛 𝑧𝑛∞
𝑛=1                                                                                           …(16). 

 

For large 𝑛, the 𝑛th level sum tends to the limit ⌈𝑛 → 𝑒−𝑛γ, so the escape rate 𝛾 is 

determined by the smallest 𝑧 =  𝑒𝛾  for which ⌈𝑧 diverges, 

 

⌈𝑧 ≈   𝑧𝑒−𝛾 𝑛∞
𝑛=1 =

𝑧𝑒−𝛾

1−𝑧𝑒−𝛾
                                                                   …(17).            
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Making an analogy to the Riemann zeta-function, for periodic orbit cycles, 

 

⌈𝑧 = −𝑧
𝑑

𝑑𝑥
 ln 1 − 𝑡𝑝 ;

𝑝

 

 

⌈(𝑧) is a logarithmic derivative of the infinite product 

 

1

𝜁(𝑧)
=   1 − 𝑡𝑝 ,

𝑝

𝑡𝑝 =
𝑧𝑛𝑝

|𝛬𝑝 |
 

 

This represents the dynamical zeta function for the escape rate of the trajectories of 

quantum-transport. The fraction of initial 𝑥 whose trajectories remain within 𝐵 at time 𝑡 

may decay exponentially, 

 

⌈𝑡 =
 𝑑𝑥 𝑑𝑦  𝛿 𝑦−𝑓𝑡 𝑥  
𝑠 

 𝑑𝑥𝑠

→ 𝑒−𝛾𝑡                                                                  …(18). 

 

Considering a collection of such points and applying a statistical approach, the logistic 

equation (due to May, 1967) for 𝐿 can be written as, 

 

𝐿𝑡+1 = 𝐾𝐿𝑡 1 − 𝐿𝑡                                                                                        …(19). 

 

where 𝐾 is a constant. 

 

Also, the quadratic map (due to Lorentz, 1987) can be written as: 
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𝐿𝑡+1 = 𝐾 −  𝐿 𝑡
2                                                                                           …(20). 

 

All trajectories described by the quadratic map become asymptotic to −∞ for 

𝐾 < −0.25 and 𝐾 > 2. 

 

As we deal with the flow of a given measure towards a given reference, the expression 

for the attractor for each such point can be written as, 

𝐿∗ =  1 −
1

𝐾
                                                                                                                 …(21). 

     

where 𝑂 < 𝐾 < 4. 

 

𝐿∗ is a point in the desired dimensional plot into which the trajectories seem to crowd. 

As we do not need to deal with more than one attractor or periodic point, the 

trajectories will tend to revisit only the attractor point concerned, to the desired level of 

accuracy of observations and calculations. 

 

In equation (21), for 𝐾 ≥ 3, the trajectory behaviour becomes increasingly sensitive to 

the value of 𝐾. There are a few more points to be noted regarding the dependence of 

the trajectory behaviour on the values of 𝐾:  

1. For 𝐾 ≤ 1, the attractor is a fixed point and has a value . 

2. For 1 < 𝐾 < 3, the attractor is a fixed point and its value is > 0 but < 0.667. 
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3. For 3 ≤ 𝐾 ≤ 3.57, period doubling occurs, with the attractor consisting of 

2, 4, 8, etc., periodic points as 𝐾 increases within that range. 

4. For 3.57 < 𝐾 ≤ 4, we have the region of chaos, where the attractor can be 

erratic (chaotic with infinitely many points) or stable. 

    For all calculations, the desired conditions may be placed at the attractor. A trajectory 

never gets completely and exactly all the way into an attractor though, but only 

approaches it asymptotically. In the region of chaos, we apply the method of searching 

for windows or zones of 𝐾-values for which iterations from any initial conditions will 

produce the periodic attractor, instead of a chaotic one. For the logistic equation, the 

most common such zone lies at 𝐾 ≈ 3.83 and for the quadratic map, at 𝐾 ≈ 1.76. 

 

Using Lyapunov exponents for the measure L, and replacing 2𝑐  
𝜆

𝐷
  by a quantity ′𝜏′, 

we have: 

𝑑

𝑑𝜏
𝑓𝑛 𝐿 =

𝛿𝑛

𝛿𝑜
 

i.e., 

𝛿𝑛

𝛿𝑜
=  𝑓′(𝐿𝑖)

𝑛
𝑖=1                                                                                        …(22). 

 

𝑏 =
1

𝑛
log𝑒  

𝛿𝑛

𝛿𝑜
  

i.e., 

𝑏 =
1

𝑛
 log𝑒 𝑓

′(𝐿𝑖) 
𝑛−1
𝑖=1                                                                            …(23). 

 

where 𝑏 is a constant (the local slope of all possible measures), and 
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Ψ = lim𝑛→∞
1

𝑛
 log𝑒 𝑓

′(𝐿𝑖) 
𝑛−1
𝑖=0                                                            …(24). 

 

where Ψ is a constant. 

 

Let 𝐿𝑡=𝑐𝑡+i𝑟𝑡  and 𝐿𝑡+1=𝑐𝑡+1+i𝑟𝑡+1 be corresponding FCN measures with complex 

membership grade function or CMG as 𝜇LF(Lt) and 𝜇LF(Lt+1), respectively. We may 

then perform the basic arithmetic operations as: 

 

Addition: 

 

𝐿𝑡+ 𝐿𝑡+1=  𝑐𝑡 + 𝑐𝑡+1 + 𝑖(𝑟𝑡 + 𝑟𝑡+1) 

 

The corresponding membership function is: 

 

𝜇LF(Lt+Lt+1) =  [𝜇LF(Lt)  𝜇LF(Lt+1)]Lt +Lt+1
 

 

Subtraction: 

𝐿𝑡- 𝐿𝑡+1=  𝑐𝑡 − 𝑐𝑡+1 + 𝑖(𝑟𝑡 − 𝑟𝑡+1) 

 

The corresponding membership function is: 

 

𝜇LF(Lt−Lt+1) =  [𝜇LF(Lt)  𝜇LF(Lt+1)]Lt−Lt+1
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Normalization of 𝑳𝒊: 

Considering n number of measures, we have the normalized measure for 𝐿𝑖  as: 

𝑁𝑜𝑟 𝐿𝑖 =
𝐿𝑖−min ⁡(𝐿𝑖)

max  𝐿𝑖 −min ⁡(𝐿𝑖)
                                                                      …(25).      

𝐷(𝑃, 𝑄) being the distance measure between two normalized fuzzy sets P and Q, 

within the measure 𝐿𝑖 , the degree of match between them is denoted by: 

𝑀 𝑃, 𝑄 = 1 − 𝐷(𝑃,𝑄)          

If, 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄, then the maximum distance between the nearest points in P and 

Q is the Hausdorff distance between P and Q: 

𝐻 𝑃, 𝑄 = 𝑚𝑎𝑥𝑝∈𝑃[min⁡𝑞∈𝑄 𝐷(𝑃, 𝑄)] =

𝑚𝑎𝑥[sup⁡𝑝∈𝑃 inf⁡𝑞∈𝑄 𝐷(𝑃,𝑄), sup⁡𝑞∈𝑄 inf⁡𝑝∈𝑃 𝐷(𝑃, 𝑄)], 

where sup represents the supremum and inf the infimum.  

IF-THEN relations may be evaluated using corresponding DOFs. As such relations are 

of fundamental importance in any logical construct, they are of interest to us here. We 

may use a weighted scaling measure S to get the DOF of the final result of a given IF-

THEN relation. For this, we break the IF-THEN relation into its constituent parts i.e., the 

condition part (IF) and the result part (THEN). As the IF relation is always of the form 

constituent 1 AND constituent 2, we may write the condition DOF as: 

𝐷𝑂𝐹𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = min⁡[𝐷𝑂𝐹 𝐶𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 1 , 𝐷𝑂𝐹 𝐶𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 2 ]  

The product of the scaling measure S and 𝐷𝑂𝐹𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  gives the final result as: 
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𝐷𝑂𝐹𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑆(𝐷𝑂𝐹𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 )                                                                        …(26).                       

The scaling measure S may be taken as the corresponding Hausdorff distance between 

the constituents. 
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