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The paper presents the novel results obtained by more comprehensively
analyzing well-known and clearly visible physical processes associated with
gravitational interaction in the system of material bodies in the medium of
non-zero density. The work is based on the statement that the "buoyancy"
(Archimedes) force acting on the material body located in a medium of non-
zero density is of the gravitational nature. Due to this approach, we managed,
staying in the framework of classical physics and mechanics definitions, to in-
troduce the concept of the body’s gravitating mass as a mass determining the
gravitational interaction intensity and also to establish an analytical relation
between the gravitating and inertial masses of the material body. Combining
the direct and indirect (Archimedes force) gravitational effect on the material
body in the medium, we succeeded in distinguishing from the total gravita-
tional field of this system a structure with a dipole-like field line distribution.
This fact allows us to assert that, along with the gravitational attraction, there
exists also gravitational repulsion of material bodies, and this fact does not
contradict the meanings of existing basic definitions and concepts of classical
physics and mechanics.

"Generally known — the fact that something is known

does not mean that it is realized"

George Wilhelm Friedrich Hegel [1, р. 22]

1. Problem definition

Gravitational interaction in a system of material bodies is conventionally
considered ignoring the presence of the medium where the system is located.
Therefore, the problem of the medium effect upon gravitational interaction
between material bodies is of significant interest.

Let there be a static medium F with uniform distribution of the substance
density ρF ą 0 (e.g., non-compressible liquid), which is limited by a spherical
surface with radius RF . Put into an arbitrary fixed point of this medium a
rigid uniform sphere G of constant density ρG ą 0 and radius RG ! RF . It
is necessary to derive a relation describing the material body gravitational
interaction with its surrounding medium F in the absence of any external
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impacts of the gravitational or other nature. Here we consider the problem
in the simplest form1.
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Figure 1.

The problem of the body G gravitational
field effect upon the medium F physical
characteristics, namely, density, will be con-
sidered below; let us assume for a while
that distribution of the medium F density
does not change after inserting the anomaly
(body G) into it.

Let us consider a Cartesian coordinate
system Oxyz (Fig. 1) whose origin is at the
center of the sphere of radius RF . Set the
body G center of mass at distance δ from
point O. The gravitational field at an arbi-
trary point of medium F is characterized by
the field vector gFprq, where r is the radius-
vector of the point under consideration. Due to the symmetry of the sub-
stance shape and volume distribution, the gravitational field intensity vec-
tor gF at each selected point of the F domain is directed to the "center of
attraction", i.e., to the sphere center (point O).

Designate the force of gravitational interaction between body G and the
domain F matter as F

´

. Force F
´

direction is determined by the intensity
vector of the centrally-symmetrical gravitational field gF , which is directed
towards the spherical domain center O. In its turn, the centrally symmetric
structure of the gravitational field inside spherical domain F causes also a
centrally symmetrical distribution of the pressure of matter in the F medium.
The presence of a pressure gradient in the medium surrounding body G gives
rise to the so-called "buoyancy" force F

`

.
Hence, body G is simultaneously exposed to two quasi mutually "inde-

pendent" forces that, however, both depend on the gravitational field of
medium F surrounding the body. The vector sum of these forces is:

F “ F
`

` F
´

, (1)

where F
´

is the force of the direct gravitational effect on the G body from
medium F and F

`

is the "buoyancy" force caused by the existence of a
pressure gradient in medium F .

1The imperative of the substance density coordinate and time constancy in the F

domain, the material body G rigidity and immobility with respect to medium F , and
selection of their spherical geometry is not mandatory; however, it allowed us to simplify
the problem without loss of generality and focus on the main task that is to define the
gravitational force acting upon body G from medium F surrounding it.
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One of real cases of the considered problem is the experiment with a
"soaring" liquid drop under zero gravity2. This is just the case when the
liquid drop contains a density anomaly3 (e.g., a "pellet") in the absence of
any external forces. Under these conditions, the "pellet" can "sink" towards
the drop center or "emerge" to the drop surface depending on the ratio
between its own density and that of the liquid.

Nevertheless, despite the defined problem triviality and obviousness of its
solution, let us consider in detail each of the relation (1) force components.

2. Direct medium action on the body

Since the central symmetry of the matter density distribution in spherical
domain F makes all the radial directions equivalent, let us set the body
G center of mass O1 so that it is on the Oz axis at distance δ from the
gravitational attraction center O in the F domain (Fig. 2).
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The auxiliary rectangular coordinate system O1x1y1z associated with the
body G center of mass is oriented so that axis O1x1 is parallel to Ox while

2A space domain where gravitational forces are on the average counterpoised by cen-
trifugal forces or forces of other nature.

3Term anomaly is used in gravimetry to define an inclusion (foreign body) with density
different from that of the surrounding medium [2, 3].
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axis O1y1 is parallel to Oy.
The gravitational field vector gF is defined at each point of the limited-

size domain F under consideration in the following way:

gFprq “ ´G
VFp|r|qρF

|r|3
r “ ´G

4

3
πρF r , 0 ď |r| ď RF , (2)

where r is the radius-vector of an arbitrary point A of the F domain; VF

is the spherical domain F volume as a function of radius |r|; ρF is the
medium F density; G is the gravitational constant. The procedure of de-
riving relation (2) for the gravitational field intensity is considered in detail
in, e.g., [2, 4]. As relation (2) shows, gravitational field gradient gF at the
point with radius-vector r is always directed towards the geometrical center
(generally, towards the center of attraction) of the medium F domain under
consideration; in this case, this is point O.

Now, knowing the gravitational field intensity gF at each point of the F

domain, we can determine the resultant gravitational effect on body G from
medium F as an integral over the body volume VG :

F
´

“

ż

VG

dF
´

, dF
´

“ ρGdV gF . (3)

Since the task stipulates the symmetry of geometric and physical param-
eters about axis Oz, it is evident that

F
´

x “ i ¨ F
´

“ 0, F
´

y “ j ¨ F
´

“ 0, F
´

z “ k ¨ F
´

“

ż

VG

k ¨ dF
´

.

Hence, taking into account relations (2) and (3), obtain:

F
´

z “

ż

VG

k ¨ dF
´

“ ρG

ż

VG

k ¨ gF dV “ ´
4

3
πGρGρF

ż

VG

r sinϕ
hkkikkj

k ¨ r dV . (4)

Based on the preset geometry of the task (Fig. 2), it is possible to write
the following equality:

r sinϕ “ δ ` r1 sinϕ1 , (5)

and a relation for elementary volume dV constructed around point Apr1, ϕ1, λqPG:

dV “ r1dϕ1 ¨ r1 cosϕ1 dλ ¨ dr1 “ r12 cosϕ1 dr1 dϕ1 dλ . (6)
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Substituting (5) and (6) into expression (4) for F
`

z , obtain:

F
´

z “ ´
4

3
πGρGρF

¨

˚

˚

˚

˝

δVG `

I
hkkkkkkkikkkkkkkj

ż

VG

r1 sinϕ1 dV

˛

‹

‹

‹

‚

, (7)

where I “ 0 because

I “

ż

VG

r1 sinϕ1

dV
hkkkkkkkkkkikkkkkkkkkkj

r1dϕ1r1 cosϕ1dλdr1 “

2π
ż

0

dλ

RG
ż

0

r13dr1

✟
✟
✟
✟
✟
✟
✟
✟
✟
✟✯
0

π{2
ż

´π{2

sinϕ1 cosϕ1dϕ1 “ 0 .

Grouping the factors in relation (7), obtain

F
´

z “

gF pδq
hkkkkkikkkkkj

´
4

3
πGρF δ ρGVG

or, in the vector form,

F
´

“ ρGVG gFpδq . (8)

Thus, force F
´

of the medium F gravitational effect on body G whose
mass is presented as product ρGVG is co-directed with the gravitational field
vector at the point where the body is located. Relation (8) is valid also in
the case when point O that is the medium F center of attraction is located
inside the G body, namely, when δ ă RG .

3. The medium action on the body via the pres-

sure induced by the medium inherent gravi-

tational field

Consider now in relation (1) the second component of the force impact
upon the body, namely, F

`

. Spherical domain of medium F with uniformly
distributed density ρF induces centrosymmetrical gravitational field with the
center of attraction at point O. In its turn, this field generates in medium F

under consideration a centrosymmetrical pressure distribution with a corre-
sponding radial gradient. Since body G is an object with a non-zero volume,
integration of the medium F pressure effect over the body surface gives us
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a force tending to "push" body G out into the domain where the medium F

pressure is minimal (in other words, the Archimedes’s force). The problem
definition does not stipulate the existence of gradients of any other nature
except for gravitational.
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Figure 3.

How is the pressure distributed in grav-

itating medium F ? To answer this ques-
tion, select in the F medium an elementary vol-
ume dV PF around point A with spherical co-
ordinates r, ϕ and λ (Fig. 3).

dV “ dS dr “

dS
hkkkkkkkkkikkkkkkkkkj

r dϕ ¨ r cosϕ dλ dr .

Elementary volume dV is in equilibrium. The
bottom side of elementary volume dV is sub-
ject to pressure p2 that is counterpoised by pres-
sure p1 acting on the top side plus gravitational
force of the elementary volume. The gravita-
tional interaction force is of the same direction
as the medium F gravitational field vector. Forces due to the pressure on
the elementary volume lateral sides are mutually counterpoised. Taking into
account all these factors, we can write the balance equation for elementary
volume dV in the form of a projection on the unit vector l direction:

p2dS l “ p1dS l ` ρFdV gF , l “
r

|r|
. (9)

Multiplying the left and right sides of the equality by unit vector l, obtain
the pressure increment dp:

dp “ p2 ´ p1 “ ρFdr gF ¨ l . (10)

Integrating (10) with respect to r and taking into account relation (2), obtain
for the gravitational field vector gF the following relation:

pprq “ ´
2

3
πGρ2Fr

2 ` const . (11)

The constant may be determined from the condition at the domain F

boundary:

p
ˇ

ˇ

ˇ

r“RF

“ pF , (12)
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where pF is the external pressure at the medium F boundary. Now the
relation for pressure at an arbitrary point of domain F gets the following
form:

pprq “ pF `
2

3
πGρ2F

`

R2

F ´ r2
˘

. (13)

The force caused by the existence of the gravitation-induce pres-

sure gradient. Now we know the pressure distribution in the F domain.
Let us determine "buoyant" force F

`

acting upon body G, which is caused
by the presence of pressure gradient (10) in medium F :

F
`

“

ż

SG

pprqdS, where dS “ n dS . (14)

Here pprq is the medium F pressure upon elementary area dS of the body G

surface; n is the normal to the body surface elementary area dS at point
Aprq. Fig. 3 shows that

dS “ RG cosϕ
1dλ RGdϕ

1 .

In calculating integral (14), take into account that the problem defined here
possesses the geometric and field symmetry about axis Oz; hence,

F
`

x “ i ¨ F
`

“ 0 , F
`

y “ j ¨ F
`

“ 0 , F
`

z “ k ¨ F
`

“

ż

SG

pprq

sinϕ1

hkkikkj

k ¨ n dS .

Thus, taking into account the dS expression, obtain

F
`

z “

ż

SG

pprq sinϕ1dS “

π{2
ż

´π{2

pprq sinϕ1

dS
hkkkkkkkkkkkikkkkkkkkkkkj

RG cosϕ
1dλ RGdϕ

1 “

“ R2

G

2π
ż

0

dλ

π{2
ż

´π{2

pprq sinϕ1 cosϕ1dϕ1 .

Substituting relation (13) for pprq and assuming that pF “ 0, obtain as a
result of integration the force:

F
`

z “
4

3
πR2

G πGρ2F

π{2
ż

´π{2

`

R2

F ´ r2
˘

sinϕ1 cosϕ1dϕ1 . (15)
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The expression for r2 follows from the problem geometry (Fig. 2)

r2 “ δ2 ` R2

G ` 2δRG sinϕ
1 , (16)

where δ is the shift of the anomaly G center; r is the distance between the
medium F attraction center and a point on the body G surface. Substitut-
ing (16) into the expression for F

`

z , obtain:

F
`

z “
4

3
πR2

G πGρ2F

π{2
ż

´π{2

¨

˚

˝
R2

F ´

r2
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

`

δ2 ` R2

G ` 2δRG sinϕ
1
˘

˛

‹

‚
sinϕ1 cosϕ1dϕ1 .

(17)
Let us calculate auxiliary integrals:

I1 “

π{2
ż

´π{2

sinϕ1 cosϕ1 dϕ1 “
1

2

π{2
ż

´π{2

d sin2ϕ1 “ 0 ,

I2 “

π{2
ż

´π{2

sin2ϕ1 cosϕ1 dϕ1 “
1

3

π{2
ż

´π{2

d sin3ϕ1 “
2

3
.

Now, taking into account I1 and I2, expression (17) may be rewritten as:

F
`

“
4

3
πR2

G πGρ2F2δRG ¨ I2 “

VG
hkkikkj

4

3
πR3

G ρF

´gF pδq
hkkkkikkkkj

4

3
πGρFδ (18)

or, in the vector form,

F
`

“ ´ρFVG gFpδq . (19)

Thus, body G located in medium F with non-zero density undergoes a
"buoyancy" action via force F

`

applied to the body’s center of mass. For-
mula (19) shows that the "buoyancy" force F

`

acting upon body G is always
counter-directed to the gravitational field vector gF . Emphasize that, at the

preset gravitational field intensity, "buoyancy" force F
`

depends only on the
medium density ρF and volume VG of the body under consideration and is
independent of the pressure magnitude and distribution in medium F ; this
is fully consistent with the classical definition of the Archimedes law 4 for the
force acting upon a body submerged in a liquid medium.

4"... all the pressures the liquid applies to the body submerged in it have an upright
resultant force equal to the volume displacement weight; its application point is the center
of gravity of the volume submerged in the liquid." N. E. Zhukovsky [5, p. 654].
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4. Resultant effect upon the body

Let us now return to the main problem, namely, to revealing the medium F

response to material body G included in it. Substitute into (1) forces (8)
and (19) acting upon body G from medium F :

F “ F
`

` F
´

“ ´ρFVG gF ` ρGVG gF “

mG
hkkkkkkkkkkkikkkkkkkkkkkj

ρGVG
loomoon

MG

ˆ

1 ´
ρF

ρG

˙

gF , (20)

or

F “ mGgF , where mG “ MG

ˆ

1 ´
ρF

ρG

˙

, (21)

Here MG designates the body G mass in its classical meaning: a product
of the body density ρG and volume VG; mG designates the portion of the
body G mass MG , which participates in the body gravitational interaction
with medium F ; gF is the vector of the medium F gravitational field at the
point where body G is located.

Why we offer to join these forces together instead of considering them in-
dividually? The reasons for this are as follows. First, the forces considered are
of one and the same physical nature — gravitational; i.e., they depend on the
gravitational field intensity in the vicinity of the body. Second, these forces
are tangent to the field line of gravitational field induced by the medium F

matter.
Things came around so that the gravitational attraction force and buoy-

ancy Archimedes force were discovered in different historical epochs5; as a
result, they are regarded and perceived as "independent" force factors acting
from outside on a material body in a non-zero density medium.

For the above reasons, we can assert that, in the absence of any non-
gravitational external factors, body G located in medium F is subject to
only one force, namely, the force of gravitational interaction defined by (21).

This force sign (direction of action) depends only on the ratio between
densities of body G and medium F surrounding it. Fig. 4 illustrates graphi-
cally the transition from the classical two-force concept to the concept of one
force.

The body curvilinear motion along the gravitational field line implies
arising of extra forces as a result of the body motion in a dissipating medium;

5The time interval between the moments of recognizing these forces by the scientific
community is somewhat shorter than 2000 years. Archimedes (227–212 B.C.) — a buoy-
ancy force acting on the body submerged in a medium, and Isaac Newton (1643–1727) —
the law on two-body gravitational attraction.
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Figure 4. Schematic diagram of the transition from the two-component
interpretation of the medium F gravitational effect on body G to the single-
component concept.

these forces deflect the body from the preset trajectory. However, they are
of other nature, and thus are beyond the scope of our problem.

Formula (21) shows that the gravitational interaction in medium F is
determined by not the entire mass of the body but only by its part mG referred
to as gravitating mass. Term gravitating mass describes the cause-and-effect
relation between the material body and its gravitational field more exactly
than term "gravitation mass"6. As for the total mass of body G designated
above as MG , we call it inertial and define as the product of the body G

volume VG by its density ρG .
Thus, omitting the symbols designating the body and medium in (21),

obtain a formula establishing a functional relation between inertial mass M

and gravitating mass m of the body located in the medium with density ρ0 ě
0 :

m “ M

ˆ

1 ´
ρ0

ρ

˙

, where M “ ρV . (22)

Analysis of relation (22) allows us to define two important properties of the
material body gravitating mass provided it is possible to use the concept of
matter density:

1) The gravitating mass is always lower than the inertial mass:

|m| ă M . (23)

6In the literature (e.g., [6]), the gravitational mass is defined in many different manners.
Two variants of gravitational interaction between the material body and medium, which
were considered earlier, gave rise to a novel definition of the gravitating mass that, we
believe, better fits the gravitational interaction phenomena observed in Nature: the body’s

gravitating mass is a product of the body’s volume and difference between its density and

the medium density. The gravitating mass may be also defined more utilitarianly: the
body’s gravitating mass is a factor determining the possibility of its interaction with other
material objects.

10

Kiryan D.G. & Kiryan G.V. ( mass7, RC5e ) – July 21, 2014



2) The equality of the gravitating and inertial masses is valid only in the
limit case when the density of medium surrounding the body is zero:

lim
ρ0Ñ0

m “ M . (24)

These properties of the body gravitating mass are illustrated in Fig. 5
where ρ˚ designates the minimum possible density of the medium. This
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Figure 5. The body gravitating mass versus the surrounding medium
density.

minimal density corresponds to the limiting amount of matter at which in
the selected representative volume the concept of density remains physically
meaningful within the scope of the specific problem. The Fig. 5 left plot
shows that the up-to-date methods for creating high vacuum7 fundamentally
cannot reduce the medium density to zero. Multiple experiments [7, 8, 9] on
validation of the postulate on the equality of the material body gravitating
and inertial masses unambiguously confirm the absolutely theoretical char-
acter of the mass equivalency principle realizable only in the zero-density
medium.

The gravitating mass expression (22) was used in studying the nature of
the Earth’s center of mass motion under the action of external gravitational
forces [10] and the Earth’s core motion under the influence of the Moon’s
perigee mass [11], as well as in the paper on the gravitating mass [12].

5. The additivity principle

Since the zero-density medium is a medium free of matter, the additivity
principle for gravitational forces acting in the system of material bodies is

7Material medium of the minimum possible density

11

Kiryan D.G. & Kiryan G.V. ( mass7, RC5e ) – July 21, 2014



strictly valid and does not need proving. And what is about the additiv-
ity principle in the non-zero density medium?

Formula (22) that establishes the relation between the body’s inertial and
gravitating masses shows that the gravitating mass of the body with fixed
geometric and physical parameters depends only on the density of medium
surrounding the body.

Hence, assuming the possibility of gravitational compression of medium F

surrounding body G, we face the impossibility of applying the additivity prin-
ciple and necessity of allowing for the influence of each body on density vari-
ation in the entire medium F domain under consideration in analyzing the
two-body mutual gravitational interaction in the medium with ρF ą 0.

Nevertheless, let us show that in practice the additivity principle may
be used also in the problems of gravitational interaction of bodies in the
non-zero density medium.

Let us define the law according to which medium F will be compressed
around body G. For this purpose, assume that medium F is an ideal gas
able to significantly compress (change its density) under external forces of
various nature. Here we ignore the effect of the medium gravitational self-
compression. Consider again the above problem (see Figs. 1, 2 and 3) but put
the gravitational field source, namely, body G, into the domain F geomet-
rical center (δ “ 0). From the condition of the medium elementary volume
equilibrium (Fig. 3), obtain the formula for pressure increment dp:

dp “ p2 ´ p1 “ ρF prqgGprqdr , (25)

where

gGprq “ ´G
VGρG

pRG ` rq2
, VG “

4

3
πR3

G . (26)

Here p2 is the pressure at the lower (closest to the body) side; p1 is the
pressure upon the upper side of the elementary volume; r is the distance from
the body surface to the medium elementary volume under consideration; gG

is the body G gravitational field intensity; RG and ρG are the body’s radius
and density, respectively; ρF is the medium density; G is the gravitational
constant.

Use the following equation of the ideal gas kinetic theory [13, 14] to
interrelate the pressure, density and temperature of the gaseous medium
under consideration:

pV “
m

M
RT , m “ V ρ ùñ p “

ρ

M
RT ùñ dp “

RT

M
dρ , (27)

here V is the gas volume under consideration; ρ is the density; M is the molar
mass; R is the universal gas constant; p is the pressure; T is the temperature.
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Excluding dp from equations (27) and (25)

dρF “
M

RT
ρFgGprq dr ùñ

dρF

ρF
“ ´

M

RT
G

VGρG

pRG ` rq2
dr (28)

and integrating (28), obtain:

ln ρF “ ´
M

RT
GVGρG

ż

dr

pRG ` rq2
“

M

RT
G

VGρG

RG ` r
` const . (29)

Find the integration constant from the boundary condition for medium F

density on the body G surface:

ρF

ˇ

ˇ

ˇ

r“0

“ ρ0 . (30)

As a result, obtain an exponential function characterizing the medium F

density variation with distance from the body G surface:

ρF “ ρ0 exp

˜

´
M

RT
g0RG

ˆ

1 ´
1

1 ` r{RG

˙

¸

, (31)

where g0 is the gravitational field on the body surface;
R “ 8.3144621 J{pK ¨ moleq.

Now, using relation (31), construct the medium F density distribution
around body G. Let us take as medium F an ideal gas whose main physical
parameters are adequate to the Earth’s standard atmosphere (T “ 288.15 ˝K,
M “ 0.02898 kg{mole, ρ0 “ 1.225 kg{m3). The material body G characteris-
tics are listed in Table 1. Fig. 6 illustrates the medium F density variation

Table 1. Body parameters

density, kg{m3 radius,m mass, kg g0,m{s2

Earth 5514 6.371 ˆ 10
6

5.973 ˆ 10
24

9.821

test body 7200 10 3.016 ˆ 10
7

2.013 ˆ 10
´5

with distance from the body surface for the system of two gravitating bod-
ies G (Table 1).

For the Earth, the density of gaseous medium F at distance r “ 10 km
from the surface is 0.37412 kg{m3; for the test body, the medium F density
remains almost constant, namely, 1.224999997 kg{m3. This results from that
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Figure 6. Medium F (air medium) density variation with the distance
from the surface of the Earth and test body.

the test body mass is far lower than the Earth’s mass and, hence, its grav-
itational field is far less intense. In the scope of this problem, gravitational
field value g0 on the test body surface is about 487900 times less than the
gravitational field on the Earth’s surface.

Thus, estimation of the effect of the gaseous medium gravitational com-
pression in the vicinity of the test body having considerable gravitating mass8

showed that the medium density has formally changed but quite insignif-
icantly. This means that in the case of a physically realizable system of
material bodies located in an ideal gas we can ignore the medium density
variation due to introducing gravitating bodies into it. This is valid also for
liquid, loose, deformable and solid media since their compressibility is far
lower than that of the gaseous medium.

6. Gravitational interaction of a pair of bodies

All the above mentioned allows one to describe gravitational interaction
of two and more material bodies in a non-zero density medium by using the
universal gravitation law in its conventional form but involving the gravitat-
ing mass concept. For simplicity, exclude the medium gravitational effect on
the material bodies located in it. This implies that medium F is uniform in
density and unlimited in volume, i.e., that it has neither center of mass or
center of attraction.

In this case, the gravitational interaction force F for two bodies G1 and G2

whose centers of mass are r apart each other (Fig. 7) in uniform medium F

of constant density ρ0 gets the following form:

F “ G
m1m2

|r|3
r or F “ G

m1m2

r2
, (32)

8Realizable under laboratory conditions.
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where r “ |r|; F “ |F |; m1 and m2 are the gravitating masses of bodies
G1 and G2, respectively. According to (22), the gravitating masses will be
defined as:

m1 “ M1

ˆ

1 ´
ρ0

ρ1

˙

, m2 “ M2

ˆ

1 ´
ρ0

ρ2

˙

.

Here M1 “ ρ1V1 and M2 “ ρ2V2 are the bodies’ inertial masses.
When the medium F density tends to zero, formula (32) gets the classical

form:

lim
ρ0Ñ0

F “ G
M1M2

r2
. (33)

F

G
2

G
1

Figure 7.

Thus, using expression (22) for the ma-
terial body gravitating mass, it is possible
to determine the conditions under which the
body gravitating mass may be either positive
or negative. We can see that just the exis-
tence of the gravitating mass, its sign and
value are indissolubly related to the medium
density.

Due to the gravitating mass alternation,
it is possible to reasonably use such terms as
gravitational "attraction" and "repulsion" for the system of material bodies
in the non-zero density medium in studying physical processes9 observed in
Nature.

7. Gravitational dipole

Here we consider a problem of finding equipotential and force lines of
the gravitational field created by two material bodies G1 and G2 located in
motionless uniform medium F with density ρ0; the gravitational effect on
the bodies from medium F itself is ignored. Assume that the bodies are
uniform rigid spheres R1 and R2 in radii, whose centers of mass are at fixed

9For instance, the submarine submerging or emerging process is nothing but controlling
the gravitational mass value and sign by varying the ballast; at the zero running speed,
this makes the submarine moving along the Earth’s gravity field line. The submarine
suspension at a preset depth means that its gravitational mass is zero. The same principle
is valid also for aircrafts. A dirigible or air balloon rises (pushes from the Earth) not
because of the pressure gradient in the Earth’s atmosphere but because it has a negative
gravitating mass (this means that the dirigible mean density is lower than the atmosphere
density). Varying the aircraft average density relative to that of the environment, we
change the sign and magnitude of its gravitating mass.
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distance L “ 30mm from each other. The radii and densities of the bodies
are given in Table 2.

Table 2. Parameters of bodies G1 and G2

density, kg{m3 radius, mm

G1 ρ1 “ 7200 R1 “ 7

G2 ρ2 “ 6700 R2 “ 5

The problem is considered in the three-dimensional version. Spheres G1

and G2 are motionless, and the medium F volume is sufficiently large to
exclude the possible influence of edge effects. Assume that ρ1 ą ρ2. The
parameter of our task will be the medium density ρ0. Let us construct a set
of Poisson’s equations for medium F and bodies G1, G2 included in it:

$

&

%

∆UF “ ´4πGρ0 ,

∆UG1
“ ´4πGρ1 ,

∆UG2
“ ´4πGρ2 .

ñ

$

&

%

∆UF “ 0 ,

∆UG1
“ ´4πGpρ1 ´ ρ0q ,

∆UG2
“ ´4πGpρ2 ´ ρ0q .

(34)

Fig. 8 presents the set (34) solution in the form of distribution of the grav-
itational field U “ UG1

` UG2
lines. The Fig. 8(a) illustrates the task (34)

solution for the zero density medium. Fig. 8(b) presents the field lines dis-
tribution in medium F whose density satisfies inequality ρ1 ą ρ0 ą ρ2 and is
equal to ρ0 “ 7000 kg{m3.

Analyzing the character of the two-body gravitational field lines distri-
bution (Fig. 8), we can see that the field lines are closed at peculiar points
that do not coincide with the bodies’ centers of mass. At these points, the
total gravitational force acting on the test mass is zero. Hereinafter we will
refer to these equilibrium points as gravitational poles. The gravitational
pole position in each body of the system under consideration depends on the
bodies’ geometric and physical characteristics as well as on their mutual ar-
rangement and orientation. Table 3 lists the shifts of the gravitational poles
from centers of mass obtained by solving set (34).

Table 3. Shift of gravitational poles.

ρ0, kg{m3 δ1, mm δ2, mm

0 0.126 0.493
7000 -0.198 -0.250

Note that gravitating masses G1 and G2 (Fig. 8(b)) exhibit a distinctive
field lines distribution characteristic of an electrical or magnetic dipole. The
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(a) Attraction effect.
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(b) Repulsion effect,
(ρ1 ą ρ0 ą ρ2)

Figure 8. The gravitational field lines structure for a system of two bodies
(G1 and G2) in the medium ρ0 in density for ρ1 ą ρ2.

only difference is that having the same character of the field lines distribution
as a magnetic dipole or a pair of oppositely charged particles, the gravitating
masses exhibit completely opposite character of the physical effect, namely,
a pair of material bodies with opposite gravitational poles repulse instead of
attracting.

Taking into account the above, we can now formulate a number of axioms
defining the gravitational monopole and dipole concept:

Axioma 7.1. A material body of an arbitrary shape and finite volume sur-
rounded by a non-zero density medium exhibits properties of a positive monopole
provided the body’s average density is higher than the medium density.

Axioma 7.2. A material body of an arbitrary shape and finite volume sur-
rounded by a non-zero density medium exhibits properties of a negative monopole
provided the body’s average density mean density is lower than the medium
density.

Axioma 7.3. A material body of an arbitrary shape and finite volume located
at the interface of two mediums forms a gravitational dipole provided its mean
density is lower than that of one of the media and higher than that of the
other.

Axioma 7.4. Two material bodies of an arbitrary shape and finite volume
located in the non-zero density medium form a gravitational dipole provided
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medium density is lower than that of one of the bodies and higher than that
of the other.

8. The gravitating mass in mechanics

8.1. Body "falling" in the Earth’s gravitational field

Let us consider a problem of the material body "falling" in the Earth’s
atmosphere; to say more exactly, let us compare the "falling" times of two
bodies and answer the question: Which of two bodies of identical geometry
but different densities "falls" quicker, all other initial conditions being equal?

Assume that the body’s "falling" onto the Earth’s surface is the mutual
gravitational attraction between the Earth and material body G. Assume
that the Earth is a uniform-density sphere with radius RC and mass MC.

g_

F grav

F
z

G

F h

h2

h1

k

O

Figure 9.

The Earth’s gravitational field intensity is g. Assume
that the Earth remains motionless, and only body G moves
towards the Earth (Fig. 9). In addition, assume that dur-
ing "falling" the Earth’s gravitational field intensity g re-
mains constant both in direction and magnitude:

g “ ´kg , where g “ G
MC

R2

C

. (35)

Let us take as a "falling" body G a uniform sphere
RG in radius and ρG in density. The body "falls" in air
medium F characterized by a constant temperature, den-
sity ρF and viscosity η. At the initial time moment, the body’s initial velocity
is zero, and its distance from the Earth’s surface is h. In the framework of
our task, body G is subject in "falling" to only two forces: F grav that is the
force of mutual gravitational attraction of sphere G and the Earth, and F η

that is the medium F resistance force. Therefore, the equation for force F

that makes the body moving may be written in the following form:

F “ F grav ` F η , (36)

where
F G “ M:r , F grav “ mg , F η “ αη 9r . (37)

Here r “ kz is the radius-vector of the "falling" body position; M and m

are the body G inertial and gravitating masses, respectively; α is the body
shape factor.

Further we will not consider the medium resistance force F η since our
task is to compare the "falling" times of two bodies of identical geometries
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but different densities in a preset medium under identical initial conditions.
Multiplying the left and right sides of equation (36) by ort k, obtain the
motion equation in the Oz-axis projection

M :z “ ´mg , where m “ M

ˆ

1 ´
ρF

ρG

˙

. (38)

According to this problem definition, the main parameters are the medium F

and body G densities. Let us solve equation (38) under the following initial
conditions:

9z
ˇ

ˇ

ˇ

t“0

“ 0 , z
ˇ

ˇ

ˇ

t“0

“ h2 . (39)

Integrating (39), obtain:

9z “ ´

ˆ

1 ´
ρF

ρG

˙

g t , z “ ´
1

2

ˆ

1 ´
ρF

ρG

˙

g t2 ` h2 . (40)

Herefrom find the time of body "falling" from altitude h2 to mark h1 in the
Earth’s gravitational field as a function of medium density ρF and average
density ρG of the "falling" body:

t “

g

f

f

f

e

2ph2 ´ h1q
ˆ

1 ´
ρF

ρG

˙

g

(41)

In the limit case, when the medium density ρF tends to zero, the "falling"
time will be minimal, i.e.,

tmin “ lim
ρFÑ0

t “

d

2ph2 ´ h1q

g
. (42)

Equation (41) also shows that as the medium density ρF approaches the
body’s average density ρG , "falling" time t increases and becomes infinite
when the densities become equal; this is the case of the body G "suspension"
in medium F , namely, the case of the body’s zero buoyancy.

Now, using (41), answer the above question: which of two "falling" bodies
of identical geometries but different densities will be the first that reaches
mark h1 ? From (41) it follows that, when ρG1

ą ρG2
, inequality tG1

ă tG2

is valid and vice versa. Thus, we can conclude that when two geometrically
identical bodies "fall" in a non-zero density medium in the Earth’s gravita-
tional field in the absence of other forces, the body of a higher density always
"falls" quicker.
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Table 4. Body G "falling" time in medium F .

vacuum

ρF “ 0 kg{m3

air

ρF “ 1.225 kg{m3

water

ρF “ 1000 kg{m3

plumbum

ρG “ 11336 kg{m3 0.45127 s 0.45129 s 0.47259 s

ironwood

ρG “ 1170 kg{m3 0.45127 s 0.45150 s 1.18386 s

Calculate the "falling" time of a spherical body RG “ 5mm in radius
and ρG in density from altitude h2 “ 1m to mark h1 “ 0m in the medium ρF
in density. The calculations for various combinations of the body and medium
densities are listed in Table 4. We can see that in the non-zero density
medium the heavier body will be the first to "fall", since its gravitating mass
is greater.

Now it is reasonable to make a note on the frequently used concept "free
falling" with respect to a body "falling" onto the Earth’s surface. This
conventional expression contains a semantic error and contradicts the physics
of the observed process. Does "free falling" really exist? The answer is
obvious: "No". The body moves forcedly due to its gravitational interaction
with the Earth.

8.2. Pendulum motion equation

j

L

g_

F grav

G

F

O

Figure 10.

This case will be considered in order to demonstrate the
role of the gravitating and inertial masses in the pendu-
lum oscillation. Consider the pendulum oscillatory motion
(Fig. 10) in the gravitational field of constant intensity g tak-
ing into account that the process takes place in medium F

with density ρF ą 0. Here we ignore the medium viscosity
since our goal is to demonstrate the medium F density effect
on the pendulum oscillation period. In this case, the balance
of moments may be expressed as:

J :ϕ “ ´L Fgrav sinϕ , (43)

where
Fgrav “ mg , J “ ML2 , M “ ρGVG .

Here M and m are the inertial and gravitating masses of sphere G represented
by expression (22); L is the length of a massless rigid suspension; ρG is the
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sphere G average density. Therefore, the pendulum oscillation equation gets
the following form:

:ϕ `

ˆ

1 ´
ρF

ρG

˙

g

L
sinϕ “ 0 . (44)

The equation shows that the oscillation process remains active also when the
medium density ρF exceeds the body density ρG . However, in this case we
obtain the inverse pendulum configuration. If the condition of equal densities
is fulfilled, oscillation cannot take place, namely, the pendulum remains in
the state of equilibrium at any preset initial angle ϕ.

8.3. Body equilibrium at the interface of two media

Consider the interface of two semi-infinite media mutually balanced in the
Earth’s gravitational field: water and atmosphere. The gravitational field
vector g is directed perpendicular to the water surface that is just regarded
as the media interface. Let a wooden cube to be in the statically equilibrium
state, being partially submerged in water (Fig. 11). Let us estimate the depth
it is submerged to. It is known that the air density (the medium above the
water surface) is ρair “ 1.29 kg{m3, water density is ρwater “ 1000 kg{m3, and
the wooden (oak) cube density is ρcube “ 800 kg{m3. The cube edge length
is a “ 1m. The media interface conditionally divides the cube into two parts.

�✁

�✂

✄

☎✆✝✞✟

✠✡✟

☛✁

☞✁

☞✂

☛✂

✌

✍✁

✍✂

✎✁

✎✂

Figure 11. Body equilibrium at the two media interface.

One of those parts is regarded as an anomaly in air, the other is an anomaly
in water. Each anomaly is exposed to the Earth’s gravitational field. Since
the cube is in equilibrium, this means that the sum of gravitational forces
acting on its parts is zero. Taking into account that the Earth’s gravitational
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field vector g has the same direction in air and water, we can write that

F 1 ` F 2 “ 0 , or pm1`m2q g “ 0 .

From this relation, obtain the equilibrium condition: the sum of gravitating
masses of the cube above-water and sub-water parts is zero:

m1`m2 “ 0 , (45)

where

m1 “

M1
hkkkikkkj

ρcubeV1

ˆ

1 ´
ρair

ρcube

˙

, m2 “

M2
hkkkikkkj

ρcubeV2

ˆ

1 ´
ρwater

ρcube

˙

.

Substituting gravitating masses m1, m2 into (45) and taking into account
that V1 “ a2h1 and V2 “ a2h2, obtain a system of equations:

h1pρcube ´ ρairq ` h2pρcube ´ ρwaterq “ 0 , h1 ` h2 “ a

Hence, the cube submersion depth in water is

h2 “ a
ρcube ´ ρair

ρwater ´ ρair

«0.8m .

This example clearly demonstrates the validity of Axiom 7.4 mentioned
in page 17.

9. Summary

Considering the motion of material bodies in non-zero density media in
the gravitational field in the absence of force factors of other nature, we
succeeded in revealing new manifestations of the gravitating mass in the
Universe we live in. The basic results of the paper are:

1) Applicability of the additivity principle for gravitational interaction
between two or more material bodies in the non-zero density medium
has been justified.

2) Definition of the gravitating mass of a finite-volume material body has
been suggested; the definition fully complies with the processes caused
by the gravitational interaction, which are observed in Nature.

22

Kiryan D.G. & Kiryan G.V. ( mass7, RC5e ) – July 21, 2014



3) Conditions have been defined, under which the material body or a two-
body system forms a gravitational dipole whose field lines configuration
is inherent in the classical concept of an electrical or magnetic dipole.
The only distinctive feature of the gravitational dipole is that opposite-
polar gravitating masses repulse, while similarly polar masses attract
to each other.

4) The validity of the postulate on the mass equivalency, namely, on equal-
ity of the material body inertial and gravitating masses, has been an-
alytically proved for the zero-density medium.

The main idea is that, joining the Archimedes law and the Newton’s
law of universal gravitation, we have revealed the existence in Nature of
such a missing manifestation of the gravitational interaction as the effect of
repulsion.

The fact that the Universe’s matter has to have such a fundamental prop-
erty as gravitational repulsion (the antithesis to attraction) was pointed to
as far back as by Friedrich Engels:

"It is commonly accepted that weight is the most general defini-
tion of materiality, namely, attraction is the integral property of
matter rather than repulsion. However, attraction and repulsion
are inseparable from each other to the same extent as positive and
negative; dialectically, it can be predicted that the true theory of
matter should pay to repulsion the same attention as to attraction;
moreover, a theory of matter, which is based only on attraction,
shall be false, erroneous, scanty, evasive." [15, p. 210–211]
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