
-1- 

© Remi Cornwall 2014 

An Electrostatic Analogue for the Novel Temporary Magnetic 

Remanence Thermodynamic Cycles 
 

Remi Cornwall 

Future Energy Research Group 

Queen Mary, University of London, Mile End Road, London E1 4NS 

http://webspace.qmul.ac.uk/rocornwall or http://vixra.org/author/remi_cornwall 

Abstract 

 

This paper follows on from the exposition of the new temporary magnetic remanence cycles and looks 

at the similarities and subtle differences in the electrostatic analogue. Only the electromagnetics is 

analysed as the kinetic theory and thermodynamic analysis is almost exactly the same as the magnetic 

case. 

 

1. Introduction 

 

The author initially conducted enquiry into 

ferrofluids; these materials display temporary 

magnetic remanence[1]. This phenomenon lead to 

the development of thermodynamic cycles[2-4] by 

the author. Indeed the claims of violation of the 2
nd

 

Law of Thermodynamics in one of the papers 

seems to be reflected elsewhere[5] and it has 

become necessary to look at the general principle 

regarding electrostatic devices and whether there is 

any similarity with magnetostatic devices due to 

the near symmetry or duality with Maxwell’s 

Classical Electrodynamic laws[6-8]: 
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These equations are the so-called microscopic form 

of the laws and are always classically true, however 

in matter, a distinction is made between “free” and 

“bound” charges: 

 

 
bound free

ρ ρ ρ= +  eqn. 2 

 

And we define the “Polarisation field”, P, 

 

 
free

ρ = −∇ ⋅P  eqn. 3 

 

Where the polarisation vector represents the field 

from the charges inside the material that are 

polarised by the external electrical field: 

 

 
0 .r xyz

ε ε=P E  eqn. 4 

The relative permittivity
.r xyz

ε is written as a tensor 

such that the induced polarisation does not have to 

be collinear to the electric field. We write the 

“Displacement field”, D: 
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ε= +D E P  eqn. 5 

 

Substituting this concept into the first Maxwell 

equation yields, 

 
free

ρ∇ ⋅ =D  eqn. 6 

 

Similarly with the currents (and hence current 

density when considered over the same surface 

area) the same procedure can be followed: 

 

 
bound free

= +j j j  eqn. 7 

 

The bound current is composed of “Ampèrian 

currents” from the spins of the magnetic material[6, 

9-11], the “magnetisation”, M and the 

displacement current due to the changing 

polarisation: 
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Similarly to eqn. 4, a constitutive relationship 

between the induced polarised vector and the agent 

causing the polarisation is formed: 

 

 
xyz

χ=M H  eqn. 9 

 

However in this case the “magnetising field” H is 

considered fundamental (it isn’t, there is only “B” 

field[6]) and this field is related to the free current: 

 

 
free

=H j  eqn. 10 

 

Such that for magnetostatics we can write (from 

eqn. 7 and the static case of eqn. 1.3), 

 

 ( ) ( )02

0

1

c
µ

ε
= + ≡ +B H M H M  eqn. 11 



-2- 

© Remi Cornwall 2014 

Which then leads to the way some of the literature 

writes the 4
th

 Maxwell equation: 
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Finally, the material response to the magnetising 

field (eqn. 9) is often hidden in a relative 

permeability term, thus: 
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µ χ= +  eqn. 13 

 

The macroscopic Maxwell equations are quoted 

thus:  
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These truthfully aren’t “fundamental” for the 

hidden complexity of the extra D and H variables. 

However material characteristics in the form of M 

and P are introduced and we can begin to analyse 

the subtle differences between the magnetic 

thermo-cycle and the electrical variant. 

 

2. The Electrical State Equations for the Magnetic 

Temporary Remanence Cycle 

 

Previously[1, 2] it was shown that the 

magnetisation in the magnetic thermo-cycle very 

accurately followed a 1
st
-order differential 

equation: 
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The H-field is related to the magnetising current 

thus, 
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A slight complication of the equation above is the 

inclusion of a “co-material” with high 

permeability
r

µ to make the magnetising current 

smaller.  

 

The author[2] analysed the dynamics and 

energetics of eqn. 15 in relation to the work done 

magnetising, the magnetisation energy, the 

magnetisation loss and the ultimate fate of the 

magnetisation energy, given that a temporary flux 

decays. Briefly, if the magnetisation process occurs 

at a rate substantially slower than the relaxation 

rate τ, then nearly all of the work of magnetisation 

will end up as magnetisation energy. If the process 

is much faster than τ, all the magnetisation work 

will end up as internal energy with no magnetic 

moment resulting. Similarly, if the magnetised 

material is disconnected from external circuitry, 

then neglecting radiative losses, the magnetisation 

energy gets converted to internal energy at a rate a 

function of dM/dt. 

 

3. The “H-Field Cancellation” Method 

 

The basis of the thermo-magnetic heat engine 

previously considered by the author[2, 3] was the 

conversion of heat energy directly into electricity. 

The mechanism was seen by Kinetic Theory to 

involve the micro-mechanical disruption of the 

dipoles that constitute the magnetisation, which by 

generator action (Faraday’s Law, eqn. 1.2) did 

“dipole-work” MdM (M is the volume 

magnetisation). Dipole-work can be considered 

“micro-mechanical shaftwork” which makes the 

electrical system an open system. It directly lowers 

the internal energy of the magnetised material: 
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dU TdS Hd Mdµ µ= + +M M  eqn. 17 

 

The aim was then to make the dipole-work greater 

than the input magnetisation energy in a cycle: 

 

Md Hd>∫ ∫� �M M  

 

This was shown to be impossible with a simple 

resistive load as only part of the magnetisation 

energy is returned. Cognition of this effect came by 

seeing the current waveforms induced into the 

electrical load: As the load resistance decreased, 

the circuit time constant became slower and slower, 

with a concomitant slowing in the rate of 

magnetisation decay. That is, the electrical work 

dumped into the load was not some simple function 

of τ, 
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Because τ was increasing. It was realised that the 

induced current was re-magnetising the working 

substance. This is the term
r
Hχµ in eqn. 15. A 

scheme was contrived to eliminate this 

re-magnetising H-field by superposition of a 
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generated field at high frequency (so that the 

resultant is effectively invisible to the working 

substance) and this resulted in eqn. 15 being 

rendered: 

 
dM M

dt τ
= −  eqn. 18 

 

The energetics and method to do this showed that 

this was possible[2]. A graph of electrical work 

against 1/R for one cycle yielded the following 

graph: 

 

1/R (S)  
 

Figure 1 

 

It can be seen that the simple dipole work into a 

resistive load never exceeds the magnetisation 

energy input (this is not due to losses, it simply 

reflects a flaw in the energy coupling process). The 

upper trace plateaus at the field energy of magnetic 

working substance that is, 
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The difference between this work, W and the 

magnetisation input energy represents heat energy 

converted to electrical energy. 

 

4. A device based on Electrical Remanence 

 

There is an electrostatic analogue of temporary 

magnetic remanence and it would seem a simple 

matter to start from the dual of eqn. 15: 
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1
e r

dP
P E
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χ ε ε

τ
= − −  eqn. 20 

 

In constructing the electrostatic dual of the 

temporary remanence cycle, there are subtle 

similarities and differences. Both involve a 

charging and discharging phase: one with magnetic 

flux and an energy cost of the magnetising energy, 

the other an electric/polarisation flux and the 

energy cost of the polarisation energy. Both too 

would seem to have a “lossy” tank where this input 

energy is converted to internal energy at the rate a 

function of: 
d

dt

φ φ

τ
= − .  

 

However, there is no such analogue of the Faraday 

law eqn. 1.2 and changes in electrical flux cannot 

directly cause the generation of currents by an 

electromotive force – there can be no dipole-work 

term PdP similar to MdM (eqn. 17). Let us explore 

this. From the 1
st
 Maxwell equation/Gauss’ Law: 
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And hence, 
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This represents a combination of the electric field 

at the plates of the capacitor and the electric field 

from the polarisation. The movement of the free 

charges is the circuit current, thus: 
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Multiplying both sides the voltage across the 

plates, i.e. 
d

v E dl= ⋅∫ yields, 

0 0

1 1dE dP di
Ed A v
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Which upon integration w.r.t. time, 

 

 ( )0
EdE EdP V viε⇒ + =  eqn. 24 

 

This is just seen to be the differential electrostatic 

work EdD and the instantaneous electrical power; 

its magnetic dual is HdB. If we neglect the 

polarising and the magnetic field energy (they are 

recoverable around a cycle), we have the usual 

work input terms: 

EdP dV

and

HdM dV

⋅

⋅

 

 

In the first case, we do work on a lossy capacitor 

that seeks to turn this work into internal energy but 

we have no dipole-work term MdM, as in the 

second case with the magnetic system to surmount 

our losses. 

 

Furthermore there can be no dual to the H-field 

cancellation method. No de-polarisation cancelling 
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method can be made to strike out the term
0 r

Eχε ε , 

when we realise that the potential across the load 

resistor is negative and acts to increase the rate of 

decay further. This only reflects energy leaving the 

capacitor “tank” (in competition to that being 

converted to heat), as it should. 

 

In short, the difference between the electrical and 

magnetic systems is that, a circuit cannot be made 

with magnetic charges which could deliver 

electrical energy as electric charges do; they simply 

don’t exist (eqn. 1.3). To make the electrostatic 

analogue requires an intermediate step of 

generation of temporary magnetic field from the 

collapse of the electric polarisation field and this 

then can generate electric current. This, of course, 

is an allusion to the displacement current term 

t

∂

∂

E
of the fourth Maxwell equation (eqn. 1.4 or 

t

∂

∂

D
eqn. 14.4). 

 

The only way a capacitor-based heat engine could 

work is either: 

 

1) Conventionally: Take the working 

substance around a cycle exposed to two 

or more reservoirs such that the 

polarisation is a function of temperature. 

The changes in entropy and heat flow 

relate to the electrostatic work: 

 

 ( )TdS EdP T=∫ ∫� �  eqn. 25 

 

2) Unconventionally I: For devices 

purporting to deliver work from one 

thermodynamic reservoir[5], the electrical 

system must be open, that is externally 

generated charges must impinge on the 

electrical system. 

 

3) Unconventionally II: Electrostatic dipole 

work must act via the intermediary of a 

magnetic field to induce a current, as 

discussed previously. This system, 

although electrically closed is 

thermodynamically open, as case 2. 

 

The discussion shall continue with the third case 

and the displacement current. We use the fourth 

Maxwell equation with a dielectric so the current 

density term is left out: 

 2 E
c B

t

∂
∇ × =

∂
 eqn. 26 

 

The electric field results from the polarisation 

along the x-axis (figure 2), which is the axis of the 

capacitor, so we can write: 
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Figure 2 
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Where the curl operator in this context can only 

have components in the yz plane and a co-material 

εr has been included to boost the field. For 

simplicity we shall consider cylindrical symmetry 

and we know that the B-field will circulate around 

the changing Px vector. Using Stoke’s Identity to 

relate the line integral of the curl of B to the surface 

integral of the flux from P, we find: 
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Thus the temporary independent magnetic flux is: 
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This B-field is itself changing and will lead to Etemp 

(eqn. 29) and so on, as a series in powers of 1/c
2
, so 

we safely truncate it to first order in 1/c
2
. The E-

field is given by Maxwell’s 2
nd

 equation: 

 

 
( )yz

temp

B t
E

t

∂
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∂
 eqn. 29 

 

Which we know from Stoke’s Identity will lead to 

an E-field perpendicular to the plane yz, that is, in 

the anti- x axis direction, increasing with 

magnitude with the radius (our line integral path is 

an axially aligned loop through the centre of the 

capacitor, see figure 2): 
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The path at the centre contributes nothing, so we 

can write (V is the volume, n is the turns per unit 

length): 

 
( )2

2 2

xr

temp r

P t
v nV

c t

ε
µ

∂
= −

∂
 eqn. 31 

 

A magnetic co-material µr has been included to 

boost the magnetic field (which must be non-

conductive, e.g. ferrite). 

 

The end result of this arrangement is, once again, a 

temporary magnetic flux. The polarising energy of 

the electret has been transferred to magnetising 

energy of the ferrite. This seems to accrue no 

benefit, until we realise that the H-field 

cancellation technique can applied, to liberate 

dipole-work in excess of the magnetising energy. 

The difference represents heat energy of the 

electret being converted into electrical energy. 

 

5. Conclusion 

 

The Maxwell Equations have a certain amount of 

symmetry which leads to the concept of electrical 

duality. However slight differences exist and this is 

manifest in making a temporary electrical 

remanence cycle as a dual to temporary magnetic 

remanence cycle. What has been found, for the 

former case, is that an intermediary step of 

generation of a temporary magnetic field is 

required. Once this has been achieved, the same 

techniques of the H-field cancellation method[2, 3] 

are applied as to the latter method. 

 

This paper hopefully explains the misconception 

about the devices that the system is closed and akin 

to filling and emptying a tank – either with 

polarisation energy or with magnetisation energy. It 

has been shown that electrical dipole work PdP can 

only return the polarisation energy, EdP. However 

magnetic dipole work MdM can, via the H-field 

cancellation method return more than the input 

magnetisation energy. In this case, the Brownian 

disruption of both the magnetic case (and the 

correctly configured electrical case) constitutes 

micro-mechanical shaftwork and an open system. 
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