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Abstract

I eliminate hundred years old notion of ‘plug-flow’ in electro-osmosis, which was predicted by

incomplete ‘electric double layer’ (EDL) theory. A recently developed ‘electric triple layer’ (ETL)

theory removes some serious shortcomings of EDL theory regarding conservation of electric charge,

and when applied to electro-osmosis, shows that the velocity profile is not ‘plug-like’ at all, but

more like a parabola; it agrees with experiments and molecular dynamical simulation (MDS) results.

Also, I redefine Helmholtz-Smoluchowski velocity-scale, which clears certain misunderstandings re-

garding representation of flow direction, and accommodates solution and geometrical properties

within it. I describe some novel electro-osmotic flow controlling mechanisms. The entire electroki-

netic theory must be modified using these concepts.
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Electro-osmosis concerns flow of an electrolytic fluid relative to charged surfaces, driven

by external electric field, and is a quite old field of study [1, 2]. It has important applications

in different fields like micro-pumping micro-mixing, chemical separation and analysis etc.

[3–7]. If a charged wall is exposed to an electrolytic solution, it attracts ions of opposite

polarity (counter-ions) and repels ions of same polarity (co-ions), hence, spatial distribution

of counter-ions and co-ions are not the same. As a result, an elemental fluid volume contains

a net charge, and experience force in an external electric field. Hence, an axial field can drive

the fluid through a channel made of charged walls.

It is obvious that a precise knowledge of charge-density (ρe) as a spatial function is very

important in the study of electro-osmosis, because it appears in the body-force term of the

fluid momentum equation that must be solved to get the velocity profile. A widely used

expression for ρe comes from EDL theory [8, 9], and for extreme values of some parameters,

it predicts that the velocity profile should appear like a ‘plug’, which is flat in most parts

and hence it can be approximated that the fluid bulk moves as a whole with a finite slip

with respect to wall. The myth of plug remains alive since hundred years, although there is

no convincing experimental evidence in favor of it (to my knowledge). A recent development

(see Ref [10]), it is pointed out that EDL theory has certain drawbacks, as it did not take

care of charge conservation principle properly; consequently a novel ETL theory evolves that

removes that discrepancy and an entirely different expression for ρe is obtained. In this paper

I will discuss how the new distribution changes the form of velocity profile totally; it is not

a plug at all, but tends to a parabola for some extreme conditions. Also there was another

serious problem in the old expression for normalized velocity: it always appears positive,

although a reversal of axial electric field must reverse the flow. I removed this problem here

with a fine tuning of well-known Helmholtz-Smoluchowski velocity scale; a redefinition of

the scale arises quite naturally that accommodates some solution and geometric properties.

I use the same rectangular geometry, axes convention and notations as in Ref [10], (also

see [11]); however, I describe a few important symbols again. The channel, containing

electrolytic solution, is of width 2a � length; y-axis is aligned with long, vertical channel-

axis, x-axis is perpendicular to this. Long, charged walls are at x = ±a. Unlike before,

the narrow ends of the domain are open, allow fluid to enter or leave the domain. The

fluid has uniform material properties: permittivity ε, viscosity µ etc. The x-distance is non-

dimensionalized: η ≡ x/a. An important non-dimensional parameter is κ ≡ a/λD, where λD
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is Debye length scale. The net charge in a cross-section of the domain is Q0. Any expression

with suffix ‘Old’ has a corrected version with suffix ‘Corr’. A uniform external axial electric

field Ey is used to drive the flow.

Since the domain is long and narrow, the flow may be assumed to be of low Reynolds

number (that means non-linear terms in the fluid momentum equation can be neglected)

and hydrodynamically fully developed (i.e. nothing varies along axial direction); the fluid

momentum equation assumes very simple form [12]; only the axial velocity v is present,

which varies only with x.

0 = µ
d2v

dx2
+ ρeEy (1)

In order to solve the above equation for v, we must know ρe as a spatial function; below

I write ρe as a function of η, derived from old EDL theory and corrected ETL theory

respectively (see Ref [8, 10]).

ρe,Old = −εκ
2ζ

a2
cosh(κη)

cosh(κ)
(2)

ρe,Corr =

(
εκ2ζ

a2

)[
tanh(κ)

κ
− cosh(κη)

cosh(κ)

]
+

(
Q0

2

)
(3)

Where ζ arises from specifying electrostatic potential ψ at boundaries: ψ|η=±1 = ζ, see

Refs. [8, 9]. Now, for κ = 25, I plot ρe,Old in Fig. 1(a) and ρe,Corr in Fig. 1(b); I use Q0 = 0

for the later (see Ref [10] for details ).
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FIG. 1. (Color online) Charge density distribution along channel cross-section, in an electrolytic so-

lution, enclosed by positively charged walls. (a) In EDL theory, counter-ions dominate everywhere;

incompatible with an electrically neutral (as a whole) solution. (b) In ETL theory; counter-layer

and co-layer (i.e. counter-ion and co-ion dominated layer) form near and away from wall; their

algebraic sum is the net charge Q0 (=0, here); point ‘P’ is electrically neutral.
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Using ρe,Old in the momentum equation and solving it with no-slip boundary condi-

tion at walls (i.e. at η = ±1, v = 0), the velocity profile obtained (see [9, 13]) is

given by, vOld = (εζEy/µ) [cosh(κη)/ cosh(κ)− 1]. When κ is large, vOld asymptotically

tends to (−εζEy/µ); that is perhaps the reason why most of the authors [5, 7, 8, 12,

14–16] defined a velocity scale called ’Helmholtz-Smoluchowski velocity scale’, given by

vH.S.Old ≡ − (εζEy/µ), (please note the minus sign); it has the same direction as vOld for all

values of κ ( since |η| ≤ 1⇒ cosh(κη) ≤ cosh(κ)). The scaled velocity is given by,

v̄Old ≡
vOld

vH.S.Old
=

[
1− cosh(κη)

cosh(κ)

]
(4)

I plot v̄Old vs η in Fig. 2(a), it always ‘looks’ +ve, for all sign-combinations of ζ and Ey,

although, for a given ζ, the velocity should reverse in direction if Ey is reversed. So, the

scale vH.S.Old caused lots of confusions and misunderstandings. Some authors [17, 18] tried

to justify the minus sign in vH.S.Old by considering some particular sign combinations of ζ

and Ey, that gives +ve velocity (e.g. −ve wall charge with Ey > 0), but remained silent

about other combinations that should give −ve velocity. A better scale could have been,

vH.S.Int ≡ |(εζEy/µ)| (5)

The suffix ‘Int’ means ‘Intermediate’, that will be modified later. Using this I get,

v̄Old,Int ≡
vOld

vH.S.Int
= sgn(ζEy)

[
cosh(κη)

cosh(κ)
− 1

]
(6)

sgn(ζEy) assumes value ±1 when the sign of the product ‘ζEy’ is ±ve. When ζ and Ey

are of the same sign, velocity is in −ve y-direction, see Fig. 2(b). When ζ and Ey are of

opposite sign, the direction reverses, see Fig. 2(c). The direction of v̄Old,Int is consistent with

ρe,Old; see Eq. 2 and Fig. 1(a). For ζ > 0, old theory predicts the fluid to contain excess

−ve counter-ions every where, which experience negative force for Ey > 0 and hence fluid

moves in negative direction. When electric field is reversed i.e. Ey < 0, the −ve charges are

forced in +ve direction and fluid moves in that direction. Other sign-combinations of ζ and

Ey can be explained similarly. Thus introduction of vH.S.Int removes discrepancies regarding

flow direction, and is very important for checking whether the direction of flow predicted by

theory is matching with experiment or not; the old scale was a source of confusion regarding

this issue. Although the directional problem is corrected using vH.S.Int, the velocity is still

erroneous, for, it has been derived with erroneous EDL theory.
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Now, I substitute ρe,Corr (see Eq. 3) in the momentum equation (Eq. 1). Using boundary

condition v = 0 at η = 1, and the fact that flow is symmetric about channel axis, the cor-

rected velocity profile vCorr is obtained. Now, a new velocity scale vH.S.Corr arises naturally

and is given by,

vH.S.Corr ≡ | (εζEyκ tanh(κ)/µ) | (7)

The parameter κ may vary widely through different set of problems, which can change the

characteristic velocity significantly. It happens, because, (see definition of λD in Ref. [10])

a change in solution concentration or temperature, affects the charge distribution; higher

valency means higher electric force per ion; a wider channel (higher value of ‘a’) increases

flow due to less friction etc. So, a velocity scale must contain κ(≡ a/λD). The corrected

velocity scale accommodates κ that was absent in the older scale given by Eq. 5. One

remark: if we add some salt (electrically neutral as a whole) to the solution, that increases

the solution concentration and hence κ increases, but the net charge Q0 does not change.

This could not be handled with old theory: the net charge in the solution is given by
∫
ρe,Old

and a given value of κ fixes the net charge (see Eq. 2), and it changes when κ changes. The

new theory can handle this very well, because κ and Q0 are independent, so it is possible to

vary κ while keeping Q0 constant; it could be useful for adjusting flow-rate. The corrected

normalized velocity, v̄Corr ≡ (vCorr)/(vH.S.Corr) is given by,

v̄Corr = sgn(ζEy)

[
1

κ tanh(κ)

(
cosh(κη)

cosh(κ)
− 1

)
+

(1 + σ0)

2

(
1− η2

)]
(8)

Where, σ0 =
Q0a

2

2εζκ tanh(κ)
(9)

The first and the second term in the right hand side of Eq. 8 can be termed as ‘hyperbolic’

and ‘parabolic’ respectively; for small values of κ, both terms are significant, while, for large

values of κ, the hyperbolic term tends to zero, and the profiles are parabolic. I plot v̄Corr

in Fig. 2(d) for κ = 5, and in Fig. 2(e) for κ = 250; the graphs are plotted with different

values of σ0, and with sgn(ζEy) = +1; ζ > 0, Ey > 0 in particular. For both cases, addition

of co-ions (increasing σ0) increases flow in positive direction (due to greater electric force

in that direction), and addition of counter-ions (decreasing σ0) tends to retard the flow

(increases electric force in the opposite direction) as expected. For high value of κ(= 250)

the parabolic profiles are clearly seen in Fig. 2(e). Now, σ0 = −1 needs special attention

(for large κ), the profile tends to zero identically. Since the parabolic term in Eq. 8 vanishes,
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FIG. 2. Electro-osmotic velocity profiles (normalized) at different stages of correction. (a) v̄Old is

always +ve, indifferent of reversal of Ey; shape tends to ‘plug-like’ as κ increases (here, κ = 25).

(b-c) v̄Old,Int has same shape as v̄Old, but show reversal of flow when Ey is reversed for a given ζ.

(d) v̄Corr with small κ(= 5), for different values of σ0; shapes are not ‘plug-like’ at all; flow may

not be unidirectional for some values of σ0 e.g. -0.5. (e ) v̄Corr with large κ(= 250), for different

values of σ0; shapes are parabolic in most parts in general; for σ0 = −1, tends to identically zero.

For both (d-e), sgn(ζEy) = +1. For given Ey and ζ, the direction of v̄Corr may change when σ0

changes.

at a first glance it may appear that a plug is possible. However, it is impossible to make σ0

exactly equal to −1 in experiments, and a very small deviation is sufficient to put both the

parabolic and hyperbolic terms on equal footings, because the later itself is very small due

to large value of κ (that it required for a plug). Hence, we never see plug in experiments.

If we change κ or/and σ0, the spatial distributions of different types of ions change, which

changes +ve and −ve electric forces on each elemental fluid volume. Hence, the velocity

profile also changes to adjust the frictional force so that all kinds of forces add up to give

zero axial force so that fluid velocity is constant in axial direction.

Differentiating Eq. 8 w.r.t η I get, dv̄Corr/dη = sgn(ζEy) [sinh(κη)/ sinh(κ)− (1 + σ0)η].

At η = +1,

(dv̄Corr/dη)|η=+1 = −σ0sgn(ζEy) (10)

Fig. 2(d) clearly demonstrates the meaning of the Eq. 10, here sgn(ζEy) = +1, so, when

σ0 > 0 (say, 0.3) i.e. excess co-ions, the derivative at η = +1 is −ve, flow is unidirectional.

When σ0 = 0 i.e. when the solution is electrically neutral as a whole, the derivative is

zero, the flow is still unidirectional. When there is some excess counter-ions i.e. σ0 <
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0, derivative becomes +ve, the flow starts to reverse near walls. Since counter-ions have

more concentration near walls, increasing their number causes greater electric force in −ve
direction. However, for small −ve values of σ0 (say, -0.5), there are still many co-ions at

the middle, and the positive electric force keeps fluid motion in positive direction there; we

see, fluid moves in opposite directions in different parts of the same domain; some where in

between the velocity is zero, it can be called ‘stagnant line’ (for 3-D domain there will be a

‘stagnant plane’ or a ‘stagnant surface’). As counter ions increase in number, at some point

the fluid starts moving entirely in the −ve direction.

From Eq. 9 it can be seen that if Q0 is not too large, for concentrated solution i.e. when

κ is large (see definition of λD in Ref [10]), σ0 � 1. So, for a concentrated solution, a little

bit of excess charge does not affect the flow rate. However, for a dilute solution (small κ),

flow rate can be considerably increased (decreased) by adding extra co-ions (counter-ions).

One remark: If fresh solution (electrically neutral as a whole) enters in the domain, it

wipes out residual excess charge (if any) soon, and we can assume Q0 = 0 .

We see that the long standing notion of ‘plug-like’ velocity profile gets eliminated. In

old EDL theory the fluid domain contained excess counter-ions every where (see Fig. 1(a));

for large values of κ, they are concentrated near the wall , thus the electrical force was also

concentrated in a narrower region, creates a high shear, moves the fluid in that region and

that drags the bulk fluid, so that the ‘plug’ formed (Fig. 2(a)). However, in the new ETL

theory, an opposite electric force is active in the central part of the domain (on the co-

layer, see Fig. 1(b)) and, for large κ, the resultant velocity profile is not flat ‘plug-like’, but

‘parabolic’ (Fig. 2(e)). The parabolic profile reminds us the flow driven by a constant axial

pressure gradient (Poiseuille flow [9, 18]). High value of κ means a very narrow counter-

layer; the co-layer is wide and of almost uniform amplitude. Hence, uniform axial electric

field causes uniform axial body force in most part of domain, the solution has the same form

when a constant pressure gradient drives the flow, and the profile is parabolic.

In Ref [19], authors reported an MDS result where fluid moves in opposite directions

in different parts of the same domain, but in the old framework of charge distribution,

it was not possible to explain the result, because, presence of excess counter-ions every

where causes an unidirectional electric force under a uniform external electric filed and flow

direction must be unidirectional as there is no other driving force; the authors say that

the flow with smaller magnitude is a ‘statistical noise’. However, presence of two layers
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of opposite polarities according the ETL theory can explain that result very well, opposite

driving force can cause the fluid to move in opposite directions under some special conditions

(see Fig. 2(d)); presence of viscous forces does not allow it to take place ‘always’. In Ref [20],

the authors presented more MDS results that can be explained with the theory developed

here.

In Ref [21, 22], the authors reported experimental fact: when axial electric field is in-

creased, the velocity profile more clearly shows parabolic shape, that certainly cannot be

explained with old theory. They studied flow inside cylindrical geometry, unlike in this paper

(here 2-D rectangular domain is selected to convey the basic physics in the simplest possible

manner). However, qualitative nature of flow must be similar for 2-D and 3-D, analogous

to Poiseuille flow, which is parabolic both in 2-D rectangular and 3-D cylindrical domain.

As I have discussed (see Eq. 8, and Fig. 2(d)), Fig. 2(e)), the shape may not be exactly

parabolic, but in some cases resembles very closely to a parabola, especially for large values

of κ. Increasing Ey increases vH.S.Corr (see Eq. 7) and hence the absolute velocity (which is

actually observed in experiments) is scaled up everywhere by the same factor. In the axial

part, the velocity is more, and so change in velocity becomes more than other parts, and it

is easy to recognize the parabolic shape.

In summary, I corrected electro-osmotic velocity profile using ETL theory. For large

values of parameter κ, the profile turned out to be ‘parabolic’ unlike a ‘plug’ that was

predicted by old EDL theory; corrected profile has experimental and MDS supports. A

natural redefinition of Helmholtz-Smoluchowski velocity scale arises; it captures flow reversal

upon reversal of axial electric field. I discussed different flow controlling mechanisms, too.

I conclude by saying that the above analysis not only removes the ‘myth’ of plug-flow,

but also opens up many other possibilities. Non-intuitive small-scale flow phenomena can

be better explained and controlled with very simple analytical formulae. The presence of

‘co-layer’ in the ETL theory changed the entire scenario and a large volume of works in the

entire field of electrokinetics must be modified using this concept.

I am grateful to Abhijit Sarkar, Sujata Sarkar, Fluent India, IIT Kharagpur, State Bank

of India, IISER-Kolkata for direct/indirect funding for this work. Lessons on microfluidics

from Suman Chakraborty and Ranabir Dey proved useful. Ananda Dasgupta’s teaching

about the indefiniteness of potential played key role here.
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Appendix A: Derivation of corrected velocity profile

Using η ≡ x/a, the momentum equation reduces to,

d2v

dη2
+
ρeEya

2

µ
= 0 (A1)

Rearranging terms in the expression for ρe,Corr, given by Eq. 3 (suppress suffix ‘Corr’),

ρe =

(
εκ2ζ

a2

)[(
tanh(κ)

κ
+
Q0a

2

2εκ2ζ

)
− cosh(κη)

cosh(κ)

]
=

(
εκ2ζ

a2

)[
N − cosh(κη)

cosh(κ)

]
(A2)

Where, N ≡
(

tanh(κ)

κ
+
Q0a

2

2εκ2ζ

)
=

tanh(κ)

κ

(
1 +

Q0a
2

2εζκ tanh(κ)

)
=

tanh(κ)

κ
(1 + σ0) (A3)

Where, σ0 ≡
Q0a

2

2εζκ tanh(κ)
(A4)

Substituting ρe from Eq. A2 in Eq. A1 gives,

d2v

dη2
+

(
Eya

2

µ

)(
εκ2ζ

a2

)[
N − cosh(κη)

cosh(κ)

]
= 0

⇒ d2v

dη2
+M

[
N − cosh(κη)

cosh(κ)

]
= 0 (A5)

Where, M ≡
(
Eya

2

µ

)(
εκ2ζ

a2

)
=

(
εκ2ζEy
µ

)
(A6)

Integrating Eq. A5 twice w.r.t η,

v +MN
η2

2
− M cosh(κη)

κ2 cosh(κ)
+ C1η + C2 = 0 (A7)

C1 and C2 are arbitrary constants. Symmetry about channel axis implies v is an even

function of η, hence C1 = 0. Also, at η = 1, v = 0 (no slip). Hence,

v +MN
η2

2
− M cosh(κη)

κ2 cosh(κ)
+ C2 = 0 (A8)

MN

2
− M

κ2
+ C2 = 0 (A9)

Substract Eq. A9 from Eq. A8, and group similar terms,

v =
M

κ2

(
cosh(κη)

cosh(κ)
− 1

)
+MN

1

2

(
1− η2

)
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Using Eq. A3,

v =
M

κ2

[(
cosh(κη)

cosh(κ)
− 1

)
+ κ tanh(κ)

(1 + σ0)

2

(
1− η2

)]
=
Mκ tanh(κ)

κ2

[
1

κ tanh(κ)

(
cosh(κη)

cosh(κ)
−1

)
+

(1+σ0)

2

(
1−η2

)]
(A10)

Define a new velocity scale (use Eq. A6),

vH.S.Corr ≡
∣∣∣∣Mκ tanh(κ)

κ2

∣∣∣∣ =

∣∣∣∣εζEyκ tanh(κ)

µ

∣∣∣∣ (A11)

Using Eq. A10 and Eq. A11, with suffix ‘Corr’ in v,

v̄Corr ≡
vCorr

vH.S.Corr
(A12)

= sgn(ζEy)

[
1

κ tanh(κ)

(
cosh(κη)

cosh(κ)
−1

)
+

(1 + σ0)

2

(
1−η2

)]
(A13)
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