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Abstract 

 

From the principle of least action the equation of motion for viscous compressible and charged fluid is derived. The 

viscosity effect is described by the 4-potential of the energy dissipation field, dissipation tensor and dissipation 

stress-energy tensor. In the weak field limit it is shown that the obtained equation is equivalent to the Navier-Stokes 

equation. The equation for the power of the kinetic energy loss is provided, the equation of motion is integrated, and 

the dependence of the velocity magnitude is determined. A complete set of equations is presented, which suffices to 

solve the problem of motion of viscous compressible and charged fluid in the gravitational and electromagnetic 

fields.  
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1. Introduction 

Since Navier-Stokes equations appeared in 1827 

(Navier, 1827), (Poisson, 1831), constant attempts have 

been made to derive these equations by various methods. 

Stokes (Stokes, 1849) and Saint-Venant (Saint-Venant, 

1843) in derivation of these equations relied on the fact that 

the deviatoric stress tensor of normal and tangential stress is 

linearly related to the three-dimensional deformation rate 

tensor and the fluid is isotropic. 

In book: (Khmelnik, 2010) it is considered that Navier-

Stokes equations are the extremum conditions of some 

functional, and a method of finding a solution of these 

equations is described, which consists in the gradient 

motion to the extremum of this functional. 

One of the variants of the four-dimensional stress-

energy tensor of viscous stresses in the special theory of 

relativity can be found in book: (Landau & Lifshitz, 1987). 

The divergence of this tensor gives the required viscous 

terms in the Navier-Stokes equation. The phenomenological 

derivation of this tensor is based on the assumed condition 

of entropy increment during energy dissipation. As a 

consequence, in the co-moving reference frame the time 

components of the tensor, i.e. the dissipation energy density 

and its flux vanish. Therefore, such a tensor is not a 

universal tensor and cannot serve, for example, as a basis 

for determining the metric in the presence of viscosity. 

 

In this article, our goal is to provide in general form the 

four-dimensional stress-energy tensor of energy dissipation, 

which describes in the curved spacetime the energy density 

and the stress and energy flux, arising due to viscous 

stresses. This tensor will be derived with the help of the 

principle of least action on the basis of a covariant 4-

potential of the dissipation field. Then we will apply these 

quantities in the equation of motion of the viscous 

compressible and charged fluid, and by selecting the scalar 

potential of the dissipation field we will obtain the Navier-

Stokes equation. The essential element of our calculations 

will be the use of the wave equation for the field potentials 

of the acceleration field. In conclusion, we will present a 

complete set of equations sufficient to describe the motion 

of viscous fluid. 

For simplicity, we will assume that the various fields 

existing simultaneously would not produce any induced 

effects (currents) due to coupling and interactions between 

the fields are absent. 

 

2. The action function 

The starting point of our calculations is the action 

function in the following form: 
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where L  is the Lagrange function or Lagrangian, 
R  is the scalar curvature, 
  is the cosmological constant, 

0J u   is the 4-vector of the mass (gravitational) 

current, 

0  is the mass density in the reference frame associated 

with the fluid unit, 
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c dx
u

ds


   is the 4-velocity of a point particle, c  is 

the speed of light, 

,D
c



 
  
 

D  is the 4-potential of the gravitational 

field, described by the scalar potential   and the vector 

potential D  of this field, 

G  is the gravitational constant, 

Φ  is the gravitational tensor, 

,A
c



 
  
 

A  is the 4-potential of the electromagnetic 

field, which is specified by the scalar potential   and the 

vector potential A  of this field, 

0qj u   is the 4-vector of the electromagnetic 

(charge) current, 

0q  is the charge density in the reference frame 

associated with the fluid unit, 

0  is the vacuum permittivity, 

F  is the electromagnetic tensor, 

u g u

   is the 4-velocity with the covariant index, 

expressed with the help of the metric tensor and the 4-

velocity with the contravariant index; the covariant 4-

velocity is the 4-potential of the acceleration field 

,u
c



 
  
 

U , where   and U  denote the scalar and 

vector potentials, respectively, 

u  is the acceleration tensor, 

 ,   and   are some functions of coordinates and 

time, 

0
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Π  is the 4-potential of the 

pressure field, consisting of the scalar potential  and the 

vector potential Π , 0p  is the pressure in the reference 

frame associated with the particle, the ratio 0

2

0

p

c
 defines 

the equation of state of the fluid, 

f  is the pressure field tensor. 

 

The above-mentioned quantities are described in detail 

in (Fedosin, 2014a). In addition to them, we introduce the 

4-potential of energy dissipation in the fluid: 

 

2
,

u

cc





 


 
   

 
Θ ,    (2) 

 

where   is the dissipation function,   and Θ  are the 

scalar and vector dissipation potentials, respectively.  

 

Using the 4-potential   we construct the energy 

dissipation tensor: 

 

h                 .  (3) 

 

The coefficients  ,   and   in order to simplify 

calculations we assume to be a constants. 

The term 
1

J
c



  in Eq. (1) reflects the fact that the 

energy of the fluid motion can be dissipated in the 

surrounding medium and turn into the internal fluid energy, 

while the system’s energy does not change. The last term in 
Eq. (1) is associated with the energy, accumulated by the 

system due to the action of the energy dissipation. 

The method of constructing the dissipation 4-potential 

  in Eq. (2) and the dissipation tensor h  in Eq. (3) is 

fully identical to that, which was used earlier in (Fedosin, 

2014a). Therefore, we will not provide here the 

intermediate results and will right away write the equations 

of motion of the fluid and field, obtained as a result of the 

variation of the action function in Eq. (1). 

 

3. Field equations 

The electromagnetic field equations have the standard 

form: 

 

0F F F          , 

 

0F j  

    ,    (4) 

 

where 
0 2

0

1

c



  is the vacuum permeability. 

 

The gravitational field equations are: 
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2

4 G
Φ J

c

  




  .    (5) 

 

The acceleration field equations are: 

 

0u u u          , 

 

2

4
u J

c
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The pressure field equations are: 

 

0f f f          , 

 

2

4
f J

c

  



 
   .    (7) 

 

The dissipation field equations are: 

 

0h h h          , 

 

2

4
h J

c
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In order to obtain the Eqs. (4)-(8), variation by the 

corresponding 4-potential is carried out in the action 

function in Eq. (1). 

All the above-mentioned fields have vector character. 

Each field can be described by two three-dimensional 

vectors, included into the corresponding field tensor. One of 

these vectors is the strength of the corresponding field, and 

the other solenoidal vector describes the field vorticity. For 

example, the components of the electric field strength E  

and the magnetic field induction B  are the components of 

the electromagnetic tensor F . The gravitational tensor 

Φ  consists of the components of the gravitational field 

strength Γ  and the torsion field Ω . 

As can be seen from Eqs. (4)-(8), the constants  ,   

and   have the same meaning as the constants  
0  and G  

– all these constants reflect the relationship between the 4-

current of dissipated fluid and the divergence of the 

corresponding field tensor. The properties of the dissipation 

field are provided in Appendix A.  

 

4. Field gauge 

In order to simplify the form of equations we use the 

following field gauge: 

 

0A A 

    , 0D D 

     , 

 

0u u 

     , 0 

      , 

 

0 

      .    (9) 

 

In Eq. (9) the gauge of each field is carried out by 

equating the covariant derivative of the corresponding 4-

potential to zero. Since the 4-potentials consist of the scalar 

and vector potentials, the gauge in Eq. (9) links the scalar 

and vector potential of each field. As a result, the 

divergence of the vector potential of any field in a certain 

volume is accompanied by change in time of the scalar field 

potential in this volume, and also depends on the tensor 

product of the Christoffel symbols and the 4-potential, that 

is, on the degree of spacetime curvature. 

 

5. Continuity equations 

In Eqs. (4)-(8) the divergences of field tensors are 

associated with their sources, i.e. with 4-currents. The field 

tensors are defined by their 4-potentials similarly to Eq. (3): 
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Φ D D D D             ,  (10) 

 

u u u u u             , 

 

f                . 

 

If we substitute Eqs. (3) and (10) into Eqs. (4)-(8), and 

apply the covariant derivative   to all terms, we obtain 

the following relations containing the Ricci tensor: 
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In the limit of special theory of relativity, the Ricci 

tensor vanishes, the covariant derivative turns into the 4-

gradient, and then instead of Eq. (11) we can write: 

 

0j  , 0J

  .   (12) 

 

Eqs. (12) are the ordinary continuity equation of the 

charge and mass 4-currents in the flat spacetime. 

 

6. Equations of motion 
The variation of the action function leads directly to the 

equations describing the motion of the fluid unit under the 

action of the fields: 

 

u J Φ J F j f J h J    

         . (13) 

 

The left side of the equality can be transformed, taking 

into account the expression 0J u   for the 4-vector of 

the mass current density and the definition in Eq. (10) for 

the acceleration tensor  u u u       : 
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Du d u
u J u u u u u u u a

D d

     

               
 

            .   (14) 

 

In Eq. (14) a  denotes the 4-acceleration, and we used 

the operator of proper-time-derivative 
D

u
D






  , where 

D  is the symbol of 4-differential in the curved spacetime, 

  is the proper time (Fedosin, 2009). If we substitute Eq. 

(14) into Eq. (13), we obtain the equation of motion, in 

which the 4-acceleration is expressed in terms of field 

tensors and 4-currents: 

 

0 a Φ J F j f J h J   

         .  (15) 

 

Variation of the action function allows us to find the 

form of stress-energy tensors of all the fields associated 

with the fluid: 
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One of the properties of these tensors is that their 

divergences alongside with the field tensors specify the 

densities of 4-forces, arising from the influence of the 

corresponding field on the fluid: 
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The left side of Eq. (17) contains the density of the 

corresponding 4-force, excluding ( )af , which up to sign 

denotes the density of the 4-force, acting from the 

accelerated fluid on the rest four fields. 

From Eqs. (13)-(17) it follows that the equation of 

motion can be written only in terms of the divergences of 

the stress-energy tensors of fields: 

 

( ) 0W U B P Q         

      .  (18) 

 

We have integrated equation Eq. (18) in (Fedosin, 

2014b) in the weak field limit (excluding the stress-energy 

tensor of dissipation Q  
), and this allowed us to explain 

the well-known 4/3 problem of the fields mass-energy 

inequality in the fixed and moving systems. The Eq. (18) 

will be used also in the Eq. (21) for the metric. 

 

7. The system’s energy 

The action function in Eq. (1) contains the Lagrangian 
L . Applying to it the Legendre transformations for a 

system of fluid units, we can find the system’s Hamiltonian. 

This Hamiltonian is the relativistic energy of the system, 

written in an arbitrary reference frame. Since the energy is 

dependent on the cosmological constant  , gauging of the 

cosmological constant should be done using the relation: 
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            . (19) 

 

As a result, we can write for the energy of the system 

the following: 
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The energy of the system in the form of a set of closely 

interacting particles and the related fields in the weak field 

limit was calculated in (Fedosin, 2014c). The difference 

between the system’s mass and the gravitational mass was 

shown, as well as the fact that the mass-energy of the 

proper electromagnetic field reduces the gravitational mass 

of the system. 

 

8. Equation for the metric 

According to the logic of the covariant theory of 

gravitation (Fedosin, 2012) and the metric theory of 

relativity (Fedosin, 2014d), contribution to the definition of 

the system’s metric is made by the stress-energy tensors of 

all the fields, including the gravitational field. The metric is 

a secondary function, the derivative of the fields acting in 

the system that define all the basic properties of the system. 

The equation for the metric is obtained as follows: 
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ck

                    .       (21) 

 

If we multiply Eq. (21) by the metric tensor g   and 

contract over all the indices, the right and left sides of the 

equation vanish. It follows from the properties of tensors in 

Eq. (21). Outside the fluid limits, with regard to the gauge, 

the scalar curvature R  becomes equal to zero. If we take 

into account the equation of motion in Eq. (18), the 

covariant derivative of the right side of Eq. (21) is zero. The 

covariant derivative of the left side of Eq. (21) is also zero, 

since 0R   as a consequence of the cosmological 

constant gauge, and for the Einstein tensor the following 

equality holds: 
1

0
2

R R g   



 
   

 
. 

 

9. The analysis of the equation of motion 

Eqs. (14)-(15) imply the connection between the 

covariant 4-acceleration of a fluid unit and the densities of 

acting forces in the curved spacetime: 
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       . 

 

We will write this four-dimensional equation separately 

for the time and space components, given that 

0 0 0 ( , )
dx dt dx dt

J c c c c
ds ds dt ds

 
      v ,  

as well as 0 0 ( , )q q

dx dt
j c c c

ds ds


    v .  

For the dissipation field we will use Eq. (A6) from 

Appendix A, where in the general case 
cdt

ds
 should be 

substituted instead of  . Expressions for other fields can be 

found in (Fedosin, 2014a). This gives: 
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Γ v Ω E v B C v I X v Y . 

 

Here Γ , E , C  and X  are the vectors of strengths of 

gravitational and electromagnetic fields, pressure field and 

dissipation field, respectively. Notations Ω , B , I  and Y  

refer to the torsion field, the magnetic field and the 

solenoidal vectors of the pressure and dissipation fields, 

respectively. 

After reduction by a factor 
0

dt

ds
  we obtain: 
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              Γ v Ω E v B C v I X v Y .     (23) 

 

In Eq. (23) the sum 
0 0

0 0

[ ]
q q 

 
 E v B  is the 

contribution of the electromagnetic Lorentz force, acting on 

the fluid unit, into the total acceleration. The minus sign 

before this sum appears because iu  is the space component 

of the covariant 4-velocity, which differs from the ordinary 

contravariant space component 
iu  in the form factor of the 

metric tensor. Similarly, the sum [ ] Γ v Ω  is the 

acceleration of the gravitational Lorentz force. 

Gravitational and electromagnetic forces are the so-called 

mass forces distributed over the entire volume, where there 

is mass and charge of the fluid. 

 

9.1 The equation of motion in Minkowski space 

In order to simplify our analysis, we will consider Eqs. 

(22) and (23) in the framework of the special theory of 

relativity. The sum of the last two terms in Eq. (23), taking 

into account the Eq. (A7) from Appendix A, for X  and Y  

gives the following: 
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In Eq. (24) 
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1
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 is the Lorentz factor. 

For the pressure field, with regard to the definition of 

the 4-potential in the form of 0
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Π , 

the pressure field tensor f  from Eq. (10) and the 

definition of the vectors C  and I  by the rule: 
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we find the expression for the vectors: 
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Using Eq. (25) we calculate the sum of two terms in 

Eq. (23): 
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Substituting Eqs. (24) and (26) into Eq. (23), and taking 

into account that in Minkowski space the Christoffel 

symbols are zero and the space component of the 4-velocity 

equals iu   v , we find: 
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In Eq. (27) we have introduced notation for the 

acceleration, resulting from the action of mass forces: 

 

0 0

0 0

[ ] [ ]
q q

m

 

 
     a Γ v Ω E v B . 

 

Until now we have not defined the dissipation function 

 . In this approximation, it is associated with a scalar 

potential   of the dissipation field by relation:   . 

Let us assume that 

2

00
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c

  


 

 
       

 
v v ,  (28) 

 

that is 
2

0 0

1 1
( )d d

c

 
  

 
    v r v r .  

 

It means that the scalar potential of the dissipation field 

is proportional both to the velocity v  of the considered 

fluid unit and the path traveled by it in the surrounding 

space. Contribution to   is also made by the gradient of the 

velocity divergence with a certain coefficient  . 

The coefficient   depends on the parameters of 

interacting fluid layers, in a first approximation it is 

inversely proportional to the square of the layers’ thickness. 

At the same time the coefficient   reflects the fluid 

properties and can be different in different fluids. Taking 

into account Eq. (28), Eq. ( 27) is transformed as follows: 
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Due to the presence in Eq. (29) of the gradient 0

0

p



 
 
 

 

of the pressure to the mass density ratio, there is 

acceleration directed against this gradient. The term in Eq. 

(29) which is proportional to the velocity v , defines the 

rate of deceleration due to viscosity. Since the deceleration 

in Eq. (29) depends not on the absolute velocity but on the 

velocity of motion of some fluid layers relative to the other 

layers, the velocity v  should be a relative velocity. We will 

use the freedom of choosing the reference frame in order to 

move from absolute velocities to relative velocities. 

Suppose the reference frame is co-moving and it moves in 

the fluid with the control volume of a small size. Then in 

such a reference frame the velocity v  in Eq. (29) will be a 

relative velocity: some layers will be ahead, while others 

will lag behind, and viscous forces will appear. 

We will now write the equations for the acceleration 

field from (Fedosin, 2014a): 
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N
S .   (30) 

 

The vector S  in Eq. (30) is the acceleration field 

strength, and the vector N  is the solenoidal vector of the 

acceleration field. The 4-potential of the acceleration field 

,u
c



 
  
 

U  equals the 4-velocity, taken with the 

covariant index. The acceleration tensor u  is defined in 

Eq. (10) as a 4-curl and it contains the vectors S  and N : 

 

0 0 0

1
i i i iu u u S

c
    , i j i j j i ku u u N     . 

 

In Minkowski space we can move from the scalar   

and vector U  potentials of the acceleration field to the 4-

velocity components and express vectors S  and N  in terms 

of them: 
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c
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S , 

 

    N U v .    (31) 

 

Let us substitute Eq. (31) into the second equation in 

Eq. (30): 
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The gauge condition of the 4-potential of the 

acceleration field in Eq. (9) has the form: 0u

  . In 

Minkowski space this relation is simplified: 

 

2

1
0u

tc






   


U ,    or       0

t





 


v . (33) 

 

With regard to Eq. (33) we will transform the left side 

of Eq. (32): 

 

   ( ) ( ) ( ) ( )
t

    


        


v v v v . 

 

Substituting this in Eq. (32), we obtain the wave equation: 
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According to Eq. (34) the velocity v  of the fluid motion in 

the system must conform to the wave equation, that means 

that the velocity is given by the system’s parameters and 

changes continuously in transition from one control volume 

to another. 

The wave equation for the Lorentz factor follows from 

Eq. (31) and the first equation in Eq. (30) with regard to Eq. 

(33): 
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We can express the velocity v  from Eq. (34) and 

substitute it in Eq. (29): 
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Let us find out the physical meaning of the last term in 

Eq. (35). The gauge condition in Eq. (33) of the 4-potential 

of the acceleration field can be rewritten as follows:
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2 4
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Hence, provided 1   we have: 

 

2
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2 4 2
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1
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v v v .    (36) 

The quantity 
21

2
v  is the gradient of half of the 

squared velocity, that is the gradient of the kinetic energy 

per unit mass. This quantity is proportional to the 

acceleration, arising due to the dissipation of the kinetic 

energy of motion. The time derivative of 
2v  leads to the 

rate of acceleration change. Other terms in Eq. (36) also 

have the dimension of the rate of acceleration change. 

Thus in Eq. (35) viscosity is taken into account not only 

due to the motion velocity, but also due to the rate of 

acceleration change of the fluid motion. 

 

9.2 Comparison with the Navier-Stokes equation 

The vector Navier-Stokes equation in its classical form 

is usually used for non-relativistic description of the liquid 

motion and has the following form (Landau & Lifshitz, 

1987): 
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1
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d
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v v
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where a  and v  are the velocity and acceleration of an 

arbitrary point unit of liquid, 
0  is the mass density, p  is 

the pressure,   is the kinematic viscosity coefficient,   is 

the volume (bulk or second) viscosity coefficient, ma  is the 

acceleration produced by mass forces in the liquid, and it is 

assumed that the coefficients   and   are constant in 

volume. 

 

In Eq. (37) the velocity v  depends not only on the time 

but also on the coordinates of the moving liquid unit. This 

allows us to expand the derivative 
d

dt

v
 into the sum of two 

partial derivatives: time derivative 
t





v
 and space derivative 

( )v v , that is to apply the material (substantial) 

derivative. 

Comparing Eqs. (35) and (37) for the case of low 

velocities, when   tends to unity, and at sufficiently low 

pressure and viscosity, we obtain the kinematic viscosity 

coefficient: 

 

2

04





 .     (38) 
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Since 
0





 , where   is the dynamic viscosity 

coefficient, then we obtain: 

 

04





 . 

 

In this ratio   depends primarily on the fluid 

properties, and the coefficients    and   also depend on 

the parameters of the system under consideration. For 

example, if we study the liquid flow between two closely 

located plates, the coefficient   is inversely proportional to 

the square of the distance between the plates. 

The equality of the last terms in Eqs. (35) and (37) 

implies: 

 

0 0 0 03 3

    

   
    ,         

3


   .  (39) 

 

The presence of   and   in Eq. (37) implies two 

causes of the rate of acceleration change: one of them is due 

to the fluid density variation because of the medium 

resistance and the other is due to the momentum variation 

of the fluid moving in a viscous medium. 

 

9.3 The energy power 

 

In Minkowski space the time component of the 4-

velocity is equal to 0u c , the Christoffel symbols are 

zero, and Eq. (22) can be written as follows: 

 
2

02

0

1 ( )
.

2

qd d
c

dt dt

 

 
        

v
Γ v E v C v X v  (40) 

 

We can also obtain Eq. (40), if in Minkowski space we 

multiply the equation of motion Eq. (23) by the velocity v . 

We substitute in Eq. (40) the vector C  from Eq. (25) and 

the vector X  according to Eq. (A7) from Appendix A: 

 

 
2

0 0 0

2 2

0 0 0

1 ( ) 1 ( )
( )

2

q p pd

dt t tc c

   


   

    
           

    

vv v
Γ v E v v v v v . 

 

The equivalent relation is obtained, if Eq. (29) is multiplied by the velocity v : 

 

20 0

2 2 2

0 00 0

1
1 ( )m

p pd

d t c c c

  


     

    
               

     
v v v a v v v v .     (41) 

 

The left side of Eq. (41) contains the rate of change of 

the kinetic energy per unit mass density (with contribution 

from the pressure and the dissipation function  ), and the 

right side contains the power of gravitational and 

electromagnetic forces mv a  and the power of the pressure 

force. The term with the squared velocity in the right side of 

Eq. (41) is proportional to the kinetic energy, and the last 

term describes the power of the energy transformed during 

the fluid motion in a viscous medium with the effect of 

fluid compression and change of its density. 

Another equivalent relation for the power of change in 

the energy of moving fluid is obtained by multiplying the 

velocity v  by Eq. (35). In this case, in the right-hand side 

of Eq. (41) the Laplacian and the second partial time 

derivative appear. If we substitute the coefficients   and 

  with Eqs. (38) and (39), we obtain the following: 

 

 
2

20 0

2 2 2 2 2

0 00

1 ( ) 1
1 ( ) ( ).

3
m

p pd
c

d t c c c t

   
  

    

        
                       

        

v
v v v a v v v v v  (42) 

 

9.4 Dependence of the velocity magnitude on the time 

In this section we will make a conclusion about the 

nature of the kinetic energy change over time. For 

convenience, we will consider the co-moving reference 

frame in which the velocities v  are relative velocities of 

motion of the fluid layers relative to each other. If we 

multiply all the terms in Eq. (27) by   and assume that the 

quantity 0

2 2

0

1 1
p

c c




   , that is we neglect the 

contribution of the pressure energy density and the 

dissipation function as compared to the energy density at 

rest, we can write: 

 

  0

0

m

d p

dt


  



 
   

 

v
a . 

 

Assuming that 
d

d
 

r
, the velocity 

d

dt


r
v , 

( ) ( )d d   v r v , after multiplication by dr  and 

integration, with regard to Eq. (28) for  , we obtain: 

 

 

   
2 2 0 0

2 1 2

0 0 0 02 1

1 1 1 1
( )

2 2
m

p p
d d d

c


   

   

    
           

     
  v v a r v r v .     (43) 
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According to Eq. (43), the kinetic energy changes, 

when the work is carried out by the mass forces on the 

fluid, the fluid turns into a state with a different ratio 0

0

p


, 

in the fluid there is friction between the layers, and the 

velocity divergence is non-zero. 

In Eq. (43) further simplification is possible, if we 

assume that in the process of integration the integrands 

change insignificantly and can be taken outside the integral 

sign. We will also use the continuity equation in the form: 

 

0

0

1
( )

d

dt
 

 
  v .    (44) 

 

All this with regard to Eqs. (38) and (39) gives: 

 

 

   
2 2 0 0

2 1 02 2

0 0 02 1

1 1 4 1
( )

2 2 3
m

p p d

dtc

  
     

   

      
              

      

v v a r v r .    (45) 

 

The left side of Eq. (45) contains the change of kinetic 

energy per unit mass, which occurs due to the velocity 

change from 1v  to 2v .The kinetic energy increases if in the 

right side the projection 
ma  of the mass forces’ acceleration 

on the displacement vector r  has a positive sign. 

Meanwhile the second, third and fourth terms in the right 

side have a negative sign. This means that the motion 

energy dissipation is proportional to the increase in pressure 

during the fluid motion, the velocity and the motion 

distance, as well as to the increase in the fluid density that 

prevents from free motion. 

The scalar product 
2v t v r , where t  denotes the 

time of motion of one layer relative to another, does not 

vanish during the curvilinear or rotational motion of the 

layers of fluid or liquid. Therefore in the moving fluid 

vortices and turbulence can easily occur. This is contributed 

by the fact that the terms in the right side of Eq. (45) can 

influence each other. For example, in the areas of high 

pressure the fluid streamlines bent, and the temperature 

changes the density in the last term in Eq. (45). Turbulence 

can be characterized as a method of transferring the energy 

of linear motion of the fluid into the rotary motion of 

different scales. 

Equation Eq. (45) can be rewritten so as to move all the 

terms, depending on the velocity, to the left side. Assuming 

cosm m mt a v t     a r a v , where   is the angle 

between the velocity and the acceleration  ma , we find a 

quadratic equation for the velocity as a function of the time 
t  and other parameters: 

 

 

2 2 2 0

02 2

0 0

1 4 1
cos ( ) const

2 3
m

p d
v v t a v t

dtc

  
     

  

 
        

 
. 

 

The constant in the right side specifies the initial 

condition of motion. The solution of this equation allows us 

to estimate the change of the velocity magnitude over time. 

 

10. Conclusion 

For the case of constant coefficients of viscosity we 

showed that the Navier-Stokes equation of motion of the 

viscous compressible liquid can be derived using the 4-

potential of the energy dissipation field, dissipation tensor 

and dissipation stress-energy tensor. First we wrote the 

equations of motion Eq. (15) in a general form, then 

expressed them in Eqs. (22) and (23) through the strengths 

of the gravitational and electromagnetic fields, the strengths 

of the pressure field and energy dissipation field. The 4-

potential of the dissipation field includes the dissipation 

function   and the associated scalar potential   of the 

dissipation field. The quantity   can be selected so that in 

the Eq. (27) for the fluid acceleration the dependence on the 

velocity of the fluid motion appears, associated with 

viscosity, when deceleration of the fluid is proportional to 

the relative velocity of its motion. We can also take into 

account the dependence on the rate of acceleration change 

over time. This gives us the Eq. (29). 

Then we analyzed the wave equation for the velocity 

field in Eq. (34) and expressed the velocity from to 

substitute it in Eq. (29). The resulting Eq. (35) coincides 

almost exactly with the Navier-Stokes Eq. (37). One 

difference is that in the acceleration from pressure the mass 

density 0  in the expression 0

0

p



 
 
 

 is under the gradient 

sign, and in Eq. (37) 0  is taken outside the gradient sign. 

The second difference is due to the fact that in Eq. (35) 

there is an additional term in the form 
2

2

( )

t





v
. This term is 

proportional to the rate of acceleration change over time 

and describes the phenomena, in which the change of the 

medium properties affecting viscosity occurs in a specified 

time frame. 

In addition, in Eq. (35) we took into account the 

relativistic corrections of the Lorentz factor  , as well as 

the fluid acceleration dependence on the acceleration of the 

mass-energy of the pressure field and dissipation field (in 

square brackets in the left side of Eq. ( 35) ). 

The directed kinetic energy of motion of the fluid in a 

viscous medium can dissipate into the random motion of 

the particles of the surrounding medium and be converted 

into heat. The inverse process is also possible, when heating 

of the medium leads to a change in the state of the fluid 

motion. In section 9.3. we introduced the differential 

equations of the change in the system’s kinetic energy and 

its conversion into other energy forms, including the 

dissipation field energy. These equations are not completely 

independent, since they are obtained by scalar 
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multiplication of the equation of motion by the fluid 

velocity v . 

The dissipation stress-energy tensor Q   is represented 

in Eq. (16) and its invariants are represented in Eq. (A8) in 

Appendix A. In section 9.1. the dissipation function is 

given by Eq. (28): 
2

0 0

1 1
( )d d

c


 

 
    v r v r . 

This function depends on the distance traveled by the fluid 

relative to the surrounding moving medium, and can be 

considered as a function of the time of motion with respect 

to the reference frame, which is at the average co-moving 

with the fluid in this small control volume of the system. 

With the help of the known quantity   we can calculate 

according the Eq. (A7) the vectors X  and Y  and therefore 

determine the components of the tensor Q  . In particular, 

the volume integral of the component 00Q  of this tensor 

allows us to consider all the energy that is transferred by the 

moving fluid to the surrounding medium, in the form of 

dissipation field energy, and the components 
0iQ  define 

the vector 
0icQZ  as the energy flux density of the 

dissipation field. 

Under the assumptions made the Navier-Stokes Eq. 

(37) reduces to Eq. (27), wherein the acceleration depends, 

besides the mass forces, on the sum of two gradients – the 

dissipation function   and the quantity 0

0

p


. Eq. (27) has 

such a form that this equation should have smooth 

solutions, if there are no discontinuities in the pressure or 

the dissipation function  . If we consider condition in Eq. 

(28) and Eq. (36) as valid, the gradient of   will also be a 

smooth function. 

Instead of moving from Eq. (27) to Eq. (35), which is 

similar to the Navier-Stokes Eq. (37), we can act in another 

way. Eq. (27) is an differential equation to determine the 

velocity field v . In this equation, there are at least three 

more unknown functions: the pressure field 0p , the mass 

density 0 , and the dissipation function  . Therefore, it is 

necessary to add to Eq. (27) at least three equations in order 

to close the system of equations and make it solvable in 

principle. One of such equations is the continuity Eq. (12) 

in the form of Eq. (44), which relates the density and 

velocity. In order to determine the dissipation function   

we have introduced the wave equation Eq. (A10) in 

Appendix A. The pressure distribution in the system can be 

found from the wave equation Eq. (B4) in Appendix B. 

In Eq. (27) there is also acceleration ma , arising due to 

the action of mass forces. This acceleration depends on the 

gravitational field strength Γ , torsion field Ω , electric 

field strength E , magnetic field B  and charge density 

0 :q  

 

0 0

0 0

[ ] [ ]
q q

m

 

 
     a Γ v Ω E v B . 

 

For each of these quantities there are special equations 

used to define them. For example, the gravitational field 

equations (the Heaviside equations) can be represented 

according to (Fedosin, 1999) as follows: 

 

04 G    Γ , 0

2 2

41 G

tc c

  
  



vΓ
Ω , 

0 Ω , 
t


  



Ω
Γ .   (46) 

 

Equations (46) are derived in (Fedosin, 2012) from the 

principle of least action and are similar in their form to 

Maxwell equations, which are used to calculate E  and B . 

Finally, the charge density 
0q  can be related to the 

velocity by means of the equation of the electric charge 

continuity: 

 

0

0

1
( )q

q

d

dt
 

 
  v .    (47) 

 

Thus, the set of Eqs. (27), (44), (A10), (B4), (46) and 

(47) together with Maxwell equations is a complete set, 

which is sufficient to solve the problem of motion of 

viscous compressible and charged fluid in the gravitational 

and electromagnetic fields. 

 

Nomenclature 
A  Vector potential of electromagnetic field, V·s·m– 1 

A  4-potential of electromagnetic field, V·s·m– 1 

a  Fluid acceleration, m·s– 2 

ma  Acceleration produced by mass forces, m·s– 2 

a  4-acceleration, m·s– 2 

B  Magnetic field, T 

B   Acceleration stress-energy tensor, J·m– 3 

C  Field strength of pressure field, m·s– 2 

D  Vector potential of gravitational field, m·s– 1 

D  4-potential of gravitational field, m·s– 1 

E  Field strength of electromagnetic field, V·m– 1 

E  Energy, J 

F  Electromagnetic tensor, T 

f  Pressure field tensor, s– 1 

f  Density of 4-force, N·m– 3 

g  Determinant of metric tensor 

g  Metric tensor 

h  Dissipation field tensor, s– 1 

I  Solenoidal vector of pressure field, s– 1 

J   Mass 4-currentl, kg·m– 2·s– 1 

j   Electromagnetic (charge) 4-current, C·m– 2·s– 1 

L  Lagrangian, J 

N  Solenoidal vector of acceleration field, s– 1 

P   Pressure stress-energy tensor, J·m– 3 

0p  Pressure, Pa 

Q 
 Dissipation stress-energy tensor, J·m– 3 

R  Scalar curvature, m– 2 

R  Ricci tensor, m– 2 

r  Displacement vector, m 

S  Field strength of acceleration field, m·s– 2 

S  Action function, J·s 

ds  Spacetime interval, m 
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t  Time, s 

U  Vector potential of acceleration field, m·s– 1 

U   Gravitational stress-energy tensor, J·m– 3 

u  4-velocity, m·s– 1 

u  4-potential of acceleration field, m·s– 1 

u  Acceleration field tensor, s– 1 

v  Fluid velocity, m·s– 1 

W   Electromagnetic stress-energy tensor, J·m– 3 

X  Field strength of dissipation field, m·s– 2 

dx  4-displacement, m 
1 2 3dx dx dx  Product of space coordinate differentials, 

  m3 
Y  Solenoidal vector of dissipation field, s– 1 
Z  Energy-momentum flux vector of dissipation field, 

 kg·s– 3 

  Dissipation function, m2·s– 2 

  Scalar potential of dissipation field, m2·s– 2 

Φ  Gravitational tensor, s– 1 

  Scalar potential of electromagnetic field, V 

Γ  Field strength of gravitational field, m·s– 2 


   Christoffel symbol, m– 1 

  Lorentz factor 

   Metric tensor of Minkowski space 

  Cosmological constant, m– 2 

  4-potential of dissipation field, m·s– 1 

Π  Vector potential of pressure field, m·s– 1 

  4-potential of pressure field, m·s– 1 

Θ  Vector potential of dissipation field, m·s– 1 

  Scalar potential of acceleration field, m2·s– 2 

 Scalar potential of pressure field, m2·s– 2 

0  Mass density, kg·m– 3 

0q  Charge density, C·m– 3 

d  Differential of 4-volume, m4 

  Proper time, s 

Ω  Gravitational torsion field, s– 1 

  Scalar potential of gravitational field, m2·s– 2 

 

Subscript 

a  Acceleration 

d  Dissipation 

e  Electromagnetic 

g  Gravitational 

p  Pressure 
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Appendix A. Properties of the dissipation field 

The components of the antisymmetric tensor of the 

dissipation field are obtained from Eq. (3) using the Eq. (2). 

We will introduce the following notations: 

 

0 0 0

1
i i i ih X

c
     , i j i j j i kh Y      , (A1) 

 

where the indices , ,i j k  form triplets of non-recurrent 

numbers of the form 1,2,3 or 3,1,2 or 2,3,1; the 3-vectors 
X  and Y  can be written by components:

1 2 3( , , ) ( , , )i x y zX X X X X X X  X ;   

1 2 3( , , ) ( , , )i x y zY Y Y Y Y Y Y  Y . 

 

Using these notations the tensor h  can be represented 

as follows: 

 

0

0

0

0

yx z

x

z y

y

z x

z

y x

XX X

c c c

X
Y Y

c
h

X
Y Y

c

X
Y Y

c



 
 
 
 
  
 
 
  
 
 
  
 

.   (A2) 
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The same tensor with contravariant indices equals: 

h g g h     

 . In Minkowski space the metric tensor 

does not depend on the coordinates, in which case for the 

dissipation tensor it follows: 

 

0

0

0

0

yx z

x

z y

y

z x

z

y x

XX X

c c c

X
Y Y

c
h h

X
Y Y

c

X
Y Y

c

     

 

 
   

 
 

 
  
 

 
 
 

 
 

. (A3) 

 

We can express the dissipation field equations Eq. (8) in 

Minkowski space in terms of the vectors X  and Y  using 

the 4-vector of mass current:  0 0 ,J u c      v , 

where 
2 2

1

1 v c
 


. Replacing in Eq. (8) the covariant 

derivatives   with the partial derivatives   we find: 

 

04   X ,     0

2 2

41

tc c

 
  



vX
Y , 

 

0 Y ,          
t


  



Y
X .   (A4) 

If we multiply scalarly the second equation in Eq. (A4) 

by X  and the fourth equation — by Y and then sum up 

the results, we will obtain the following: 

 
2 2 2

0

2 2

41 ( )
[ ]

2

X c Y

tc c

   
   



v X
X Y . (A5) 

 

Eq. (A5) comprises the Poynting theorem applied to the 

dissipation field. The meaning of this differential equation 

that if dissipation of the energy of moving fluid particles 

takes place in the system, then the divergence of the field 

dissipation flux is associated with the change of the 

dissipation field energy over time and the power of the 

dissipation energy density. Eq. (A5) in a covariant form is 

written as the time component of Eq. (17): 

 
0 0Q h J 

    . 

 

If we substitute Eq. (A2) into Eq. (17), we can express 

the scalar and vector components of the 4-force density of 

the dissipation field: 

 

0

0 0( )df h J
c





 
  X v , 

 

 0( ) [ ]i d if h J

      X v Y .  (A6) 

 

The vector X  has the dimension of an ordinary 3-

acceleration, and the dimension of the vector Y  is the same 

as that of the frequency. 

Substituting the 4-potential of the dissipation field in 

Eq. (2) in the definition in Eq. (A1), in Minkowski space 

we find: 

 

2

1 ( )
( )

t tc


 

 
     

 

Θ v
X , 

 

 
2

1

c
  Y Θ v .    (A7) 

 

The vector X  is the dissipation field strength, and the 

vector Y  is the solenoidal vector of the dissipation field. 

Both vectors depend on the dissipation function  , which 

in turn depends on the coordinates and time. In real fluids 

there is always internal friction, 0  , and the vectors X  

and Y  are also not equal to zero. 

We can substitute the tensors in Eqs. (A2) and (A3) in 

Eq. (16) and express the stress-energy tensor of the 

dissipation field Q   in terms of the vectors X  and Y . 

We will write here the expression for the tensor invariant 

h h

  and for the time components of the tensor Q  : 

 

2 2 2

2

2
( )h h X c Y

c



    ,   (A8) 

 

00 2 2 21
( )

8
Q X c Y

 
  , 

0 [ ]
4

i c
Q

 
 X Y . 

 

The component 00Q  defines the energy density of the 

dissipation field in the given volume, and the vector 
2

0 [ ]
4

i c
cQ

 
  Z X Y  defines the energy flux density 

of the dissipation field. 

If we substitute X  from Eq. (A7) into the first equation 

in Eq. (A4), and take into account the gauge of the 4-

potential in Eq. (9) as follows: 

 

2

1
0

tc









   


Θ ,    or 

 

( )
( ) 0

t





 


v ,    (A9) 

 

we will obtain the wave equation for the scalar 

potential: 

 
2

02 2

1
4

c t


    


 


,     or 

 
2

02 2

1 ( )
( ) 4

c t


    


 


.   (A10) 

 

From Eqs. (A7), (A9) and the second equation in Eq. 

(A4) the wave equation follows for the vector potential of 

the dissipation field: 
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2

0

2 2 2

41

c t c

 
 



vΘ
Θ ,     or 

 
2

02 2

1 ( )
( ) 4

c t


  


 



v
v v . 

 

Appendix B. Pressure field equations 

Four vector equations for the pressure field components 

within the special theory of relativity were presented in 

((Fedosin, 2014a)) as the consequence of the action 

function variation: 

 

04   C ,  0

2 2

41

tc c

  
  



vC
I , 

 

0 I , 
t


  



I
C .   (B1) 

 

The vector of the pressure field strength C  and the 

solenoidal vector I  are determined with the 4-potential of 

the pressure field 0

2

0

,
p

u
cc

 


 
   

 
Π  according to 

the formulas: 

 

0 0

2

0 0

p p

t t c

 

 

   
       

    

vΠ
C ,  (B2) 

 

0

2
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p

c





 
    

 

v
I Π . 

 

The 4-potential gauge according to Eq. (9) in the form 

0

   in Minkowski space is transformed into the 

expression 0

  . Substituting here the expression for 

the 4-potential of the pressure field, we obtain: 
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1
0

tc






   


Π ,    or 

 

0 0

0 0

0
p p

t

 

 

   
    

    

v
.   (B3) 

 

Substituting Eq. (B2) into the first equation in Eq. (B1) 

and using Eq. (B3), we obtain the wave equation for 

calculation of the scalar potential of the pressure field: 
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1
4

c t
  





,     or 
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1
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.  (B4) 

 

The wave equation for the vector potential of the 

pressure field follows from Eqs. (B2), (B3) and the second 

equation in Eq. (B1): 
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