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Abstract

In recent papers a microscopic model for the SM Higgs mechanism has been pro-

posed, and an idea how to determine the 24 quark and lepton masses of all 3 gen-

erations has emerged in that framework. This idea is worked out in detail here by

accommodating the fermion masses and mixings to microscopic parameters. The

top quark mass turns out to be mt ≈ 170GeV and can be given in terms of the

weak boson masses and of certain exchange couplings of isospin vectors obeying a

tetrahedral symmetry. The observed hierarchy in the family spectrum is attributed

to a natural hierarchy in the microscopic couplings. The neutrinos will be shown to

vibrate within the potential valleys of the system, thus retaining very tiny masses.

This is related to a Goldstone effect inside the internal dynamics. A discussion of

the quark and lepton mixing matrices is also included. The mixing angles of the

PMNS matrix are calculated for an example set of parameters, and a value for the

CP violating phase is given.
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1 Introduction

The Standard Model of elementary particles (SM) is very successful on the phe-

nomenological level. The outcome of (almost) any particle physics experiment can

be predicted accurately within this model, and, where not, by some straightforward

extension. For example, one may introduce right handed neutrinos to account for

tiny neutrino masses[1].

Nevertheless, it is widely believed that the SM is only an effective low-energy theory

valid below a certain energy scale Λr, which is supposed to be of the order of 1-10

TeV. This view is based on the fact that the SM has many unknown parameters

and one rather mysterious component, the so-called Higgs field, which is needed for

the spontaneous symmetry breaking (SSB) taking place in the model. Within the

Higgs sector the most challenging part is the set of Yukawa couplings to fermions,

which comprises the majority of the unknown parameters of the SM Lagrangian.

In recent papers a microscopic model of the Higgs mechanism has been developed[2,

3, 4], and also an idea how the quark and lepton states arise in that model. This

concept will be used in the present article in an attempt to determine the fermion

masses and mixings.

At first sight, the spectrum of quarks and leptons seems difficult to explain, because

it extends over many orders of magnitude, starting from the neutrinos with their

tiny masses below 1 eV, passing over to the ’everyday life’ particles e, u and d with

masses of order 106 eV, proceeding to muon and strange-quark (about 108eV), as-

cending to charm, τ and bottom, which have masses of order 109eV, and finishing

with the top quark, whose mass of 1.7×1011eV lies suspiciously close to the SSB

scale ΛF , the value of the Higgs mass and to twice the W-mass. For the neutri-

nos it is reasonable to believe that their mass might be some kind of higher order

effect[5], is protected by symmetry or generated by a variant of the popular seesaw

mechanism[6]. Other approaches to explain the hierarchy in the particle masses

consider textures[7] like ’democratic’ mass matrices[8] with identical entries. These

show the desirable feature that after diagonalization there is one very heavy particle

(the top quark), and the rest have small masses.

Unfortunately, a physical understanding of the underlying dynamics responsible
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for these effects is still lacking. For example, in (supersymmetric) grand unified

theories fermion masses essentially remain free parameters. Furthermore, those

models usually introduce many more additional degrees of freedom without much

ambition to determine them from first principles. The point is that theories of that

kind only extrapolate and extend the symmetries observed at low energies to small

distances and that there is a strong amount of arbitrariness in this procedure. In

my opinion it is obvious that a physical understanding of the masses and mixings

is only possible in a microscopic theory. Superstring theories seem to offer such an

understanding. However, although ’in principle’ able to determine the masses as

energies of string excitations, to my knowledge they have not come up with definite

and verifiable predictions.

The present paper is devoted to partially fill this gap. Some of the above mentioned

’textures’ will reappear in the sections below. For example, neutrinos are indeed pro-

tected by the symmetries of new interactions. Furthermore, a kind of democratic

texture will be derived which makes the top quark the heaviest fermion. More pre-

cisely, it arises from a symmetry breaking contribution modified by a Dzyaloshinskii-

Moriya component[10] in such a way that all entries of the mass matrix effectively

get identical contributions. The appearance of this modification turns out to be a

reflection of the SU(2)L gauge symmetry (breaking) on the microscopic level.

A related question is how the mixing between the generations can be understood.

Most of the mixing angles are now known with a reasonable accuracy[9, 1]. In

particular, there is a hierarchy in the mixing matrix for the quark sector, but not in

the lepton sector. Approaching the mixing problem in the present model I will be

able to give some preliminary results mainly for the neutrinos and also set up the

environment to derive the CKM mixing angles.
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2 Quarks and Leptons as Isospin Excitations of a

Tetrahedral Shubnikov Group

The Higgs doublet of the Standard Model can be parametrized as

Φ =
1√
2

(

i(πx − iπy)
σ − iπz

)

(1)

where σ = ΛF + φ acquires a vacuum expectation value 〈σ〉 = ΛF =
√

µ2

λ
through

the form of the potential

V (Φ) = −µ2Φ+Φ+ λ(Φ+Φ)2 = −1
2
µ2(σ2 + ~π2) +

1

4
λ(σ2 + ~π2)2

=
1

4
λ[−Λ4

F + 4ΛFφ~π
2 + 4Λ2

Fφ
2 + 4ΛFφ

3 + φ4 + ~π4 + 2φ2~π2] (2)

and ~π = (πx, πy, πz) gets ’eaten’ by the longitudinal modes of the afterwards massive

W-bosons. This can be made explicit by a SU(2) gauge transformation of the

form[11]

U = exp(
i~τ~π

2ΛF

) (3)

which formally removes ~π from the Higgs doublet.

The present calculation uses a Nambu-Jona-Lasinio (NJL) type of interpretation

of the SSB mechanism. The starting point is an isospin pair ψ = (U,D) of Dirac

fermions distantly similar as in technicolor models[12, 13, 14, 15], however without a

technicolor quantum number. Rather we shall assume that the pairing mechanism is

due to exchange interactions and strong correlations between fermions, effects which

in many body physics are known to be responsible for SSB in superconductors and

(anti)-ferromagnets. In contrast to solid state physics we do not consider these

effects in physical space, but attribute them to arise from an independent dynamics

which is active in the internal spaces. It is this dynamics which will allow us to put

hand on the values of the fermion masses.

The main idea is that (weak) isospin arises from a nonrelativistic internal R3 space

much like ordinary spin arises from physical space. In other words, the internal space

is assumed to possess a rotational SO(3)-symmetry for which the doublet ψ = (U,D)
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Figure 1: The local ground state of the model, living in a 3-dimensional internal

R3 space. Shown are the corner points (small circles) of the internal tetrahedron,

which can be represented by their coordinate vectors ~ri. The origin of coordinates

is taken to be the center of the tetrahedron, and is identical to the base point of the

fiber in Minkowski space. On each corner point i = 1, 2, 3, 4 there is an axial spin

vector ~πi, pointing in the same radial direction as ~ri.

serves as an (internal) Pauli spinor with an initial internal SU(2) spin symmetry.

These internal spins are assumed to undergo interactions in the internal space which

can be described by internal Heisenberg spin interactions which are formally similar

to those describing spin interactions in solids.

The geometrical picture is that the world is a fiber bundle over Minkowski space with

fibers given by the R3 spaces, and that within these fibers physical processes take

place, which can be described by a higher dimensional quantum electrodynamics.

This idea was worked out in ref. [2] and the interested reader is referred to that

paper for more details. It is further assumed that at high temperatures there is a

symmetric phase in which the internal spins are distributed randomly in the fibers,

giving rise to a local internal SU(2) symmetry of the Lagrangian, local in the sense

that on each site in each fiber the spins may be rotated independently.

When the temperature of the universe decreases from big bang energies to TeV

values the internal magnetic interactions within the fiber lead to the frustrated[21]

tetrahedral structure shown in fig. 1, and when it falls below the Fermi scale all the
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tetrahedrons over Minkowski space align as in fig. 2, a process which in ref.[2] was

claimed to be the microscopic origin of the Higgs mechanism. A pairing process for

the formation of the Higgs particle has also been described in that paper.

The configuration fig. 1 is the starting point of the present calculation, because it

is considered as the local ground state of the system. In other words, it is assumed

that in each of the 3-dimensional internal R3 fibers there is a discrete tetrahedral

structure and that the internal dynamics is such that spin vectors arrange themselves

according to this internal tetrahedral configuration. The tetrahedron itself has the

tetrahedral group S4 as point group symmetry. However, due to the pseudovector

property of the internal spin vectors the whole system loses its reflection symmetries

and obtains instead the Shubnikov symmetry groupA4+S(S4−A4)[27, 16, 28], where

S is the internal time reversal operation and A4 is the subgroup of S4 which does not

contain reflections. Note that S itself does not belong to the Shubnikov group, and

also the internal reflections do not. The Shubnikov group is chiral, the configuration

with opposite chirality being given when the 4 spin vectors would point inwards

instead of outwards. Before the formation of the chiral tetrahedron the internal

spins U and D, which according to eq. (6) are the building blocks of the spin vectors

~πi, can freely rotate and thus there is an internal spin SU(2) symmetry group, which

however is broken to A4 + S(S4 −A4) when the chiral tetrahedron is formed.

With respect to (external) Lorentz symmetry both U and D can appear as lefthanded

or righthanded objects, so that one may in fact consider separately a SU(2)L for

the lefthanded and SU(2)R for the righthanded objects. Before the advent of the

gauge bosons the Higgs sector of the SM is symmetric under SU(2)L×SU(2)R, and
a Nambu-Jona-Lasinio (NJL) model with this symmetry may we formulated.

The NJL philosophy operates as follows: the SSB is induced by formation of bound

states and condensates of the fermion doublet ψ = (U,D). Namely, the quadratic

part

V2(Φ) = −µ2Φ+Φ = −1
2
µ2(σ2 + ~π2) (4)

of the potential eq. (2) is equivalent to a NJL interaction of the form

VNJL = GNJL[(ψ̄ψ)
2 + (ψ̄iγ5~τψ)

2] (5)

where GNJL denotes the NJL coupling strength, which in the SSB regime, where
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Figure 2: The global ground state of the model after SSB consists of an aligned

system of chiral tetrahedrons over Minkowski space (the latter represented by the

long arrow). R is the magnitude of one tetrahedron and r the distance between two of

them. Note that contrary to what is drawn here, the tetrahedra extend into internal

space alone, not into Minkowski space. Before the SSB the chiral tetrahedrons are

oriented randomly (not shown) and there is a corresponding local SO(3) symmetry,

because each rigid tetrahedron can be rotated freely and independently from the

others.

V2(Φ) < 0, must be negative as well. (Note that ψ̄iγ5~τψ is always real.) In fact using

the method of auxiliary fields one can show V2(Φ) = VNJL provided one chooses

σ = −2GNJLψ̄ψ

~π = −2GNJLψ̄iγ5~τψ (6)

and thus obtain a sigma model from the original NJL potential (5).

For later use I will rewrite eq. (5) as

VNJL = −JF [(
ψ̄ψ

µ3
)2 + (

ψ̄iγ5~τψ

µ3
)2] (7)

so that in brackets there are dimensionless quantities and JF = −GNJLµ
6 has the

dimension 4 of an energy density.

This equation has been interpreted in ref. [2] to describe the dynamics of interacting

chiral internal spin vectors ~π, normalized to the SSB scale µ. Here ’chiral’ refers

both to internal and physical space, because γ5 is a building block for chiral objects

in physical space, while the appearance of (internal) Pauli matrices ~τ signals chiral
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objects in (internal) space. Moreover, in the framework of the internal Heisenberg

spin theory JF is to be interpreted as the internal exchange energy density corre-

sponding to certain exchange integrals over internal R3 space to be described later.

In the SSB regime one has JF > 0 (because of GNJL < 0) corresponding to a

ferromagnetic interaction. This interaction accounts for neighbouring tetrahedrons

aligning themselves over Minkowski space as shown in fig. 2.

There is a slight complication on these considerations, because at SSB energies after

redefinition of σ = ΛF + φ, the ~π-~π interaction eq. (4) seems to disappear, because

the sum of terms ∼ ~π2 vanishes in the potential V (H) as made explicit by the last

of eqs. (2). However, when the ~π triplet is absorbed as the longitudinal mode of

the ~W -boson the internal Heisenberg spin interaction reappears as part of the mass

term m2
WWµW

µ. The alignment of tetrahedrons in fig. 2 will then experience a

modification which is dictated by the gauge symmetry of the fiber bundle formed

by all tetrahedrons. As a consequence the ferromagnetic Heisenberg interaction has

to be modified by a Dzyaloshinskii-Moriya component[10, 25, 26] in this regime.

Details will be given in the next section.

Next I want to extent the view to small distances and high energies. At high

energies, there is no SSB and instead of the negative potential term V2 one has a

strictly positive potential, which still can be described by eq. (5), however with a

positive coupling GNJL. Rewriting that equation as

VNJL = −JA[(
ψ̄ψ

Λ3
r

)2 + (
ψ̄iγ5~τψ

Λ3
r

)2] (8)

one should not take the SSB scale µ as normalization scale any more. Instead another

reference scale Λr ≫ µ has to be introduced which physically corresponds to the

distance between two tetrahedrons (alternatively one could utilize the extension

of one of them). One thus obtains an antiferromagnetic internal spin interaction

with a negative exchange coupling JA. This repulsion effect leads to the frustrated

antiferromagnetic vacuum structure shown in fig. 1. JF and JA differ because they

correspond to exchange integrals over different regions of space. JA is dominated by

an integral over the volume of one internal tetrahedron (leading to the frustrated

internal antiferromagnetic configuration), while JF is the exchange integral for spin

vectors of different tetrahedrons (leading to the aligment of different tehtrahedrons

over Minkowski space).
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The situation is reminiscent to the theory of ordinary magnets, where the exchange

coupling integral J is known to vary with the distance. At large lattice spacings and

corresponding large distances between spin vectors ( much larger than the extension

of the electron wave function) one has J > 0 and a ferromagnetic behavior. On

the other hand, antiferromagnets like Cr and Mn are characterized by small lattice

spacings and corresponding small distances between spin vectors, typically not much

larger than the extension of the electron wave function. In these cases J < 0, i.e.

antiferromagnetic behavior.

According to fig. 1 there is one chiral internal spin vector ~πi for each of the 4

constituents of the internal tetrahedron. In the ground state these vectors point

radially away from the origin. Their sum

〈~π〉 =
4
∑

i=1

〈~πi〉 (9)

vanishes corresponding to a vanishing vev 〈~π〉 = 0 in accordance with the SM vacuum

structure of the Higgs doublet (1). Excited states arise as vibrations of the vectors

~πi in fig. 1 and will be interpreted as quarks and leptons. They can be classified

according to the system’s symmetry group, the Shubnikov group A4 + S(S4 − A4).

This group, which remains unbroken at low energies, has only 1- and 3- dimensional

representations, i.e. singlets (interpreted as leptons) and triplets (interpreted as the

3 colors of quarks).

When studying the dynamics of the internal spin vectors to derive the spectrum of

the excited states one notes that ~π ∼ ψ̄iγ5~τψ is not a quantity simple to handle,

because it does not fulfill the canonical commutation relations for spin vectors.

Secondly, it turns out that the internal Hamiltonian (related to the internal time

variable) cannot be written in terms of ~π. The appropriate internal vector to use

is ψ†γ5~τψ, a well known charge observable from current algebra[20]. However, due

to the factor of γ5 these vectors still do not fulfill the usual angular momentum

commutation relations because their commutator is a scalar, and not a pseudo-

scalar any more. In order that the algebra of internal spin vectors closes one is
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forced to consider the following linear combinations of internal spin vectors

~S =
1

Λ3
ψ†(1 + γ5)~τψ

~T =
1

Λ3
ψ†(1− γ5)~τψ (10)

which fulfill the canonical commutation relations of a system of two decoupled an-

gular momentum operators[20] in the sense that

[Sa, Sb] = iǫabcSc [Ta, Tb] = iǫabcTc [Sa, Tb] = 0 (11)

The point to note here is the impact of the chiral symmetry group SU(2)R×SU(2)L,
because ~S and ~T can be considered as generators of its SU(2)R and SU(2)L factors,

respectively. In current algebra they correspond to the conserved charges of the

SU(2)R × SU(2)L symmetry, the factor Λ−3 arising from the spatial integral of the

time component of the left and right handed currents.

On the other hand, within the internal dynamics advocated in this paper ~S and ~T

play the role of angular momentum observables corresponding to rotations of the

internal R3 space. The fact that they are dimensionless according to eqs. (10) agrees

with this interpretation, because an angular momentum ~r×~p is always dimensionless.

Physically, the scale Λ can be identified as Λ = µ in the SSB regime and Λr at high

energies.

Using eq. (10) one is effectively including further dynamical vibrators ∼ ψ†~τψ in

addition to the axial vectors ~π. This kindly solves another problem not discussed

so far, namely the 4×3 d.o.f. of the internal spin vectors in fig. 1 yield only 12

excitation states instead of the necessary 24 quarks and leptons. In order to obtain

the remaining 12 (which turn out to be their isospin partners), in ref. [2] it was

proposed that internal displacive vibrations should be included in addition to spin

wave excitations. In the present context the doubling of the number of excitations

is obtained without displacive vibrations by going to the closed algebra eq. (21) of

the 8 internal spin vectors ~Si and ~Ti, i=1-4, whose vacuum values are depicted in

fig. 3.

In that figure the vectors 〈~Si〉 are shown pointing outwards and 〈~Ti〉 pointing inwards
fulfilling

〈~Si〉 = −〈~Ti〉 (12)
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If ~Si and ~Ti were identical observables, the configuration would possess an internal

time reversal symmetry (with symmetry group the ’grey’ group S4×{1, S}), because
the time reversal invariance broken by the set of vectors pointing outwards would be

restored by those pointing inwards. However, since ~S and ~T are physically different,

the ground state has still the original Shubnikov group A4+S(S4−A4) as symmetry.

Eq. (12) implies that the ground state gets contributions only from the γ5 terms in

eq. (10) and 〈ψ†~τψ〉i vanishes in the vacuum for each of the constituents i = 1, 2, 3, 4.

In principle the opposite situation is conceivable as well, namely that 〈ψ†~τψ〉i 6= 0

while 〈ψ†γ5~τψ〉i vanishes. In that case one would have

〈~Si〉 = +〈~Ti〉 (13)

a perfectly reasonable configuration, which maintains the Shubnikov symmetry for

the system of 8 spin vectors as long as all internal vectors point e.g. outwards,

in radial directions. In the numerical analysis presented in the following sections

the configuration (13) will actually be preferred because technically it is easier to

handle. In other words, eq. (13) will be used as equilibrium conditions for the

concrete calculations of masses and eigenstates carried out in the next section, cf.

eq. (25).

The 24 eigenmodes of the system can be arranged in six 1-dimensional and six 3-

dimensional representations of the Shubnikov group A4 + S(S4 − A4)[27, 28, 16] to

yield precisely the multiplet structure of the 24 quark and lepton states of the 3

generations, not less and not more.

A↑(νe) + A↑(νµ) + A↑(ντ ) + T↑(d) + T↑(s) + T↑(b) +

A↓(e) + A↓(µ) + A↓(τ) + T↓(u) + T↓(c) + T↓(t) (14)

Here A↑,↓ and T↑,↓ denote singlet and triplet representations of the Shubnikov group.

As shown later, the ↑ excitations can be obtained from the ↓ excitations by inter-

changing the roles of ~S and ~T . Since interchanging ~S and ~T can be seen to correspond

to internal time reversal within the ↑ and ↓ states, this is precisely the behavior one

expects from weak isospin partners after the SSB.

In the framework of the chiral NJL dynamics the introduction of the second spin

vector corresponds to introducing an additional term including ψ̄~τψ into the po-

tential. Actually it means to consider the most general SU(2)L × SU(2)R invariant
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Figure 3: The local ground state of the generalized NJL-model eqs.(15) and (12).

The total of 8 internal spin vectors accounts for 3×8 d.o.f. corresponding to 24

spin vibrations which can be classified according to the multiplet structure of the

Shubnikov group, eq.(14). The vectors ~S0
i are assumed to point outwards and ~T 0

i =

−~S0
i inwards. According to eq. (10) this corresponds to 〈ψ†γ5~τψ〉i 6= 0. The

alternative vacuum configuration (13) where 〈ψ†~τψ〉i 6= 0 and the ~T 0
i are parallel to

the ~S0
i instead of anti-parallel is not drawn.

potential based on a fundamental isospin doublet ψ = (U,D), the general 2-flavor

NJL model[18]

V2NJL = V+ + V−

V+ = −J+[(
ψ̄ψ

Λ3
)2 + (

ψ̄~τψ

Λ3
)2 + (

ψ̄iγ5ψ

Λ3
)2 + (

ψ̄iγ5~τψ

Λ3
)2]

V− = −J−[(
ψ̄ψ

Λ3
)2 − (

ψ̄~τψ

Λ3
)2 − (

ψ̄iγ5ψ

Λ3
)2 + (

ψ̄iγ5~τψ

Λ3
)2] (15)

V+ and V− are separately chiral SU(2)L×SU(2)R invariant and in addition possess

a U(1)V fermion number symmetry. Furthermore, V+ is invariant under axial U(1)A

transformations, while V− explicitly breaks this symmetry and can only be used if

an axial anomaly is present (see below). The same scale Λ (= µ oder Λr) as in eq.

(10) has been introduced to make the fermion operators dimensionless. As before,

the NJL couplings can be written in terms of exchange energy densities J±, and one

needs J± > 0(< 0) to obtain internal (anti)ferromagnetic behavior.

12



Rewriting V2NJL as

V2NJL = −(J+ + J−)[(
ψ̄ψ

Λ3
)2 + (

ψ̄iγ5~τψ

Λ3
)2]− (J+ − J−)[(

ψ̄iγ5ψ

Λ3
)2 + (

ψ̄~τψ

Λ3
)2](16)

and using the method of auxiliary fields one can transform the theory in the SSB

region into a sigma-model, similar to eq. (6), by identifying

σ = −2(G+ +G−)ψ̄ψ

~π = −2(G+ +G−)ψ̄iγ5~τψ

η = −2(G+ −G−)ψ̄iγ5ψ

~v = −2(G+ −G−)ψ̄~τψ (17)

i.e. a scalar iso-scalar field (the physical Higgs σ = ΛF+φ), a pseudo-scalar iso-vector

(the would be Goldstone bosons ~π absorbed by the weak bosons), a pseudo-scalar

iso-scalar η and a scalar iso-vector triplet ~v consisting of 2 charged fields v± and a

neutral vz.

This field content seems to indicate a second scalar doublet formed by η and ~v.

However, in order to avoid a chiral (γ5) vacuum structure of physical space, the

η-field should not acquire a vacuum expectation value or, in other words, the second

doublet should not be part of the SSB-process, with negative mass terms, a non-

trivial minimum of the potential etc.

Although technically possible, one should not put the octet of fields eq. (17) in the

adjoint representation

Σ =
1√
2

(

1√
2
(σ + vz) v+

v− 1√
2
(σ − vz)

)

+
i√
2

(

1√
2
(η + πz) π+

π− 1√
2
(η − πz)

)

(18)

of a model with a larger U(2)R×U(2)L symmetry[22]. The point is that the universal

mass term tr(Σ†Σ) of such a model would imply J− = 0 in eq. (16). If any, this

would be useful only as long as there are no axial anomalies in the theory which

break the U(1)A subgroup of U(2)R × U(2)L.

As explained in ref [2] the underlying theory of the present model exhibits such an

anomaly. In general this anomaly not only allows a non-vanishing value for J− but

also makes the mass of the η and ~v much larger than that of the weak gauge bosons

and of the Higgs field[22]. Those bound states may appear as heavy resonances in
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the TeV regime. They could be interesting dark matter candidates[23, 24] and play a

role at higher energies or higher temperatures of the universe. Their phenomenology,

however, will not be discussed at this point, their d.o.f.s just being used as part of

the components of the internal spin vectors whose vibrations give the quark and

lepton mass spectrum.

3 Masses and Mixings from Isospin Wave Equa-

tions

The model set up in the last section will now be applied to calculate the quark and

lepton masses. The idea is that masses can be identified with eigenfrequencies of

excitations of the isospin vectors ~S and ~T eqs. (10) and that these eigenfrequencies

get contributions both from inner- and from inter-tetrahedral interactions. The

inner-tetrahedral interactions are antiferromagnetic in nature and responsible for the

frustrated tetrahedral configuration figs. 1 and 3, i.e. for the structure of the local

vacuum. They are small distance contributions and relatively simple to treat because

they can be described by an internal antiferromagnetic Heisenberg Hamiltonian for

one tetrahedron alone, with corresponding internal spin vector excitations.

On the other hand there are inter-tetrahedral interactions fed by the ’ferromagnetic’

SSB interactions between different tetrahedrons. Their leading effect turns out to be

a contribution of order O(ΛF ) solely to the top quark mass. Physically speaking, this

interaction handicaps the specific eigenmode describing the top quark, because this

mode disturbs the SSB alignment in the strongest possible way. Mathematically, the

effect will be described by adding an effective universal term to the inner-tetrahedral

Heisenberg interaction with a normal ferromagnetic plus a Dzyaloshinskii-Moriya

component[10]. The sum of the 2 components will yield a quasi-democratic mass

matrix which in leading order only contributes a term of order ΛF to the top-quark

mass and nothing to the masses of the other quarks and leptons.

Let me start with the high energy / small distance contributions. The antiferromag-

netic inner-tetrahedral Heisenberg Hamiltonian density for the spin vectors ~S and
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~T reads

VH = −JSS
4
∑

i,j=1

~Si
~Sj − JST

4
∑

i,j=1

[~Si
~Tj + ~Ti~Sj]− JTT

4
∑

i,j=1

~Ti ~Tj (19)

where i and j run over the corners of the tetrahedron fig. 1 and the exchange energy

densities J can be identified with the couplings introduced in eq. (16)

JSS = JTT = −1
2
J− JST =

1

2
J+ (20)

Using the commutation relation for the internal spin operators

[~Sa
i ,
~Sb
j ] = iǫabcδijS

c
i [~T a

i ,
~T b
j ] = iǫabcδijT

c
i [~Sa

i ,
~T b
j ] = 0 (21)

one can derive their (internal) time evolution in the Heisenberg picture

Λ3
d~Si

dt
= i[VH , ~Si] Λ3

d~Ti
dt

= i[VH , ~Ti] (22)

to obtain

d~Si

dt
= ~S0

i ×
4
∑

i,j=1

[jSS ~Sj + jST ~Tj ] + kST ~S
0

i × ~Ti

d~Ti
dt

= ~T 0

i ×
4
∑

i,j=1

[jTT
~Tj + jST ~Sj ] + kST ~T

0

i × ~Si (23)

These equations have been linearized for small displacements δ~Si = ~Si − ~S0
i and

δ ~Ti = ~Ti− ~T 0
i of the spin vectors from their ground state positions in fig. 3, and the

letter δ has then been left out. Furthermore, we have switched from exchange energy

densities J to exchange energies j = JΛ−3. Finally, eq. (23) includes a contribution,

which accounts for the possibility that ~Si
~Ti interact with a different strength than

~Si
~Tj for j 6= i, because the internal distance between ~Si and ~Ti is different from the

distance between ~Si and ~Tj for j 6= i. This corresponds to the fact that in principle

the Heisenberg couplings J can be different for each term ij in the sums in eq. (19),

as long as the point symmetry is respected.

The ground state positions are given by

~S0

1 =
1√
3
(−1,−1,−1) ~S0

2 =
1√
3
(−1,+1,+1) (24)

~S0

3 =
1√
3
(+1,−1,+1) ~S0

4 =
1√
3
(+1,+1,−1) (25)

15



and ~T 0
i = ±~S0

i depending on whether one is analyzing the parallel or anti-parallel

configuration fig. 3. An overall normalization factor of the vacuum spin vectors was

put to 1, because it does not influence the eigenfrequencies and mixing angles. So

everything fixed now to solve the differential equations (23)? Not quite, because for

a frustrated, i.e. non-collinear ground state configuration like fig. 1 it is necessary

to go beyond the collinear spin wave analysis and transform to a rotating frame with

the z-axis pointing along the local spin direction[25, 26]. Applied to the present case

this procedure modifies eqs. (23) in such a way that

d
−−→
UiSi

dt
=
−−→
UiSi

0 ×
4
∑

i,j=1

[jSS
−−→
UjSj + jST

−−→
UjTj ] + kST

−−→
UiSi

0 ×−−→UiTi

d
−−→
UiTi
dt

=
−−→
UiTi

0 ×
4
∑

i,j=1

[jTT

−−→
UjTj + jST

−−→
UjSj ] + kST

−−→
UiTi

0 ×−−→UiSi (26)

where Ui are diagonal 3×3 matrices which act on the vector components of the spin

vectors

U1 = D(1, 1, 1) U2 = D(1,−1,−1) U3 = D(−1, 1,−1) U4 = D(−1,−1, 1) (27)

The resulting 24×24 matrix is given in table 1 and has to be diagonalized in order

to obtain the 24 eigenfrequencies ω. Due to the Shubnikov symmetry of the system

the corresponding eigenstates can be arranged into 6 singlets and 6 triplets as in eq.

(14), i.e. as leptons and quarks. Each triplet consists of 3 states with degenerate

eigenvalues, because the Shubnikov symmetry A4 + S(S4 − A4) is unbroken.

The result of the diagonalization procedure gives the following non-vanishing masses

/ eigenfrequencies consisting of 2 singlets

ω(µ) = −ω(τ) = 2(4jST + kST ) = 4j+ + 2kST (28)

and 4 triplets

ω(t) = −ω(c) = 4(jST + jSS) = 2(j+ − j−) (29)

ω(s) = −ω(b) = 2(2jST + 2jTT + kST ) = 2(j+ − j− + kST ) (30)

The corresponding eigenvectors are not given because the formulas are too cumber-

some to be presented here. Apart from these 14 modes at this stage there are 10
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zero modes (4 singlets and 2 triplets), which can be attributed to the 3 neutrinos,

the electron and the up- and down-quark.

One concludes that considering only the antiferromagnetic Heisenberg contributions

eqs. (19) and (23) leads to a stronger degeneracy than dictated by the Shubnikov

symmetry alone. As (28) and (30) show this does not only concern the zero modes.

What will be done next, is to include effects of inter-tetrahedral interactions to par-

tially lift the degeneracies and in particular to shift the masses of the third family

to larger values. Most prominently, the top quark mass will be equipped with a

contribution of order ΛF . Afterwards torsion and anisotropic corrections will be

included. They are tiny effects and cannot be attributed to a SM piece of the inter-

actions like the contributions discussed so far. However, they are needed, because

they are responsible for the light quark and lepton masses, and in particular for the

neutrino masses and mixings. Hence they will remove the ’accidental’ degeneracies

which one obtains if one only considers the inner-tetrahedral Heisenberg exchange

contributions to the eigenfrequencies.

What can be done already at this point is to take the formulas (28) and (30) for the

second family and to adopt it to the known mass values of the muon, the charmed

and the strange quark. It is advisable to take the running values of the masses at

order 1 TeV[29] and try to determine from that the values for the internal exchange

couplings. One obtains

jST ≈ −0.14 GeV jTT = jSS ≈ −0.12 GeV kST ≈ 0.51 GeV (31)

and concludes that the coupling strengths are ≤ 1 GeV and are dominated by the

coupling kST of adjacent spin vectors ~Si and ~Ti, while the interactions with i 6= j

are somewhat smaller in magnitude.

As discussed before, the inter-tetrahedral interactions yield the SSB contributions to

the fermion masses. To account for these contributions one should include a sum over

neighboring tetrahedrons in eq. (23) and add the corresponding interactions. Since I

do not have the resources to treat these many terms properly the following trick will

be used to approximately solve the problem: the effects of all other tetrahedrons on

a given tetrahedron fig. 3 will be subsumed as an effective contribution generated by

the internal spins. The idea is that this effective contribution can be attributed to

the gauge transformation eq. (3) which transfers the ~π-field from the Higgs sector to
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the W-boson mass term. As well known such a transformation modifies the W-field

by

~Wµ → ~Wµ −
1

gΛF

∂µ~π −
1

ΛF

~π × ~Wµ (32)

Thus, while the bilinear terms in ~π disappear from the Higgs potential eq. (2), they

re-appear in the W-mass term of the Lagrangian. Furthermore, their sign is such

that the antiferromagnetic ~π − ~π coupling at high energies gets transformed into a

ferromagnetic interaction plus an additional term which is due to the non-abelian

nature of the gauge transformation. All in all

m2

W
~Wµ

~W µ → mW

4
∑

i,j=1

[ ~Ai
~Aj + i( ~Ai × ~Aj)( ~Ak − ~Al)] (33)

has to be added to the Heisenberg Hamiltonian (19). Here the notation ~Ai = ~Si− ~Ti
has been used to denote the axial component of the spin vectors which is related to

the ~π-transformation (3). The additional term with the cross product in it can be

interpreted as a Dzyaloshinskii-Moriya component[10], a contribution which in solid

state physics is sometimes used to describe leading anisotropic corrections to the

ordinary Heisenberg equations of motion. Quite in general such a component stands

for a tendency to form a rotational structure (instead of the ordinary ferromagnetic

alignment of neighboring tetrahedrons depicted in fig. 2) simply because the DM-

term tends to rotate the spin vectors instead of aligning them. In the present case

it was deduced as a consequence of the gauge transformation eq. (3). Therefore the

DM-term can be interpreted quite naturally, namely by that the SU(2)L gauge fields

induce a curvature of the fiber bundle formed by the system of all tetrahedrons, and

the DM-term simply takes care of this curvature effect to effectively maintain the

aligned structure.

It may be noted that in general a DM-component to the Heisenberg Hamiltonian has

a more complicated coupling structure than eq. (33), of the form
∑

~Dij( ~Ai× ~Aj)[10].

However, in the present case the couplings ~Dij are fixed by 2 symmetry requirements,

namely that the term must be SU(2)L gauge invariant and that it must respect the

A4 + S(S4 − A4) Shubnikov symmetry. While the former fixes the modulus of the

DM coupling strength relatively to the Heisenberg term in eq. (33), the latter forces

the direction of ~Dij to be ~Ak − ~Al[10], where kl 6= ij is chosen such that the sign of

the permutation (ijkl) of (1234) is positive[10].
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Since ~A is a linear combination of the internal spin vectors ~S and ~T , new terms for

the equations of motion of ~S and ~T can be derived from the SSB contribution (33):

d~Si

dt
=
mW

4
{~S0

i × [1 + i~S0

i×]
4
∑

j=1

~Sj + ~T 0

i × [1 + i~T 0

i ×]
4
∑

j=1

~Tj}

d~Ti
dt

=
mW

4
{~T 0

i × [1 + i~T 0

i ×]
4
∑

j=1

~Tj + ~S0

i × [1 + i~S0

i×]
4
∑

j=1

~Sj} (34)

Eqs. (34) have to be combined with (23) and give a quasi-democratic type of con-

tribution ∼ mW to the mass matrix, as made explicit in table 1, where each entry is

seen to have a contribution ∼ u = 2mW . Evaluating the eigenvalues, this equips the

top quark triplet with a mass term 2mW while leaving the other quark and lepton

masses unchanged.

Combining this with eq. (29) one obtains the sum rule mt = 2mW +mc. Physically,

the factor of 2 in this result can be interpreted as stemming from a double contri-

bution of the vibration of ~A which is contained in both the internal spin vectors ~S

and ~T . Unfortunately, this is a rather crude result which holds only in the limit

of vanishing Weinberg angle θ, i.e. neglecting the mixing with the photon. It is

possible, however, to include the mixing effect by considering the Z-mass term of

the SM Lagrangian m2
ZZµZ

µ, where mZ cos θ = mW and Z = Wz cos θ−B sin θ. As

compared to (33) this induces additional terms in the e.o.m. for the internal spin

vectors ~S and ~T which not only increases the prediction for the top mass but also

leads to a lifting of some of the degeneracies in eqs. (28), (29) and (30).

The situation is further complicated by other possibilities of mixings among the

various fields (17). In fact, the quantum numbers of the Higgs allow for a mixing

with the z-component of the iso-vector ~v. Similarly, the pseudo-scalar combination

η ∼ ψ̄iγ5ψ can mix with πz according to

πz → πz cosα+ η sinα (35)

A small but nontrivial mixing angle α will influence the mass eigenvalues in the

following way: although ψ̄iγ5ψ is an internal (pseudo)scalar density and per se does

not contribute directly to the spin wave spectrum, there is an indirect effect, because

it modifies the equations of motion by furnishing the terms ∼ Szi−Tzi with a factor

cosα, i.e. with an anisotropy ∼ 1 − cosα ∼ α2. This modification leads to another
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lifting of degeneracies in eqs. (28), (29) and (30). A complete analysis of these

effects, however, is postponed to a future publication.

The calculations presented so far are based on a certain interpretation of the Stan-

dard Model Higgs mechanism - a rather intuitive interpretation, if one is willing to

accept that the quark and lepton spectrum is due to a discrete internal tetrahedral

structure. As was shown it is possible to identify the terms in the SM Lagrangian

responsible for the internal spin interactions, namely the quadratic part of the Higgs

potential and the W-mass term. However, at this point 10 of the 24 possible exci-

tations (the neutrinos, the electron and up and down quarks) are left massless.

As long as these 4 singlets and 2 triplets remain massless i.e. constant non-vibrating

modes, it is no use trying to calculate the CKM matrix elements or even the mixing

angles in the neutrino sector. To get rid of those degeneracies one has to relax a con-

dition inherent in the classical Heisenberg model namely that the internal magnetic

moments may be treated as classical 3-dimensional vector spins of fixed length. This

condition is destroyed by quantum fluctuations in the quantum Heisenberg model

and on the classical level by allowing for torsional vibrations. Although these (tiny)

torsional effects have no counterpart in the SM Lagrangian it can be shown that

the leading up-quark, down-quark and electron mass contributions are provided by

isotropic torsional interactions of the internal spin vectors while the neutrino masses

can be attributed to anisotropic effects within the torsional couplings.

To start with I am now going to write down the most general form of these tor-

sional interactions. As argued above, torsion is not strictly forbidden in the system

under consideration, and for the case of only one spin vector is simply induced by

a contribution of the form d~S/dt ∼ ~S to its time variation. In the case at hand

with 8 spin vectors ~Si and ~Ti its main effect is to allow vibrations along the local z-

directions and thus lift the degeneracies of all zero modes. The terms supplementing

the Heisenberg e.o.m. are

d~Si

dt
= ieSS ~Si + ifSS

∑

j 6=i

~Sj + ieST ~Ti + ifST
∑

j 6=i

~Tj

d~Ti
dt

= ieTT
~Ti + ifTT

∑

j 6=i

~Tj + ieST ~Si + ifST
∑

j 6=i

~Sj (36)

where e and f are the torsion coupling strengths, whose values are assumed to be
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S1x S2x S3x S4x

S1x i(ω + 8u) −2iu 2iu 2iu

S2x −2iu i(ω + 8u) 2iu 2iu

-S3x 2iu 2iu i(ω + 8u) −2iu
-S4x 2iu 2iu −2iu i(ω + 8u)

T1x −2iu −2iu 2iu 2iu

T2x −2iu −2iu 2iu 2iu

-T3x 2iu 2iu −2iu −2iu
-T4x 2iu 2iu −2iu −2iu
S1y 4j + ks + 7u −s− u s+ u s+ u

-S2y s+ u −4j − ks − 7u −s− u −s− u
S3y −s− u −s− u −4j − ks − 7u s+ u

-S4y s+ u s + u −s− u 4j + ks + 7u

T1y −j + k − u −j − u j + u j + u

-T2y j + u j + k + u −j − u −j − u
T3y −j − u −j − u j + k + u j + u

-T4y j + u j + u −j − u −j − k − u
S1z −4j − ks − 7u s + u −s− u −s− u
-S2z −s− u 4j + ks + 7u s+ u s+ u

-S3z −s− u −s− u −4j − ks − 7u s+ u

S4z s+ u s + u −s− u 4j + ks + 7u

T1z j + k + u j + u −j − u −j − u
-T2z −j − u −j − k − u j + u j + u

-T3z −j − u −j − u j + k + u j + u

T4z j + u j + u −j − u −j − k − u

Table 1: The 24×24 matrix that determines the eigenmodes of the system, including

SSB as well as inner-tetrahedral Heisenberg effects. The minus signs in the first

column of the table account for the effect of the matrices U on the l.h.s. of (26).
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T1x T2x T3x T4x

S1x −2iu −2iu 2iu 2iu

S2x −2iu −2iu 2iu 2iu

-S3x 2iu 2iu −2iu −2iu
-S4x 2iu 2iu −2iu −2iu
T1x i(ω + 8u) −2iu 2iu 2iu

T2x −2iu i(ω + 8u) 2iu 2iu

-T3x 2iu 2iu i(ω + 8u) −2iu
-T4x 2iu 2iu −2iu i(ω + 8u)

S1y −j − k − u −j − u j + u j + u

-S2y j + u j + k + u −j − u −j − u
S3y −j − u −j − u j + k + u j + u

-S4y j + u j + u −j − u −j − k − u
T1y 4j + kt + 7u −t− u t + u t+ u

-T2y t+ u −4j − kt − u −t− u −t− u
T3y −t− u −t− u −4j − kt − 7u t+ u

-T4y t+ u t+ u −t− u 4j + kt + 7u

S1z j + k + u j + u −j − u −j − u
-S2z −j − u −j − k − u j + u j + u

-S3z −j − u −j − u j + k + u j + u

S4z j + u j + u −j − u −j − k − u
T1z −4j − kt + 7u t+ u −t− u −t− u
-T2z −t− u 4j + kt + 7u t + u t+ u

-T3z −t− u −t− u −4j − kt − 7u t+ u

T4z t+ u t+ u −t− u 4j + kt + 7u

Table 2: Table 1 continued; SSB terms are given in terms of u = 2mW . Note the u

terms are distributed ’democratically’ over all entries. Further abbreviations used:

jSS = s, jTT = t, jST = j and kST = k, ks = 3jSS + kST and kt = 3jTT + kST .
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S1y S2y S3y S4y

S1x −4j − ks − 7u −s− u s+ u −s− u
S2x s+ u 4j + ks + 7u s+ u −s− u
-S3x −s− u s+ u 4j + ks + 7u −s− u
-S4x −s− u s+ u −s− u −4j − ks − 7u

T1x j + k + u −j − u j + u −j − u
T2x j + u −j − k − u j + u −j − u
-T3x −j − u −j − u −j − k − u j + u

-T4x −j − u j + u −j − u j + k + u

S1y i(ω + 8u) 2iu −2iu 2iu

-S2y 2iu i(ω + 8u) 2iu −2iu
S3y −2iu 2iu i(ω + 8u) 2iu

-S4y 2iu −2iu 2iu i(ω + 8u)

T1y −2iu 2iu −2iu 2iu

-T2y 2iu −2iu 2iu −2iu
T3y −2iu 2iu −2iu 2iu

-T4y 2iu −2iu 2iu −2iu
S1z +4j + ks + 7u s+ u −s− u s+ u

-S2z s+ u 4j + ks + 7u s+ u −s− u
-S3z s+ u −s− u −4j − ks − 7u −s− u
S4z −s− u s+ u −s− u −4j − ks − 7u

T1z −j − k − u j + u −j − u j + u

-T2z j + u −j − k − u− j + u −j − u
-T3z j + u −j − u j + k + u −j − u
T4z −j − u j + u −j − u j + k + u

Table 3: Table 1 continued
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T1y T2y T3y T4y

S1x j + k + u −j − u j + u −j − u
S2x j + u −j − k − u j + u −j − u
-S3x −j − u j + u −j − k − u j + u

-S4x −j − u j + u −j − u j + k + u

T1x −4j − kt − 7u −t− u t+ u −t− u
T2x t + u 4j + kt + 7u t+ u −t− u
-T3x −t− u t+ u 4j + kt + 7u t+ u

-T4x −t− u t+ u −t− u −4j − kt − 7u

S1y −2iu 2iu −2iu 2iu

-S2y 2iu −2iu 2iu −2iu
S3y −2iu 2iu −2iu 2iu

-S4y 2iu −2iu 2iu −2iu
T1y i(ω + 8u) 2iu −2iu 2iu

-T2y 2iu i(ω + 8u) 2iu −2iu
T3y −2iu 2iu i(ω + 8u) 2iu

-T4y 2iu −2iu 2iu i(ω + 8u)

S1z −j − k − u j + u −j − u j + u

-S2z j + u −j − k − u j + u −j − u
-S3z j + u −j − u j + k + u −j − u
S4z −j − u j + u −j − u j + k + u

T1z 4j + kt + 7u t+ u −t− u t+ u

-T2z t + u 4j + kt + 7u t+ u −t− u
-T3z t + u −t− u −4j − kt − 7u −t− u
T4z −t− u t+ u −t− u −4j − kt − 7u

Table 4: Table 1 continued
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S1z S2z S3z S4z

S1x 4j + ks + 7u s + u s+ u −s− u
S2x −s− u −4j − ks − 7u s+ u −s− u
-S3x s+ u −s− u 4j + ks + 7u s+ u

-S4x s+ u −s− u −s− u −4j − ks − 7u

T1x −j − k − u j + u j + u −j − u
T2x −j − u j + k + u j + u −j − u
-T3x j + u −j − u −j − k − u j + u

-T4x j + u −j − u −j − u j + k + u

S1y −4j − ks − 7u −s− u −s− u s+ u

-S2y −s− u −4j − ks − 7u s+ u −s− u
S3y s+ u −s− u 4j + ks + 7u s+ u

-S4y −s− u s + u s+ u 4j + ks + 7u

T1y j + k + u −j − u −j − u j + u

-T2y −j − u j + k + u j + u −j − u
T3y j + u −j − u −j − k − u j + u

-T4y −j − u j + u j + u −j − k − u
S1z i(ω + 8u) 2iu 2iu −2iu
-S2z 2iu i(ω + 8u) −2iu −2iu
-S3z 2iu −2iu i(ω + 8u) 2iu

S4z −2iu 2iu 2iu i(ω + 8u)

T1z −2iu 2iu 2iu −2iu
-T2z 2iu −2iu −2iu 2iu

-T3z 2iu −2iu −2iu 2iu

T4z −2iu 2iu 2iu −2iu

Table 5: Table 1 continued
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T1z T2z T3z T4z

S1x −j − k − u j + u j + u −j − u
S2x −j − u j + k + u j + u −j − u
-S3x j + u −j − u −j − k − u j + u

-S4x j + u −j − u −j − u j + k + u

T1x 4j + kt + 7u t + u t+ u −t− u
T2x −t− u −4j − kt − 7u t+ u −t− u
-T3x t + u −t− u 4j + kt + 7u t+ u

-T4x t + u −t− u −t− u −4j − kt − 7u

S1y j + k + u −j − u −j − u j + u

-S2y −j − u j + k + u j + u −j − u
S3y j + u −j − u −j − k − u j + u

-S4y −j − u j + u j + u −j − k − u
T1y −4j − kt − 7u t + u −t− u t+ u

-T2y −t− u −4j − kt − 7u +ut −t− u
T3y t + u −t− u 4j + kt + 7u t+ u

-T4y −t− u t + u t+ u 4j + kt + 7u

S1z −2iu 2iu 2iu −2iu
-S2z 2iu −2iu −2iu 2iu

-S3z 2iu −2iu −2iu 2iu

S4z −2iu 2iu 2iu −2iu
T1z i(ω + 8u) 2iu 2iu −2iu
-T2z 2iu i(ω + 8u) −2iu −2iu
-T3z 2iu −2iu i(ω + 8u) 2iu

T4z −2iu 2iu 2iu i(ω + 8u)

Table 6: Table 1 continued
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small compared to the exchange couplings considered so far. More precisely one has

the natural hierarchy

e, f ∼ O(MeV )≪ j, k ∼ O(GeV )≪ ΛFα≪ ΛF (37)

so that the torsional couplings can indeed be expected to provide for the electron

and the up- and down-quark mass with me,u,d/mµ,s,c ∼ 10−2. As will be shown in

the next section neutrino masses are due to still smaller anisotropy effects among

the torsional couplings.

The contributions (36) should be incorporated in the full 24×24 mass matrix given

in tables 1-6. Then in principle the results can be used to accommodate all physical

quark and lepton mass and mixing parameters. Due to lack of resources I have to

leave the completion of these studies to future work. To get some understanding

of the physics I will now concentrate on the lepton sector of the theory, which is

somewhat easier to handle. During that course I will also describe in detail how

the CKM and PMNS mixing matrices can be obtained from within the present

framework.

4 (Not just) a Toy Model for Leptons

The mass problem for the leptons alone can be reduced from the tetrahedral con-

figuration to the simple 1-dimensional structure depicted in fig. 4. As Eq. (28)

indicates, the lepton masses do not depend on the couplings JSS and JTT but only

on JST . As a matter of fact using some simple matrix algebra manipulations it may

be shown that they can effectively be obtained from the configuration of fig. 4 with

only 2 internal spin vectors ~S and ~T (instead of 8) which in the ground state point

in the z-directions

〈~S〉 = 〈~T 〉 = (0, 0, 1) (38)

To analyze the behavior of this system, I will start with the Heisenberg part of the

interactions

VH = −J ~S ~T (39)

where J is identical to 4JST used in the last section. The factor of 4 is a geometrical

factor arising from the reduction of the tetrahedral configuration.
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Figure 4: The local ground state in the model for leptons, where the spin vectors ~S

and ~T point in the z-direction. The parallel configuration is depicted here instead

of the anti-parallel one in fig. 3. If only a Heisenberg interaction of the form (39)

is included the combination ~S + ~T remains static, thus giving rise to 3 zero modes

corresponding to the 3 neutrinos. A fourth zero-mode appears, because the spin

vectors will rotate only in the transversal (x, y)-plane, leaving torsional vibrations

(i.e. in z-direction) as zero modes. If further interactions are added to the Heisenberg

term, all 6 eigenmodes receive non-vanishing values.

The 6 d.o.f. of this system of 2 internal chiral spin vectors lead to 6 eigenmodes,

and we are now going to show how the lepton masses and mixings, in particular the

tiny neutrino masses may arise. The symmetry group of the ground state fig. 4 is

{1, SR}, whose only non-trivial element is a reflection R at the x-y-plane followed by

an internal time reversal S. This group has only singlet representations[27], according

to which the 6 eigenmodes will be classified.

Adding a small universal torsional coupling f ≪ j the time evolution of the spin

vectors is given by

d~S

dt
= j ~S × ~T + f(~S − ~T )

d~T

dt
= j ~T × ~S + f(~T − ~S) (40)

One then has to diagonalize the sum of the matrices given in tables 7 and 8 in order

to obtain the eigenstates

νe = (0, 0, 1, 0, 0, 1) e = (0, 0,−1, 0, 0, 1)
νµ = (0, 1, 0, 0, 1, 0) µ = (−i,−1, 0, i, 1, 0)
ντ = (1, 0, 0, 1, 0, 0) τ = (i,−1, 0,−i, 1, 0) (41)
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Sx Sy Sz Tx Ty Tz

Sx i(ωf + v) j + v 0 i(f − v) −j − v 0

Sy −j − v i(ωf + v) 0 j + v i(f − v) 0

Sz 0 0 iωf 0 0 if

Tx i(f − v) −j − v 0 i(ωf + v) j + v 0

Ty j + v i(f + v) 0 −j − v i(ωf + v) 0

Tz 0 0 if 0 0 iωf

Table 7: The interaction matrix between the 2 chiral spin vectors ~S and ~T of figure

4 giving rise to electron-, muon- and tau-mass. In addition to the Heisenberg in-

teraction eq. (39) inter-tetrahedral effects (v) and a universal torsional coupling (e)

have been introduced. The neutrinos are still massless at this stage, corresponding

to the 3 d.o.f. of ~S + ~T which do not vibrate. The abbreviation ωf = ω− f is used.

and their masses/eigenfrequencies

ω(νe) = 0 ω(e) = 2f

ω(νµ) = 0 ω(µ) = 2(j + f)

ω(ντ ) = 0 ω(τ) = 2(2v − j − f) (42)

In eq. (41) a 6-dimensional vector space of eigenvectors has been introduced in

which the sum and difference ~S ± ~T are simply given by

Sx ± Tx =
1√
2
(1, 0, 0,±1, 0, 0)

Sy ± Ty =
1√
2
(0, 1, 0, 0,±1, 0)

Sz ± Tz =
1√
2
(0, 0, 1, 0, 0,±1) (43)

An effective contribution ∼ v from the leading inter-tetrahedral interactions eq.

(34) has been included in table 7 and eq. (42) which lifts the degeneracy between

muon and τ -lepton. The natural hierarchy between these couplings can then be

invoked to accommodate the lepton masses. The electron mass is naturally small as

compared to mµ and mτ because the electron corresponds to a torsional vibration
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Sx Sy Sz Tx Ty Tz

Sx iexy −jz jxy ifxy −lz −lxy
Sy jz iexy −jxy lz ifxy lxy

Sz −jxy jxy iez lxy −lxy ifz

Tx ifxy −lz −lxy igxy −mz mxy

Ty lz ifxy lxy mz igxy −mxy

Tz lxy −lxy ifz −mxy mxy igz

Table 8: The most general correction terms to the matrix in table 7.

(of Sz − Tz) in the z-direction and its mass gets only torsional contributions ∼ f ≈
0.25MeV. There is no contribution ∼ j to the electron mass because the Heisenberg

interaction conserves each spin’s fixed length and does not allow spin vibrations in

the z-direction. Note the other mode in the z-direction, the one ∼ Sz + Tz, is to

describe the electron neutrino.

The Hamiltonian on which eq. (40) is based furthermore conserves the total spin

~S+ ~T of the system so that the 3 d.o.f. corresponding to this quantity do not vibrate.

They give the neutrino states νe, νµ and ντ and can be interpreted as the Goldstone

modes arising from the breaking of the internal Heisenberg spin SU(2)-symmetry.

Goldstone bosons? This sounds strange in view of the fact that neutrinos are

fermions. The point is that one has to distinguish the dynamics in internal from

that in physical space. In physical space the neutrinos are fermions, but in internal

space they are described by (bosonic) excitations of the internal angular momen-

tum ~S + ~T which is the conserved quantity associated with the internal rotational

symmetry. Applying Goldstone’s theorem to the internal dynamics then yields 3

internal massless excitations - just as magnons are obtained as Goldstone bosons of

the broken rotational symmetry in ordinary magnetic systems.

In order to obtain non-zero neutrino masses I have written down the most general

interaction matrix including anisotropic and torsional forces in table 8. Compared to

the leading terms in table 7 the new contributions must be tiny, as are the neutrino

masses. More precisely, they should be of order at most O(mν/me) ≈ 10−7.
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It seems clear that corrections of such minuteness are difficult to handle quanti-

tatively. Nevertheless, the present approach allows to analyze the question from

which of the various sources appearing in table 8 the observed neutrino masses and

mixings[1] actually arise. For example, an inverted hierarchy of neutrino masses

which seems to be slightly favored by the present data can be accommodated quite

easily, and measured values of the mixing angles will further determine the coupling

parameters in table 8.

A complete numerical analysis of the whole parameter space is not undertaken in the

present paper. Rather, one realistic example will be discussed now to see whether

the neutrino measured parameters can be reproduced. Namely, a simple solution to

the case of the inverted hierarchy is obtained by putting jxy = lxy = mxy ≡ δj and

fxy ≡ δe and all other parameters in table 8 to zero. The result for the masses then

is

ω(νe) = −δe ω(e) = 2f (44)

ω(νµ) = −1
2
{δe +

√

δ2e + 32δ2j} ω(µ) = 2(j + f) + δe

ω(ντ ) = −1
2
{δe −

√

δ2e + 32δ2j} ω(τ) = 2(2v + j − f) + δe

Assuming δe ≫ δj one can indeed reproduce the ’inverted hierarchy’ of neutrino

masses. To be definite we choose the values δj = 0.002eV, δe = 0.05eV, f = 0.25MeV

j = 50MeV v = 0.4GeV in order to reproduce the current data, i.e.

m2

2 −m2

1 = 0.000063 eV 2 (45)

m2

3 −
1

2
(m2

1 +m2

2) = −0.0025 eV 2 (46)

Next one has to check whether the mixing angles for the neutrino come out right.

This is then the appropriate place to discuss the general strategy how mixing matri-

ces can be obtained in the present framework. To determine the CKM quark mixing

elements the eigenvectors of a complicated 24×24 problem have to be fixed. For the

case of leptons with the 6×6 matrix in tables 7 and 8 the calculation of eigenvectors

and PMNS mixing matrix elements is a relatively simple exercise.

One just has to remember that the mixing matrix is defined as the unitary transi-

tion matrix U = (Uαa) between the mass eigenstates να, α = e, µ, τ , and the weak

31



interaction eigenstates νa, a = 1, 2, 3:

να =
∑

a

Uαaνa ←→ νa =
∑

α

U∗
αaνα (47)

Here the mass eigenstates can be directly identified with the eigenvectors of the

given eigenvalue problem. In the above example they are given by

νe = (−0.07− 0.16i,−0.07 + 0.16i,−0.67,−0.07− 0.16i,−0.07 + 0.16i,−0.67)
e = (0, 0, 0.71, 0, 0,−0.71)
νµ = (−0.08− 0.47i,−0.48, 0.17 + 0.14i,−0.08− 0.47i,−0.48, 0.17 + 0.14i)

µ = (−0.50i,−0.50, 0, 0.50i, 0.50, 0)
ντ = (0.03 + 0.49i, 0.50,−0.07 + 0.08i, 0.03 + 0.49i,−0.50,−0.07 + 0.08i)

τ = (−0.50i, 0.50, 0, 0.50i,−0.50, 0) (48)

where the 6-dimensional notation of eqs. (43) has been used.

According to eq. (10) the difference ~S − ~T gives the axial part of the spin vectors

which after the SSB defines the longitudinal modes of the ~W -bosons. Therefore the

transformation from the mass eigenstates to the interaction eigenstates is given by

the projection matrix of the eigenvectors (48) to the axial spin vector components:

Uαa = (να).
Sa − Ta√

2
=









0.94 0.093− 0.223i 0.093 + 0.223i

−0.23− 0.20i 0.67 0.111 + 0.66i

0.101− 0.108i 0.70 −0.048− 0.70i









(49)

where the dot denotes the euclidean scalar product in the 6-dimensional space of

eigenvectors. There is a CP violating effect in this matrix, because the Jarlskog

invariant[33] JCP is non-zero and given by JCP = −0.023.

Unfortunately, the result does not really reproduce the observed mixing angles[1, 30].

A complete scan of the full parameter space seems unavoidable. This effort will be

undertaken in future work.

5 Conclusions

In the present paper a microscopic model for the SM Higgs mechanism has been

applied to determine the quark and lepton masses and mixing angles. A discrete
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tetrahedral structure within a dynamical internal space has managed to fill the gap

between the phenomenological hierarchy of mass scales. The underlying physical

picture is that the universe resembles a huge crystal of internal molecules, each

’molecule’ of tetrahedral form and arranged in such a way that certain symmetries

are (spontaneously) broken. For such a model to be consistent, a (6+1)-dimensional

space time has been introduced in ref.[2], i.e. the ’molecules’ extend to 3 internal

dimensions orthogonal to physical space, and they interact via a (6+1)-dimensional

QED featuring the necessary ’iso-magnetic’ forces. The strong correlations within

this system provide for the Higgs particle and the weak vector bosons as bound

states. Furthermore, internal spin excitations turn out to generate the correct quark

and lepton spectrum. Then, it happens that an excitation in one internal tetrahe-

dron is able to excite an excitation in the neighboring internal space and thus can

travel as a quasi-particle through Minkowski space with a certain wave vector ~k

which is to be interpreted as the physical momentum of the quark or lepton.

In this model, the SM symmetry breaking can be understood to proceed in 2 steps:

• the formation of a tetrahedron due to a new internal interaction force, which is

’antiferromagnetic’ at small distances and leads to a frustrated configuration

of isospin vectors fig. 1. The frustrated tetrahedron breaks the internal spin-

SU(2) as well as internal parity and time reversal to the Shubnikov group

A4 + S(S4−A4). This symmetry breaking is not spontaneous but arises from

the internal antiferromagnetic exchange interaction which avoids parallel spin

states. The resulting local ground state fig. 1 is a chiral configuration, i.e.

it violates internal and (as shown in ref.[2]) external parity, and the whole

system is left SU(2)L-symmetric in the following sense:

• each local tetrahedral ground state can rotate independently of the others, i.e.

it can freely rotate as a rigid body over its base point in Minkowski space, and

this rotational symmetry of the rigid chiral spin vector system corresponds to

a SO(3) symmetry group, whose covering group is taken to define SU(2)L. As

a matter of fact it is a local symmetry, because the rotation can be different

for tetrahedrons over different base points. Furthermore, due to the V − A

structure of the interactions induced by the chiral tetrahedral structure, it is

a symmetry involving only left handed particles[2]. At large distances of the
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order of the Fermi scale the new interactions are (internally) ferromagnetic in

nature and give rise to the global ferromagnetic order shown in fig. 2. Finally,

the non-vanishing vev for the Higgs field ∼ ψ̄ψ is due to a pairing mechanism

as described in ref.[2].

In order to analyze the mass problem of the fermions within this model, the most

general SU(2)L×SU(2)R invariant NJL Lagrangian has been used[18] as an effective

approximation. Afterwards, a Heisenberg Hamiltonian for the internal spin vector

interactions has been derived from that Lagrangian. This is justified because at the

stage when the internal tetrahedron is formed chiral symmetry is still valid, so that

one can describe the internal spin vibrations in terms of the chiral spin vectors ~S

and ~T .

Concerning the ’ferromagnetic’ attraction between different tetrahedrons at large

distances responsible for the SSB, it was noticed in section 3 that the gauge structure

enforces an additional term which resembles the so called Dzyaloshinskii-Moriya

interactions[10] of solid state physics. This term was interpreted quite naturally as

a curvature effect of the SU(2)L gauge fields induced in the fiber bundle formed by

the system of all tetrahedrons. The DM term simply takes care of this curvature to

effectively maintain the ’ferromagnetic’ order fig. 2.

Based on the prescribed model expressions for the quark and lepton mass spectrum

were derived. It turned out that the extreme hierarchy in this spectrum can be

attributed to the fact that the masses of different fermions get contributions from

physically different sources, namely

• the top mass is dominated by a contribution of order ΛF which stems from

the SSB inter-tetrahedral DM interactions. Physically it arises because the

top quark corresponds to the 3 eigenmodes which ’disturb’ the global ground

state in the strongest possible way. This disturbance is also responsible for

the hierarchy observed in the CKM matrix elements.

• strange-, charm- and muon-mass are dominated by antiferromagnetic exchange

couplings within one tetrahedron, and thus can be obtained from the inner-

tetrahedral Heisenberg exchange couplings alone.
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• down-quark, up-quark and electron get their relatively small masses from ener-

getically favored torsion contributions, which only concern ’radial’ excitations

of the internal spin vectors.

• neutrino masses are protected by symmetry, because they correspond to vi-

brations in the valleys of the potential where all Heisenberg and even most

of the torsional energy contributions vanish. This was shown to be related to

a Goldstone effect of the internal rotational symmetry obeyed by the leading

Heisenberg spin interactions.

Furthermore, the question of quark and lepton mixing was considered, albeit not in

a very elaborate way. The quark mixing is a complicated 24×24 eigenvector problem
with many parameters and a detailed analysis therefore postponed to future work.

An attempt to determine the lepton mixing parameters was made. It turned out

that the phenomenological values for the PMNS mixing angles cannot be obtained

in a straightforward manner. The upshot of the discussion presented in this paper is

that an accommodation to the measured neutrino properties is a non-trivial calcula-

tional exercise, because a complete scan over the parameter space of the anisotropic

torsional couplings is needed.

To summarize, the quark and lepton masses have been successfully reduced to cou-

plings among the internal spin vectors. Using these results the poor man’s strategy

(applied in this paper) is to choose the couplings so that the fermion masses and

mixings come out right. The reader may rightfully object that everything done

here is to replace one set of free parameters by another set. However, as shown in

ref.[2] the internal couplings can be calculated as exchange integrals over internal

space just as in ordinary magnetism the exchange couplings of the Heisenberg model

is in principle calculable from exchange integrals of electronic wave functions over

physical space. A more ambitious program therefore is to determine all internal

couplings from a fundamental theory like the higher dimensional QED which has

been considered in [2].
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