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Abstract

A Clifford-Gravity based model is exploited to build a generalized ac-
tion (beyond the current ones used in the literature) and arrive at relevant
numerical results which are consistent with the presently-observed de Sit-
ter accelerating expansion of the universe driven by a very small vacuum
energy density ρobs ∼ 10−120(MP )4 (MP is the Planck mass) and provide
promising dark energy/matter candidates in terms of the 16 scalars cor-
responding to the degrees of freedom associated with a Cl(3, 1)-algebra
valued scalar field Φ in four dimensions.
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1 Introduction

Clifford, Division, Exceptional and Jordan algebras are deeply related and es-
sential tools in many aspects in Physics [1], [2], [3] . A Clifford Cl(5, C) Unified
Gauge Field Theory formulation of Conformal Gravity and U(4)×U(4)×U(4)
Yang-Mills in 4D was recently reviewed in [4] along with its implications for the
Pati-Salam group SU(4)× SU(2)L × SU(2)R, and Trinification GUT models
of 3 fermion generations based on the group SU(3)C × SU(3)L × SU(3)R.

In the past years, the Extended Relativity Theory in C-spaces (Clifford
spaces) and Clifford-Phase spaces were developed [5], [6]. The Extended Rela-
tivity theory in Clifford-spaces (C-spaces) is a natural extension of the ordinary
Relativity theory whose generalized coordinates are Clifford polyvector-valued
quantities which incorporate the lines, areas, volumes, and hyper-volumes de-
grees of freedom associated with the collective dynamics of particles, strings,
membranes, p-branes (closed p-branes) moving in a D-dimensional target space-
time background.
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We learnt from Special Relativity that the concept of simultaneity is also
relative. By the same token, we have shown in [12] that the concept of space-
time locality is relative due to the mixing of area-bivector coordinates with
spacetime vector coordinates under generalized Lorentz transformations in C-
space. In the most general case, there will be mixing of all polyvector valued
coordinates. This was the motivation to build a unified theory of all extended
objects, p-branes, for all values of p subject to the condition p+ 1 = D.

In [8] we explored the many novel physical consequences of Born’s Reciprocal
Relativity theory [9], [10], [11] in flat phase-space and generalized the theory to
the curved phase-space scenario. We provided six specific novel physical results
resulting from Born’s Reciprocal Relativity and which are not present in Spe-
cial Relativity. These were : momentum-dependent time delay in the emission
and detection of photons; energy-dependent notion of locality; superluminal be-
havior; relative rotation of photon trajectories due to the aberration of light;
invariance of areas-cells in phase-space and modified dispersion relations. We
finalized by constructing a Born reciprocal general relativity theory in curved
phase-spaces which required the introduction of a complex Hermitian metric,
torsion and nonmetricity.

Recently, novel physical consequences of the Extended Relativity Theory in
C-spaces (Clifford spaces) were explored in [12]. The latter theory provides a
very different physical explanation of the phenomenon of “relativity of local-
ity” than the one described by the Doubly Special Relativity (DSR) framework.
Furthermore, an elegant nonlinear momentum-addition law was derived in or-
der to tackle the “soccer-ball” problem in DSR. Neither derivation in C-spaces
requires a curved momentum space nor a deformation of the Lorentz algebra.
While the constant (energy-independent) speed of photon propagation is al-
ways compatible with the generalized photon dispersion relations in C-spaces,
another important consequence was that the generalized C-space photon dis-
persion relations allowed also for energy-dependent speeds of propagation while
still retaining the Lorentz symmetry in ordinary spacetimes, while breaking the
extended Lorentz symmetry in C-spaces. This does not occur in DSR nor in
other approaches, like the presence of quantum spacetime foam.

The aim of this work is to exploit the Clifford symmetry to build a general-
ized action beyond the current ones used in the literature and arrive at relevant
numerical results which are consistent with the presently-observed de Sitter
accelerating expansion of the universe driven by a very small vacuum energy
density ρobs ∼ 10−120(MP )4 (MP is the Planck mass) and provide promising
dark energy/matter candidates in terms of the 16 scalars corresponding to the
degrees of freedom associated with a Cl(3, 1)-algebra valued scalar field Φ in
four dimensions.
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2 Clifford Gravity Cosmology and Dark Energy

We begin by explaining the relationship between Clifford-algebra-valued Gauge
Field Theories and Conformal Gravity. By fixing some of the gauge symmetries
and imposing some constraints one recovers ordinary gravity. Let us show how
the conformal algebra in four dimensions admits a Clifford algebra realization;
i.e. the generators of the conformal algebra can be expressed in terms of the
Clifford algebra basis generators. The conformal algebra in four dimensions
so(4, 2) is isomorphic to su(2, 2).

Let ηab = (−,+,+,+) be the Minkowski spacetime (flat) metric in D = 3+1-
dimenisons. The epsilon tensors are defined as ε0123 = −ε0123 = 1, The real
Clifford Cl(3, 1, R) algebra associated with the tangent space of a 4D spacetime
M is defined by the anticommutators

{ Γa, Γb } ≡ Γa Γb + Γb Γa = = 2 ηab (2.1a)

such that

[Γa,Γb] = 2Γab, Γ5 = −i Γ0 Γ1 Γ2 Γ3, (Γ5)2 = 1; {Γ5,Γa} = 0; (2.1b)

Γabcd = εabcd Γ5; Γab =
1

2
(ΓaΓb − ΓbΓa) . (2.2a)

Γabc = εabcd Γ5 Γd; Γabcd = εabcd Γ5. (2.2b)

Γa Γb = Γab + ηab, Γab Γ5 =
1

2
εabcd Γcd, (2.2c)

Γab Γc = ηbc Γa − ηac Γb + εabcd Γ5 Γd (2.2d)

Γc Γab = ηac Γb − ηbc Γa + εabcd Γ5 Γd (2.2e)

Γa Γb Γc = ηab Γc + ηbc Γa − ηacΓb + εabcd Γ5 Γd (2.2f)

Γab Γcd = εabcd Γ5 − 4δ
[a
[c Γ

b]
d] − 2δabcd . (2.2g)

δabcd =
1

2
(δac δ

b
d − δad δ

b
c ). (2.2.h)

the generators Γab,Γabc,Γabcd are defined as usual by a signed-permutation sum
of the anti-symmetrizated products of the gammas. A representation of the
Cl(3, 1) algebra exists where the generators

1; Γ1, Γ2, Γ3, Γ4 = −iΓ0; and Γ5 (2.3)

are Hermitian; while the generators ΓaΓ5 and Γab for a, b = 1, 2, 3, 4 are anti-
Hermitian. Using eqs-(2.1-2.3) allows to write the Cl(3, 1) algebra-valued one-
form as

A =

(
aµ 1 + bµ Γ5 + eaµ Γa + faµ Γa Γ5 +

1

4
ωabµ Γab

)
dxµ. (2.4)
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The physical significance of the field components aµ, bµ, e
a
µ, f

a
µ , ω

ab
µ in eq-(2.4)

will be explained below.
The Clifford-valued gauge fieldAµ transforms according toA′µ = U−1 Aµ U+

U−1∂µU under Clifford-valued gauge transformations. The Clifford-valued field
strength is F = dA + [A,A] so that F transforms covariantly F ′ = U−1 F U .
Decomposing the field strength in terms of the Clifford algebra generators gives

Fµν = F 1
µν 1 + F 5

µν Γ5 + F aµν Γa + F a5
µν Γa Γ5 +

1

4
F abµν Γab. (2.5)

the Clifford-algebra-valued 2-form field strength is F = 1
2 Fµν dx

µ ∧ dxν and

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν ] where ∂µAν = ∂Aν
∂xµ . The field-strength

components are given by
F 1
µν = ∂µaν − ∂νaµ (2.6a)

F 5
µν = ∂µbν − ∂νbµ + 2eaµfνa − 2eaνfµa (2.6b)

F aµν = ∂µe
a
ν − ∂νeaµ + ωabµ eνb − ωabν eµb + 2faµbν − 2faν bµ (2.6c)

F a5
µν = ∂µf

a
ν − ∂νfaµ + ωabµ fνb − ωabν fµb + 2eaµbν − 2eaνbµ (2.6d)

F abµν = ∂µω
ab
ν + ωacµ ω

b
νc + 4

(
eaµe

b
ν − faµf bν

)
− µ←→ ν. (2.6e)

At this stage we may provide the relation among the Cl(3, 1) algebra gener-
ators and the the conformal algebra so(4, 2) ∼ su(2, 2) in 4D . It is well known
to the experts that the operators of the Conformal algebra can be written in
terms of the Clifford algebra generators as

Pa =
1

2
Γa (1 − Γ5); Ka =

1

2
Γa (1 + Γ5); D = − 1

2
Γ5, Lab =

1

2
Γab.

(2.7)
Pa ( a = 1, 2, 3, 4) are the translation generators; Ka are the conformal boosts; D
is the dilation generator and Lab are the Lorentz generators. The total number
of generators is respectively 4+4+1+6 = 15. From the above realization of the
conformal algebra generators (2.7), the explicit evaluation of the commutators
yields

[Pa, D] = Pa; [Ka, D] = −Ka; [Pa, Kb] = − 2gab D + 2 Lab

[Pa, Pb] = 0; [Ka,Kb] = 0; ....... (2.8)

which is consistent with the su(2, 2) ∼ so(4, 2) commutation relations. We
should notice that the Ka, Pa generators in (2.7) are both comprised of Her-
mitian Γa and anti-Hermitian ±ΓaΓ5 generators, respectively. The dilation D
operator is Hermitian, while the Lorentz generator Lab is anti-Hermitian. The
fact that Hermitian and anti-Hermitian generators are required is consistent
with the fact that U(2, 2) is a pseudo-unitary group as we shall see bellow.
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Having established this one can infer that the real-valued tetrad V aµ field

(associated with translations) and its real-valued partner Ṽ aµ (associated with
conformal boosts) can be defined in terms of the real-valued gauge fields eaµ, f

a
µ

as follows
eaµ Γa + faµ ΓaΓ5 = V aµ Pa + Ṽ aµ Ka (2.9)

From eq-(2.7) one learns that eq-(2.9) leads to

eaµ − faµ = V aµ ; eaµ + faµ = Ṽ aµ ⇒

eaµ =
1

2
(V aµ + Ṽ aµ ), faµ =

1

2
(Ṽ aµ − V aµ ). (2.10)

The components of the torsion and conformal-boost curvature of conformal
gravity are given respectively by the linear combinations of eqs-(2.6c, 2.6d)

F aµν − F a5
µν = F̃ aµν [P ]; F aµν + F a5

µν = F̃ aµν [K] ⇒

F aµν Γa + F a5
µν Γa Γ5 = F̃ aµν [P ] Pa + F̃ aµν [K] Ka. (2.11a)

Inserting the expressions for eaµ, f
a
µ in terms of the vielbein V aµ and Ṽ aµ given

by (2.10), yields the standard expressions for the Torsion and conformal-boost
curvature, respectively

F̃ aµν [P ] = ∂[µ V
a
ν] + ωab[µ Vν]b − V a[µ bν], (2.11b)

F̃ aµν [K] = ∂[µ Ṽ
a
ν] + ωab[µ Ṽν]b + 2 Ṽ a[µ bν], (2.11b)

The Lorentz curvature in eq-(2.6e) can be recast in the standard form as

F abµν = Rabµν = ∂[µ ω
ab
ν] + ωac[µ ωbν]c + 2( V a[µ Ṽ

b
ν] + Ṽ a[µ V

b
ν] ). (2.11c)

The components of the curvature corresponding to the Weyl dilation generator
given by F 5

µν in eq-(2.6b) can be rewritten as

F 5
µν = ∂[µ bν] +

1

2
( V a[µ Ṽν]a − Ṽ a[µ Vν]a ). (2.11d)

and the Maxwell curvature is given by F 1
µν in eq-(2.6a). A re-scaling of the

vielbein V aµ /l and Ṽ aµ /l by a length scale parameter l is necessary in order to
endow the curvatures and torsion in eqs-(2.11) with the proper dimensions of
length−2, length−1, respectively.

To sum up, the real-valued tetrad gauge field V aµ (that gauges the trans-

lations Pa ) and the real-valued conformal boosts gauge field Ṽ aµ (that gauges
the conformal boosts Ka) of conformal gravity are given, respectively, by the
linear combination of the gauge fields eaµ ∓ faµ associated with the Γa, Γa Γ5

generators of the Clifford algebra Cl(3, 1) of the tangent space of spacetimeM4

after performing a Wick rotation −i Γ0 = Γ4.
Gauge invariant actions involving Yang-Mills terms of the form

∫
Tr(F ∧∗F )

and theta terms of the form
∫
Tr(F ∧F ) are straightforwardly constructed. For

example, a SO(4, 2) gauge-invariant action for conformal gravity is [15]
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S =

∫
d4x εabcd ε

µνρσ Rabµν Rcdρσ (2.12)

where the components of the Lorentz curvature 2-form Rabµνdxµ ∧ dxν are given

by eq-(2.11c) after re-scaling the vielbein V aµ /l and Ṽ aµ /l by a length scale param-
eter l in order to endow the curvature with the proper dimensions of length−2.

The conformal boost symmetry can be fixed by choosing the gauge bµ = 0
because under infinitesimal conformal boosts transformations the field bµ trans-
forms as δbµ = −2 ξa eaµ = −2 ξµ; i.e the parameter ξµ has the same number
of degrees of feedom as bµ. After further fixing the dilational gauge symme-
try, setting the torsion to zero (which constrains the spin connection ωabµ (V aµ )
to be of the Levi-Civita form given by a function of the vielbein V aµ ), and

eliminating the Ṽ aµ field algebraically via its (non-propagating) equations of
motion, the expression in eq-(2.12) leads to the de Sitter group SO(4, 1) invari-
ant Macdowell-Mansouri-Chamseddine-West action (MMCW) [14] (suppressing
spacetime indices for convenience)

S =

∫
( Rab(ω) − 1

l2
V a ∧ V b ) ∧ ( Rcd(ω) − 1

l2
V c ∧ V d ) εabcd. (2.13)

The action (2.13) is comprised of 3 terms. One term is the topological invari-
ant Gauss-Bonnet term

∫
Rab(ω) ∧Rcd(ω)εabcd. The standard Einstein-Hilbert

gravitational action term is given by − 1
l2

∫
Rab(ω) ∧ V c ∧ V dεabcd, and the cos-

mological constant term 1
l4

∫
V a ∧ V b ∧ V c ∧ V dεabcd. l is the de Sitter space’s

throat size; i.e. l2 is proportional to the square of the Planck scale (the Newto-
nian coupling constant).

The familiar Einstein-Hilbert gravitational action can also be obtained from
a coupling of gravity to a scalar field like it occurs in a Brans-Dicke-Jordan
theory of gravity

S =
1

2

∫
d4x
√
g φ Dc

µ D
µ
c φ =

1

2

∫
d4x
√
g φ

(
1
√
g
∂ν(
√
g gµν Dc

µφ) + bµ (Dc
µφ) +

1

6
R φ

)
. (2.14a)

where the conformally covariant derivative acting on a scalar field φ of Weyl
weight one is

Dc
µφ = ∂µ − bµ φ (2.14b)

Fixing the conformal boosts symmetry by setting bµ = 0 and the dilational
symmetry by setting φ = constant leads to the Einstein-Hilbert action for
ordinary gravity.

We proceed next with the cosmological applications by introducing the
Clifford-valued scalar field (a hyper-complex valued scalar) defined as

Φ = ΦA ΓA = φ 1 + φa γa +
1

2!
φab γab +

1

3!
φabc γabc +

1

4!
φabcd γabcd (2.15)
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Now we can propose the most general action as an extension of the MMCW
action displayed in eq-(2.13 ) and given by

S =

∫
d4x εµνρσ < Fµν Fρσ Φ > =

∫
d4x εµνρσ < FAµν F

B
ρσ ΦC ΓA ΓB ΓC >

(2.16)
The bracket operation < ..... > denotes extracting the Clifford scalar part of
the geometric product of Clifford-valued quantities. It is the analog of taking
the trace of a matrix product. The most general action can be decomposed into
several pieces S = S1 +S2 +S3 +S4 +S5. Defining φabcd = εabcd φ5 = εabcd ϕ
we have

S5 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ

abcd ΓA ΓB γabcd > =∫
d4x εabcd ε

µνρσ ϕ
(
a51F

ab
µν F

cd
ρσ + a52 F

a
µν F

bcd
ρσ + a53 Fµν F

abcd
ρσ

)
+∫

d4x εabcd ε
µνρσ ϕ

(
a54F

ab
µνe F

ecd
ρσ + a55F

a
µνe F

ebcd
ρσ + a56F

ab
µνef F

efcd
ρσ

)
(2.17)

One can rewrite (2.17) in differential form notation as

S5 =

∫
εabcd ϕ

(
a51 F

ab ∧ F cd + a52 F
a ∧ F bcd + a53 F ∧ F abcd

)
+

∫
εabcd ϕ

(
a54 F

ab
e ∧ F ecd + a55 F

a
e ∧ F ebcd + a56 F

ab
ef ∧ F efcd

)
(2.18)

One can recognize that the MMCW action (2.13) is contained in one piece
of S5 and given by

SMMCW ⊂
∫

d4x εabcd ε
µνρσ ϕ

(
F abµν F

cd
ρσ

)
(2.19)

when ϕ = 1 as described by eqs-(2.6e, 2.11). One should notice that when the
scalar field ϕ is not constant the expression∫

d4x
√
g ϕ ( Rµνρσ Rµνρσ − 4 Rµν R

µν + R2 ) (2.20)

is no longer equal to the Gauss-Bonnet topological invariant due to the key ϕ(x)
factor and such terms will now contribute to the equations of motion.

The term εabcdF
a ∧ F bcd in (2.18) can be rewritten as F a ∧ F̃a , while the

term εabcdF ∧ F abcd = F ∧ F̃ , etc.... The components F bcd = F bcdµν dx
µ ∧ dxν ,

F abcd = F abcdµν dxµ∧dxν , etc. ... are all given by eqs-(2.4,2.5,2.6) after taking into
account the relations among the Clifford algebra generators (gamma matrices)
in eqs-(2.1, 2.2). The other terms in the action are
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S1 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ ΓA ΓB 1 > =∫

d4x εµνρσ φ
(
a11 Fµν Fρσ + a12 F

a
µν Fa ρσ + a13 F

ab
µν Fab ρσ

)
+∫

d4x εµνρσ φ
(
a14 F

abc
µν Fabc ρσ + a15 F

abcd
µν Fabcd ρσ

)
(2.21)

One can rewrite (2.21) in differential form notation as

S1 =

∫
φ
(
a11 F ∧ F + a12 F

a ∧ Fa + a13 F
ab ∧ Fab

)
+

∫
φ
(
a14 F

abc ∧ Fabc + a15 F
abcd ∧ Fabcd

)
(2.22)

S3 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ

ab ΓA ΓB γab > =∫
φab

(
a31 F

a ∧ F b + a32 F
ab ∧ F + a33 F

a
c ∧ F cb

)
+∫

φab
(
a34 F

a
cd ∧ F cdb + a35 F

a
cde ∧ F cdeb

)
(2.23)

S2 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ

a ΓA ΓB γa > =∫
φa
(
a21 F

a ∧ F + a22 F
a
b ∧ F b + a23 F

a
bc ∧ F bc + a24 F

a
bcd ∧ F bcd

)
(2.24)

S4 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ

abc ΓA ΓB γabc > =∫
φabc

(
a41 F

abc ∧ F + a42 F
ab ∧ F c + a43 F

abc
d ∧ F d

)
+∫

φabc
(
a44 F

ab
d ∧ F dc + a45 F

ab
de ∧ F dec

)
(2.25)

the way to obtain the numerical coefficients aij is explained in the Appendix.
It is essential to introduce dynamics for the dimensionless Clifford-valued

scalar field Φ otherwise a variation of the action (2.16) with respect to the Φ
field will trivially constraint the action to zero since in this case Φ will act as a
Lagrange multiplier. The scalar field contribution to the action for the signature
(−,+,+,+) is

S[Φ] =

∫
d4x
√
g < − 1

2l2
(Dµ Φ†) (Dµ Φ) − 1

l4
V (Φ) > (2.26a)
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The dagger operation Φ† denotes the reversal operation and is obtained by
reversing the order of the Clifford generators. For example, (γa∧γb)† = γb∧γa,
(γa ∧ γb ∧ γc)† = γc ∧ γb ∧ γa, etc ..... so that

< (Dµ Φ†) (Dµ Φ) > = (Dµφ) (Dµφ) + (Dµφa) (Dµφa) + (Dµφab) (Dµφab) +

(Dµφabc) (Dµφabc) + (Dµφabcd) (Dµφabcd) (2.26b)

where we have omitted combinatorial numerical factors for convenience.
The potential, for example, may be given by a polynomial V (Φ) =

∑
n=0 an Φn

or a more complicated function. Upon taking the Clifford scalar part of the po-
tential one has < V (Φ) >= V(φ, φa, φab, φabc, φabcd) which is a complicated
(polynomial, for example) expression given in terms of the 16 scalars. For sim-
plicity we shall choose the analog of a quartic Higgs-like potential given by

V =
1

l4
λ ( |ΦA ΦA| − v2)2

ΦA ΦA = φ2 + φaφa +
1

2!
φabφab +

1

3!
φabcφabc +

1

4!
φabcdφabcd (2.27)

the reason one must take the absolute value in |ΦAΦA| is because the Clifford
scalar norm ΦAΦA is not positive definite since the 16-dimensional quadratic
form has a split (8, 8) signature [7] when the tangent space metric ηab is Minkowskian
diag(−1,+1,+1,+1).

The gauge covariant derivative acting on the Clifford-valued scalar Φ is
defined as

(DµΦA) ΓA = (∂µ ΦA) ΓA + [ ABµ ΓB , ΦC ΓC ] ⇒

DµΦA = (∂µ ΦA) + ABµ ΦC < [ ΓB , ΓC ] ΓA > = (∂µ ΦA) + ABµ ΦC f A
BC

(2.28a)
where we have written the commutator Clifford algebra as [ΓB ,ΓC ] = f A

BC ΓA
and whose structure constants are displayed in the Appendix. Under infinitesi-
mal Cl(3, 1) gauge transformations the Clifford-valued scalar Φ field transforms
as

δΦC = fCAB ξA ΦB , ξ = ξA ΓA = ξ̃ 1 + ξa γa +
1

2
ξab γab +

1

3!
ξabc γabc +

1

4!
ξabcd γabcd (2.28b)

and the gauge covariant derivative transforms as well δ(DµΦC) = fCAB ξ
A DµΦB .

To sum up, the action S + S[Φ] given by eqs-(2.16-2.26) is comprised of
(i) ϕ times the MMCW Lagrangian (2.13) that contains the Einstein-Hilbert
and cosmological constant terms. (ii) Extra terms quadratic in the curvature
and torsion. (iii) A coupling of curvature and torsion terms. (iv) kinetic and
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potential terms for a multiplet of 16 spacetime scalar fields φ, φa, φab, φabc, φabcd

that from the tangent space point of view behave as a scalar, vector, antisym-
metric tensors of rank two and three and a pseudo-scalar field, respectively.
(v) Non-minimal couplings of the scalars and curvature and torsion terms. (vi)
terms involving the field strengths associated with conformal boosts, a dilational
(Weyl gauge field) and a U(1) Maxwell-like generator as displayed by eqs-(2.6,
2.11). A review of conformal (super) gravity can be found in [15].

Our action displayed by eqs-(2.16-2.26) is a more complex generalization
of the f(R, T ) modified gravity models involving powers of curvature and tor-
sion [22]. It is also a more general extension of the cosmological models based on
Brans-Dicke-Jordan gravity [21] and non-minimally coupled Einstein-Electroweak
theory [19]. It contains many more terms than a U(2, 2) = SU(2, 2)×U(1) gauge
theory (conformal gravity and Maxwell theory) combined with the kinetic and
potential terms of a multiplet of 16 scalar fields (corresponding to a 4×4 matrix-
valued scalar in the 16-dimensional adjoint representation of U(2, 2)).

Solving the equations of motion of the action S + S[Φ] after performing a
variation with respect to all the fields is a very cumbersome project that requires
a Clifford computer algebra package and which is beyond the scope of this work.
Fixing and/or breaking some of the gauge symmetries will simplify things. Let
us truncate the action given in eqs-(2.16,2.26) by freezing all the components
of Φ to zero except ϕ so that the following Higgs-like potential V

V =
1

l4
λ (ϕ2 − v2)2, λ > 0 (2.29)

is minimized to zero when ϕo = v. Focusing solely on the terms in eq-(2.19)
and the Higgs potential in eq-(2.26a), we have (i) ϕ times the { Gauss-Bonnet
terms, the Einstein-Hilbert action, and the cosmological constant }; and (ii)
the effective potential energy density given by the scalar potential minus the
running cosmological “constant” term

Ueff =
1

l4
λ ( ϕ2 − v2 )2 − ϕ

l4
(2.30)

Let us define the reduced Planck mass by M2
P = (1/8πL2

P ) and equate the
Planck energy density 1

4M
4
P to the value of Ueff when ϕ = 0 in eq-(2.30)

Ueff (ϕ = 0) =
1

l4
( λ v4) =

1

4
M4
P =

1

(16π)2L4
P

(2.31)

By equating the value of the effective potential energy density at ϕ = ϕ∗ to
the present-day observed vacuum energy density one has

Ueff (ϕ∗) =
1

l4
λ ( ϕ2

∗ − v2 )2 − ϕ∗
l4

= ρobs ∼
1

L2
P R2

H

=

(
LP
RH

)2 1

L4
P

∼ 10−120 M4
P (2.32)

10



where LP and RH are the Planck and Hubble scale, respectively. The ratio
( LPRH )2 is chosen to be of the order of 10−120. Matching the present-day value
of the Newtonian coupling constant with the running coupling appearing in the
Einstein-Hilbert term in eq-(2.19), when ϕ = ϕ∗, gives

ϕ∗
l2

=
1

16πG
=

1

2

1

8πL2
P

=
1

2
M2
P (2.33)

It is interesting to note that negative values of ϕ furnish a negative coupling G
that would correspond to a repulsive gravitational regime. For the time being
we shall focus in the case where ϕ ≥ 0.

Finally, from eqs-(2.30, 2.31, 2.33) one arrives at the following numerical
results for the l,v, λ parameters of the Higgs-like potential (2.29)

l ' RH , v ' 1

16π
(
RH
LP

)2, λ ' (16π)2 (
LP
RH

)4 (2.34)

and ϕ∗ ' v.
From the plot of the graph Ueff/ρobs versus ϕ one learns that ϕ∗ < ϕo = v

but its value is very close to v. Since the throat size of the present de Sitter
accelerating universe l = RH agrees with the value for l obtained in eq-(2.34)
this is sign of consistency. The value of ϕ∗ + ε is the crossover point when
the effective potential energy density (2.30) switches from positive to negative
values as ϕ increases (assuming it increases with the flow of time). Anti de
Sitter spacetime has a constant negative energy density and positive pressure
(attractive force) ; whereas de Sitter spacetime has a constant positive energy
density and negative pressure (repulsive force). In our most simplified scenario,
the universe has not entered yet the phase of negative energy density where its
expansion may halt, and begin to contract until the point ϕ∗∗ , when it will
crossover again into a positive energy density epoch of perpetual expansion.

Our results obtained above are compatible with a very rapid de Sitter infla-
tionary phase in the very early universe because of the very large initial value of
the (positive) energy density. An extensive and recent review (with a vast num-
ber of references) about cosmological inflation and its realization in quantum
field theory and in string theory can be found [17]. Furthermore, our results are
also consistent with the present-day de Sitter accelerating universe with a very
small value of the vacuum energy density (2.32) due to the very large value of
the Hubble scale. More recently, the authors [20] have argued that the so-called
cosmological constant fine-tuning problem (why the cosmological constant ob-
served today is so much smaller than the Planck scale or why the universe is
accelerating at present) can be solved with the help of Higgs inflation by simply
assuming a variable cosmological “constant” during the inflation epoch. This is
compatible with our findings.

To sum up, in our simplified scenario all the parameters l,v, λ of the Higgs-
like scalar potential (2.29) are given in terms of the two fundamental scales,
LP , RH (a lower and upper scale) by eq-(2.34) which allows us to reproduce the
extremely small observed vacuum energy density (2.32) and the current value
of the Newtonian gravitational coupling (2.33).
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The fact that a running Newtonian coupling in eq-(2.33) leads to G =
l2

16πϕ → ∞ when ϕ → 0, at the Big Bang singularity for example, does not
mean that the Einstein-Hilbert action necessarily collapses to zero, because one
may have R = ∞ at the singularity such that the ratio R/16πG might still be
well defined. In order to study the behavior of the scalar ϕ as a function of
xµ, one has to determine the spacetime dynamics of ϕ(xµ) which is obtained by
performing a variation of the truncated action with respect to ϕ, and yielding
a very complex equation of the form

1

l2
DµD

µϕ − 1

l4
∂V (ϕ)

∂ϕ
+ εabcd

εµνρσ
√
g

(a51 F
ab
µν F

cd
νσ + ......) +

1

l2
(AaµA

µ
a + Aabcµ Aµabc) ϕ = 0 (2.35)

the last terms in (2.35) stem from the contribution [Aµ,Φ]2 to the (DµΦA)(DµΦA)
terms in the truncated action.

One cannot solve eq-(2.35) without performing a variation of the action
with respect to the remaining gauge fields. In the most general case, one has to
study the full spacetime dynamics of all the gauge fields involved in the non-
truncated action, with the key contribution of the kinetic and potential terms
(DµΦA)(DµΦA), V(ΦA) for all the scalars, to see whether or not there is a
dynamical evolution of the 16 scalar fields that is consistent with the extremely
small value of the vacuum energy density observed today, and associated with
a de Sitter accelerated phase of expansion. The throat size of the de Sitter
solution is l = RH .

Fermionic matter terms and gauge fields of the Standard and GUT Models
should be taken into account in the most general theory. A de Sitter, Anti de Sit-
ter and Minkowski vacuum spacetime solution is also consistent with a breaking
of the SU(2, 2) ∼ SO(4, 2) conformal symmetry down to the de Sitter SO(4, 1),
Anti de Sitter SO(3, 2) and Minkowski SO(4) one. Recently, the authors [18]
studied the problem of obtaining de Sitter and inflationary vacua from dimen-
sional reduction of double field theory (DFT) on non-geometric string back-
grounds. They also considered a new class of effective potentials that admit
Minkowski and de Sitter minima.

Before embarking into the study of the full action comprised of eqs-(2.16-
2.26), one can start instead with the simpler Clifford-gravity inspired action

S =

∫
d4x
√
g
(
ϕ [ Rµνρσ Rµνρσ − 4 Rµν R

µν + R2 ] − ϕ

l2
R +

ϕ

l4

)
−

∫
d4x
√
g (

1

2l2
(∂µϕ) (∂µϕ) +

1

l4
V (ϕ) ) (2.36)

as a testing ground for cosmological scenarios. An even simpler action was
the Weyl invariant action investigated in [23] where the source of dark energy
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was identified with a dilaton-like scalar field θ of dimensions length−1 that is
required to implement Weyl (scale) invariance of the action

S =
1

16π

∫
d4x
√
g

(
− θ2 RWeyl −

1

2
gµν (Dµθ) (Dνθ) − V (θ)

)
(2.37a)

under the Weyl scalings

θ′ = e−Ω θ; g′µν = e2Ωgµν , R′Weyl = e−2ΩRWeyl, V (θ′) = e−4ΩV (θ)

Dµθ = ∂µθ −Aµθ → (Dµθ)
′ = e−ΩDµθ, A′µ = Aµ − ∂µΩ, .... (2.37b)

the Weyl symmetry naturally selects a quartic potential V ∼ θ4. It was shown
in [23] how the action was related to a Brans-Dicke-Jordan model whose ω pa-
rameter had its critical value ω = −3/2 and leading to the observed constant
vacuum energy density when the scalar field θ was scaled to a constant such
that (θo)

2 = 1/G. To conclude, we believe that Clifford-gravity-based cosmol-
ogy is a promising avenue to understand the origins of the very small presently
observed value of the vacuum energy density, and the 16 scalar fields corre-
sponding to the Clifford-valued scalar Φ in four-dimensions could be plausible
dark energy/matter candidates.

APPENDIX

In this Appendix we shall write the (anti) commutator relations for the
Clifford algebra generators and explain how to obtain the numerical coefficients
aij in eqs-(2.16-2.25).

1

2
{ γa, γb } = gab 1;

1

2
[ γa, γb ] = γab = − γba, a, b = 1, 2, 3, · · · ,m (A.1)

[ γa, γbc ] = 2 gab γc − 2 gac γb, { γa, γbc } = 2 γabc (A.2)

[ γab, γcd ] = − 2 gac γbd + 2 gad γbc − 2 gbd γac + 2 gbc γad (A.3)

In general one has [16]

pq = odd, [γm1m2....mp , γ
n1n2....nq ] = 2 γn1n2....nq

m1m2....mp −
2p!q!

2!(p− 2)!(q − 2)!
δ

[n1n2

[m1m2
γ
n3....nq ]

m3......mp] +

2p!q!

4!(p− 4)!(q − 4)!
δ

[n1....n4

[m1....m4
γ
n5....nq ]

m5......mp] − ............ (A.4)
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pq = even, { γm1m2....mp , γ
n1n2....nq } = 2 γn1n2....nq

m1m2....mp −
2p!q!

2!(p− 2)!(q − 2)!
δ

[n1n2

[m1m2
γ
n3....nq ]

m3......mp] +

2p!q!

4!(p− 4)!(q − 4)!
δ

[n1....n4

[m1....m4
γ
n5....nq ]

m5......mp] − ............ (A.5)

pq = even, [γm1m2....mp , γ
n1n2....nq ] =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ

[n1

[m1
γ
n2....nq ]

m2....mp] −

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ

[n1n2n3

[m1m2m3
γ
n4....nq ]

m4......mp] + ....... (A.6)

pq = odd, { γm1m2....mp , γ
n1n2....nq } =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ

[n1

[m1
γ
n2....nq ]

m2....mp] −

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ

[n1n2n3

[m1m2m3
γ
n4....nq ]

m4......mp] + ....... (A.7)

The generalized Kronecker delta is defined as the determinant

δa1a2.....akb1b2.....bk
≡ det


δa1b1 . . . . . . δa1bk
δa2b1 . . . . . . δa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
δakb1 . . . . . . δakbk


(A.8)

These equations are all that is need to evaluate the numerical coefficients of
the action provided by eqs-(2.16-2.26). For instance if one wishes to extract the
scalar part of the Clifford geometric product of < γmnpγrstγuv >, all one needs
is to extract the bivector part of the product

γmnp γ
rst =

1

2
[γmnp, γ

rst] +
1

2
{γmnp, γrst} =

1

2
( 2 γ rst

mnp − 36 δ
[rs

[mn γ t]
p ) +

1

2
( 18 δ

[r
[m γ

st]
np] − 12 δ rst[mnp] ) (A.9)

From eq-(A.9) one learns that its bivector piece is

− 1

2
36 δ

[rs
[mn γ t]

p (A.10)

and whose contraction with γuv will bring up the scalar part as follows

< γpt γuv > = − 4 δ pt[uv] (A.11)

In this fashion one extracts the scalar part of the Clifford triple geometric prod-
uct of generators and obtains the numerical coefficients aij in the action dis-
played by eqs-(2.16-2.26).
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