
Extended Ricci and holographic dark energy models in fractal cosmology

M. Salti∗, M. Korunur† and I. Acikgoz‡

Physics Department of Science Faculty, Dicle University, 21280, Diyarbakir-Turkey.

We consider the fractal Friedmann-Robertson-Walker universe filled with dark fluid. By making
use of this assumption, we discuss two types of dark energy models: Generalized Ricci and gener-
alized holographic dark energies. We calculate the equation of state parameters, investigate some
special limits of the results and discuss the physical implications via graphs. Also, we reconstruct
the potential and the dynamics of the quintessence and k-essence(kinetic-quintessence) according to
the results obtained for the fractal dark energy.
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I. INTRODUCTION

Recent astrophysical observations[1–5] (the type Ia supernovae surveys, large scale stracture, cosmic microwave
background anisotropy spectrum) show that our present universe has an accelerated expansion. The Universe expands
faster than it should be! We cannot explain this cosmic acceleration with the help of the four fundamental interactions.
In modern cosmology, it is accepted that our universe has a phase transition from decelerating to accelerating due
to the presence of unknown enigmatic components. Investigating the nature of these contents has been one of the
great challenges in modern physics. Planck-2013 observations of the cosmic microwave background indicates that the
matter in our universe is dominated by dark energy (68.3 percent) and dark matter (26.8 percent)[5]. The remaining
part (4.9 percent) is occupied by other ordinary matters.
There are several proposals to be candidates for dark part of the universe, but still the nature of dark universe

is completely unknown[6]. The cosmological constant is the best instrument to identify this nature of the universe,
but it causes some other difficulties like fine-tuning and cosmic-coincidence puzzle[7]. Actually, it represents the
earliest and simplest theoretical candidate for dark energy, but it causes some other difficulties like fine-tuning and
cosmic-coincidence puzzle[8]. The former cosmologists ask why the vacuum energy density is so small[9], and the
latter ones say why vacuum energy and dark matter are nearly equal today[10]. According to the type Ia supernovae
observations the time-varying dark energy models give a better fit compared with a cosmological constant[1, 10].
The value of the equation-of-state parameter ω gives three different phases of dark energy such as vacuum (ω = 1),
phantom (ω < 1) and quintessence (ω > 1). Also, many other candidates have been proposed to explain the nature of
dark energy[11, 12]: tachyon, K-essence, quintom, dilaton, Chaplygin gas and Polytropic gas, however still the nature
of dark universe is completely unknown[6]. A good review about the dark energy problem is given by Bamba et al.
in 2012[13].
On the other hand, the modified gravity may also provide a good explanation for the dark matter[14, 15]. The

method may resolve the coincidence problem, describe the phase transition of the universe, and be useful for high-
energy physics problems[14]. In this work, we consider a time-dependent modification of general relativity to investi-
gate the nature of dark universe.
The plan of the paper is the following. In the next section we introduce the fractal cosmology and give some

important features of the theory. In the third section, we present the dark fluid content of a universe governed by
fractal gravity. Mainly, we discuss generalized Ricci and generalized holographic dark energy models. In the fourth
section, we establish a correspondence between our model and the quintessence and k-essence scalar field models. The
final section is devoted to conclusions of the present work.

II. PRELIMINARIES: FRACTAL COSMOLOGY

The investigation of a consistent quantum theory of gravity is one of the important problems in modern theoretical
physics. We know that the most of the theories of quantum gravity introduce our universe as a dimensional flow.
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Hence, one can discuss whether, and how these interesting features are connected to the ultraviolet(UV)-divergence
problem. Calcagni[16] investigated quantum gravity in a fractal universe and discussed cosmology in that framework.
Fractal cosmology is power-counting renormalizable, free from ultraviolet divergence, and a Lorentz invariant. In the
present study, we discuss generalized Ricci and Holographic dark energies in the framework of fractal gravity proposed
by Calcagni[17]. These models describes new types of evolution. With the help of this point of view, one can see that
cosmological parameters depend on time in a strongly nonlinear manner[18].
Considering that matter is minimally coupled with gravity, we write the following total action[16, 17]

S =
1

2κ2

∫
dϱ

√
−g[R− 2Λ− ω∂µυ∂

µυ] + Sm (1)

where G, g, R, Λ and Sm are the gravitational constant, determinant of metric gµν , Ricci scalar, cosmological constant
and matter part of the total action, respectively. Also we have κ2 = 8πG. Next, υ and ω are two quantities known
as the fractal function and fractal parameter, respectively. It is important to mention here that dϱ(x) is Lebesgue-
Stieltjes measure generalizing the standard four-dimensional measure d4x. The dimension of ϱ is [ϱ] = −4α, where α
is a positive parameter. In the infrared (IR) and UV regimes, the values of α are αIR = 1 and αUV = 1

2 , respectively.
The variation of the action (1) with respect to the Friedmann-Robertson-Walker metric

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (2)

gives the Friedmann equations in a fractal universe as[17]

H2 +
k

a2
+H

υ̇

υ
− ω

6
υ̇2 =

1

3M2
p

ρ+
Λ

3
, (3)

Ḣ +H2 −H
υ̇

υ
+

ω

3
υ̇2 − 1

2υ
∂µ∂

µυ = − 1

6M2
p

(ρ+ 3p) +
Λ

3
. (4)

Here a(t) is the cosmic scale factor, and it measures the expansion of the universe. The values k = −1, 0, 1 give the
spatial curvature representing the open, flat, and closed universes, respectively. Also H = ȧ

a is the Hubble parameter,

Mp is the reduced Planck mass (M−2
p = 8πG), ρ and p are the energy and pressure densities inside the universe.

The Friedmann equations (3) and (4) can be rewritten in the standard form[19, 20]

H2 +
k

a2
− Λ

3
=

1

3M2
p

ρt, (5)

Ḣ − k

a2
= − 1

2M2
p

(ρt + pt). (6)

Here ρt and pt are the total energy density and pressure defined as

ρt = ρ+ ρf , (7)

pt = p+ pf , (8)

and ρf and pf are the energy and pressure due to the fractal contribution defined as below.

ρf = ωM2
p υ̇

2 − 3HM2
p

υ̇

υ
, (9)

pf = −HM2
p

υ̇

υ
−

M2
p

υ
∂µ∂

µυ. (10)

Note that if υ = 1, from equations (9) and (10) we have ρf = 0 and pf = 0, then equations (5) and (6) become the
usual Friedmann equations in the Einstein gravity.
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Next, the continuity equation in fractal cosmology is defined in the following form[17]

ρ̇+ (3H +
υ̇

υ
)(ρ+ p) = 0. (11)

The gravitational constraint in a fractal spacetime is given by the following equation[17]

Ḣ + 3H2 +
2k

a2
+

1

υ
∂µ∂

µυ +H
υ̇

υ
+ ω(υ∂µ∂

µυ − υ̇2) = 0. (12)

By considering a time-like fractal profile[17]

υ = t−β , (13)

where β = 4(1− α) is the fractal dimension; for the Friedmann-Robertson-Walker universe we find

ρf = −ωM2
pβ

2t−2(β+1) + 3βHM2
p t

−1, (14)

pf = βHM2
p t

−1 −
βM2

p

t

(
3H − 1 + β

t

)
. (15)

Here we have

β = 0 (in the IR regime), (16)

β = 2 (in the UV regime). (17)

Also, using υ = t−β one can find the following flat Friedmann equations:

H2 − βHt−1 +
ωβ2

6t2(β+1)
=

1

3M2
p

ρ+
Λ

3
, (18)

Ḣ +H2 +
Hβ

t
− ωβ2

3t2(β+1)
− β

2t
(3H − 1 + β

t
) = − 1

6M2
p

(ρ+ 3p) +
Λ

3
, (19)

and the continuity equation

ρ̇+ (3H − βt−1)(ρ+ p) = 0. (20)

On the other hand, the gravitational constraint in a fractal flat Friedmann-Robertson-Walker universe becomes

Ḣ + 3H2 +

(
2 +

3ω

t2β

)
βH

t
− β(β + 1)

t2
− ωβ(2β + 1)

t2β+2
= 0. (21)

It is important to mention here that in the infrared regime (β = 0), equations (18) and (20) give the corresponding
relations in the standard Einstein’s general relativity (no gravitational constraint)[17]. In the ultraviolet regime
(β = 2) with no cosmological constant (Λ = 0), the Friedmann equations (18) and (19) yield[17]

H2 − 2Ht−1 − 2ω

6t6
=

1

3M2
p

ρ, (22)

Ḣ +H2 − H

t
+

4ω

3t6
+

3

t2
= − 1

6M2
p

(ρ+ 3p). (23)

In this work, we consider a universe filled with the dark energy density ρD and the pressureless dark matter pm = 0.
By making use of the equation (20), the energy equations for dark energy and dark matter in the ultraviolet regime
reduce to

ρ̇D + (3H − 2t−1)(1 + ωD)ρD = 0, (24)
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ρ̇m + (3H − 2t−1)ρm = 0. (25)

Here ωD = pD

ρD
defines the equation of state parameter of the dark energy. The gravitational constraint given by

equation (21) in the ultraviolet regime yields

Ḣ + 3H2 +

(
2 +

3ω

t4

)
2H

t
− 6

t2
− 10ω

t6
= 0. (26)

Solution of these equations gives us the following results[17]:

H(t) = −2t−1 − 22ω

13t5
Ξ(154 ; 17

4 ; 3ω
2t4 )

Ξ(114 ; 13
4 ; 3ω

2t4 )
, (27)

a3(t) = t−6Ξ(
11

4
;
13

4
;
3ω

2t4
). (28)

Here Ξ (also denoted as 1F1 or M) is Kummer’s confluent hypergeometric function of the first kind:

Ξ(a; b;x) ≡ Γ(b)

Γ(a)

+∞∑
n=0

Γ(a+ n)

Γ(b+ n)

xn

n!
. (29)

Next, the deceleration parameter q is calculated as

q = −1− Ḣ

H2
. (30)

III. DARK FLUIDS

The Ricci and holographic descriptions are two noteworthy candidates of dark energy that can explain the late-time
accelerated expansion of the Universe. Thence, it would be a remarkable investigation to know which one is the most
favored by current cosmic observational data[21]. In this section, we mainly focus on two special forms of energy
density ρD: the generalized Ricci dark energy and the generalized holographic dark energy. With these extended
formulations, the Ricci and holographic dark energies can be recovered or defined interchangeably.

• Generalized Ricci dark energy

The density of generalized Ricci dark energy[21] is defined by

ρD = 3Rf1(
H2

R
), (31)

where f1(x) = λx + (1 − λ) > 0, and λ is an arbitrary constant (0 ≤ λ ≤ 1). Here, the λ = 0 case leads to the
original Ricci dark energy model. The Ricci scalar for the Friedmann-Robertson-Walker universe, in terms of the
hubble parameter, is calculated as

R = −6(
k

a2
+ 2H2 + Ḣ). (32)

In the flat (k = 0) Friedmann-Robertson-Walker universe we have R = −12H2 − 6Ḣ. Then, for the flat Friedmann-
Robertson-Walker universe we find

ρD = 3H2(13λ− 12)− 18(1− λ)Ḣ. (33)

By taking time derivative of equation (33) we obtain

ρ̇D
ρD

=
6(13λ− 12)HḢ + 18(1− λ)Ḧ

3(13λ− 12)H2 − 18(1− λ)Ḣ
. (34)
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Substituting the above result into equation (24) and using the solution (27), one can find the equation of state
parameter ωD of the generalized Ricci dark energy:

ωD = −1− 1

(3H − 2t−1)

ρ̇D
ρD

= −1 +
ID
IID

, (35)

where

ID = −2197t4[t4ω(3 + λ) + 3ω2(7λ− 6) + t8(10λ− 9)]Ξ(
11

4
;
13

4
;
3ω

2t4
)3

+338ω[t4ω(267− 278λ) + λt8(24− 25λ) + 6ω2(21− 22λ)]Ξ(
11

4
;
13

4
;
3ω

2t4
)2Ξ(

11

4
;
17

4
;
3ω

2t4
)

+104ω2[3ω(53λ− 51) + t4(199λ− 192)]Ξ(
11

4
;
13

4
;
3ω

2t4
)Ξ(

11

4
;
17

4
;
3ω

2t4
)

+48ω3(30− 31λ)Ξ(
11

4
;
17

4
;
3ω

2t4
)3, (36)

IID =

{
169[ω2(13λ− 12) + t8(16λ− 15) + t4ω(35λ− 33)]Ξ(

11

4
;
13

4
;
3ω

2t4
)2

−52ω[t4λ+ ω(4λ− 3)]Ξ(
11

4
;
13

4
;
3ω

2t4
)Ξ(

11

4
;
17

4
;
3ω

2t4
)

+4ω2(6− 5λ)Ξ(
11

4
;
17

4
;
3ω

2t4
)

}{
52t4Ξ(

11

4
;
13

4
;
3ω

2t4
) + 33ωΞ(

11

4
;
17

4
;
3ω

2t4
)

}
. (37)

Time evolution of the equation of state parameter ωD, equation (35), for the cases of λ = 0 and λ = 1 are plotted
in Figs. 1 and 2, respectively. Figure 1 shows that at the late times (t → ∞), the the equation of state parameter
of the original Ricci dark energy yields ωD = −1.15. On the other hand, ωD at early times behaves like phantom
model (ωD < −1) of dark energy. Next, Figure 2 shows that at the late times (t → ∞), the the equation of state
parameter of the generalized Ricci dark energy, for λ = 1, yields ωD = −1.25. Besides, at early times ωD behaves like
quintessence model (ωD > −1) of dark energy.

1 2 3 4 5
t-1.160

-1.155

-1.150

-1.145

-1.140
ΩD

FIG. 1: Time evolution of equation of state parameter ωD of the original Ricci dark energy (λ = 0) in fractal cosmology,
equation (35), for ω = +1.

By making use of these results we can calculate the energy density ρD and the pressure density pD. Hence, the
generalized Ricci dark energy density in exact form is found as

ρD =
12

169t10Ξ(114 ; 13
4 ; 3ω

2t4 )

{
169[ω2(13λ− 12) + t8(16λ− 15) + t4ω(35λ− 33)]Ξ(

11

4
;
13

4
;
3ω

2t4
)2

−52(t4λ− 3ω + 4ωλ)Ξ(
11

4
;
13

4
;
3ω

2t4
)

}
. (38)

Time evolution of the energy density ρD in fractal cosmology, equation (38), for the cases λ = 0 and λ = 1 are
plotted in Figure 3.
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1 2 3 4 5
t-1.40

-1.35

-1.30

-1.25

-1.20

-1.15

ΩD

FIG. 2: Time evolution of equation of state parameter ωD of the generalized Ricci dark energy in fractal cosmology, equation
(35), for ω = +1 and λ = 1.
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-200

-150

-100
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0

pD

FIG. 3: For ω = +1, time evolution of the original (λ = 0) Ricci dark energy density.
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ΡD

FIG. 4: For ω = +1, time evolution of the generalized Ricci dark energy (λ = 1).

Next, the pressure density pD is calculated as

pD = −12Ω1

Ω2
, (39)

where

Ω1 = 2197[3ω3(13λ− 12) + 3t8ω(63λ− 58) + t12(74λ− 69) + t4ω2(178λ− 165)]Ξ(
11

4
;
13

4
;
3ω

2t4
)3
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+338ω[9t4ω(15λ− 16) + 3ω2(23λ− 24) + t8(119λ− 123)]Ξ(
11

4
;
13

4
;
3ω

2t4
)2Ξ(

11

4
;
17

4
;
3ω

2t4
)

−52ω2(4t4 + 3ω)(103λ− 102)Ξ(
11

4
;
13

4
;
3ω

2t4
)Ξ(

11

4
;
17

4
;
3ω

2t4
)2 + 24ω3(67λ− 66)Ξ(

11

4
;
17

4
;
3ω

2t4
)3, (40)

Ω2 = 169t10Ξ(
11

4
;
13

4
;
3ω

2t4
)2

{
13(4t4 + 3ω)Ξ(

11

4
;
13

4
;
3ω

2t4
)− 6ωΞ(

11

4
;
17

4
;
3ω

2t4
)

}
. (41)

Now, in the Figures 5 and 6, we plot time evolution of the pressure density pD in fractal cosmology, equation (39),
for the cases λ = 0 and λ = 1.

1 2 3 4 5
t0

500

1000

1500

2000

2500

pD

FIG. 5: For ω = +1, time evolution of the pressure density when (λ = 0).

1 2 3 4 5
t

-200

-150

-100

-50

0

pD

FIG. 6: For ω = +1, time evolution of the pressure density when (λ = 1).

On the other hand, for the deceleration parameter, we have[22]

q = −1− Ḣ

H2
=

Iq
IIq

, (42)

where

Iq = 16ω2Ξ(
11

4
;
17

4
;
3ω

2t4
)2 − 169(3t4 + ω)(t4 + 2ω)Ξ(

11

4
;
13

4
;
3ω

2t4
)− 52ω(2t4 + ω)Ξ(

11

4
;
13

4
;
3ω

2t4
)Ξ(

11

4
;
17

4
;
3ω

2t4
) (43)

IIq = 2

[
13t4Ξ(

11

4
;
13

4
;
3ω

2t4
) + 11ωΞ(

15

4
;
17

4
;
3ω

2t4
)

]2
. (44)

• Generalized holographic dark energy
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The density of generalized holographic dark energy[21] is given by

ρ̆D = 3H2f2(
R

H2
). (45)

Here f2(x) = ξx+ (1− ξ) > 0 and ξ is an arbitrary constant with 0 ≤ ξ ≤ 1. For ξ = 0, we recover energy density of
the original holographic dark energy whereas ξ = 1 leads to energy density of the original Ricci dark energy.

ρ̆D = 3H2(1− 13ξ)− 18ξḢ. (46)

If we write λ = 1 − ξ in the energy density for the generalized Ricci dark energy, the relation is reduced to the one
for the generalized holographic dark energy:

ρ̆D = lim
λ→1−ξ

ρD. (47)

Thence, we obtain

ω̆D = lim
λ→1−ξ

ωD = −1− 1

(3H − 2t−1)

˙̆ρD
ρ̆D

= −1 +
ĬD

ĬID
, (48)

where

ĬD = 2197t4[t4ω(4− ξ) + 3ω2(1− 7ξ) + t8(1− 10ξ)]Ξ(
11

4
;
13

4
;
3ω

2t4
)3

−338ω[t4ω(278ξ − 11) + (1− ξ)t8(25ξ − 1) + 6ω2(22ξ − 1)]Ξ(
11

4
;
13

4
;
3ω

2t4
)2Ξ(

11

4
;
17

4
;
3ω

2t4
)

−104ω2[3ω(2− 53ξ) + t4(7− 199ξ)]Ξ(
11

4
;
13

4
;
3ω

2t4
)Ξ(

11

4
;
17

4
;
3ω

2t4
)

−48ω3(31ξ − 1)Ξ(
11

4
;
17

4
;
3ω

2t4
)3, (49)

ĬID =

{
169[ω2(1− 13ξ) + t8(1− 16ξ) + t4ω(2− 35ξ)]Ξ(

11

4
;
13

4
;
3ω

2t4
)2

−52ω[t4(1− ξ) + ω(1− 4ξ)]Ξ(
11

4
;
13

4
;
3ω

2t4
)Ξ(

11

4
;
17

4
;
3ω

2t4
)

+4ω2(1 + 5ξ)Ξ(
11

4
;
17

4
;
3ω

2t4
)

}{
52t4Ξ(

11

4
;
13

4
;
3ω

2t4
) + 33ωΞ(

11

4
;
17

4
;
3ω

2t4
)

}
. (50)

Thus, we find

ρ̆D =
12

169t10Ξ( 114 ; 13
4 ; 3ω

2t4 )

{
169[ω2(1− 13ξ) + t8(1− 16ξ) + t4ω(2− 35ξ)]Ξ(

11

4
;
13

4
;
3ω

2t4
)2

−52(t4 − ξt4 − 3ω + 4ω − 4ωξ)Ξ(
11

4
;
13

4
;
3ω

2t4
)

}
, (51)

p̆D = −12Ω̆1

Ω2
, (52)

where

Ω̆1 = 2197[3ω3(1− 13ξ) + 3t8ω(5− 63ξ) + t12(5− 74ξ) + t4ω2(13− 178ξ)]Ξ(
11

4
;
13

4
;
3ω

2t4
)3

−338ω[9t4ω(1 + 15ξ) + 3ω2(1 + 23ξ) + t8(4 + 119ξ)]Ξ(
11

4
;
13

4
;
3ω

2t4
)2Ξ(

11

4
;
17

4
;
3ω

2t4
)

−52ω2(4t4 + 3ω)(1− 103ξ)Ξ(
11

4
;
13

4
;
3ω

2t4
)Ξ(

11

4
;
17

4
;
3ω

2t4
)2 + 24ω3(1− 67ξ)Ξ(

11

4
;
17

4
;
3ω

2t4
)3. (53)

Moreover, for ρ̆D + p̆D we find

ρ̆D + p̆D =
12∆

Ω2
, (54)
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where

∆ = 2197t4[ωt4(ξ − 4) + 3ω2(7ξ − 1) + t8(10ξ − 1)]Ξ(
11

4
;
13

4
;
3ω

2t4
)3

+338ω[6ω2(22ξ − 1) + 7t8(25ξ − 1) + t4ω(287ξ − 11)]Ξ(
11

4
;
13

4
;
3ω

2t4
)2Ξ(

11

4
;
17

4
;
3ω

2t4
)

+104ω2[t4(7− 199ξ) + 3ω(2− 53ξ)]Ξ(
11

4
;
13

4
;
3ω

2t4
)Ξ(

11

4
;
17

4
;
3ω

2t4
)2 + 48ω3(31ξ − 1)Ξ(

11

4
;
17

4
;
3ω

2t4
)3, (55)

In this relation, by taking ξ = 1 we can easily write ρD + pD for the original Ricci dark energy. In Figure 5, under
ξ = 1 limit, we plot ρ̆D + p̆D for the generalized holographic dark energy (or ρD + pD for the original Ricci dark
energy) in the ultraviolet regime. Figure 5 implies that we have the null energy condition, i.e. ρ + p ≥ 0, so the

scenario can be realized by an ordinary scalar field, for which ρ+ p = ϕ̇2 ≥ 0.

1 2 3 4 5
t0

100

200

300

400

pD + ΡD

FIG. 7: For ω = +1, time evolution of ρ̆D + p̆D for the generalized (ξ = 1) holographic dark energy (or ρD + pD for the original
(λ = 0) Ricci dark energy) in the ultraviolet regime.

IV. RECONSTRUCTION OF FRACTAL SCALAR FIELDS

In this part of the study, we reconstruct the potential and the dynamics of two scalar fields according the evolutionary
form of the fractal dark fluids. Mainly, we compare the generalized Ricci dark energy density with the energy density of
corresponding scalar field. It is worth to discuss this correspondence[30–35], because the scalar fields give an effective
description of the dark universe. On this purpose, we consider quintessence and k-essence(kinetic quintessence) scalar
fields.

• Fractal quintessence

The quintessence is described by the following action[8]:

SQ = −1

2

∫
d4x

√
−g[gµν∂µϕ∂νϕ+ 2V (ϕ)]. (56)

Taking the variation of this action with respect to the metric tensor gµν yields the energy-momentum tensor of the
quintessence field.

TQ
µν = ∂µϕ∂νϕ− 1

2
gµνg

λδ∂λϕ∂δϕ− gµνV (ϕ). (57)

Therefore, for the quintessence field energy and pressure densities are found as[23, 24]

ρQ =
ϕ̇2

2
+ V (ϕ), (58)

pQ =
ϕ̇2

2
− V (ϕ), (59)
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and the equation-of-state parameter of the quintessence field is obtained as

ωQ =
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (60)

In this relation, it is seen that, when we have ωQ < −1
3 , the universe accelerates for ϕ̇2 < V (ϕ)[23, 25]. Now, we can

investigate the correspondence between the fractal dark fluid and the quintessence dark energy model. Comparing
equation (60) with the equation-of-state parameter given in equation (35) gives ωQ = ωD, and equating (31) and (58)
implies that we can take ρQ = ρD. From this point of view we obtain

ϕ̇2 = (1 + ωD)ρD

=
ID
IID

[
3H2(13λ− 12)− 18(1− λ)Ḣ

]
, (61)

and

V (ϕ) =
1

2
(1− ωD)ρD

=
1

2

(
2− ID

IID

)[
3H2(13λ− 12)− 18(1− λ)Ḣ

]
. (62)

1 2 3 4
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200

300

400

500

600

700

VQ

FIG. 8: For ω = +1, time evolution of quintessence potential for the generalized (λ = 1) Ricci dark energy.

• Fractal k-essence

The general action for the k-essence scalar field model as a function of ϕ and χ = 1
2 ϕ̇

2 is given by the following
equation[26, 27]:

SK =

∫
d4x

√
−gp(ϕ, χ), (63)

where the Lagrangian density p(ϕ, χ) describes the density of pressure. The idea of the k-essence scalar field is used to
discuss the late time acceleration of the universe, and motivated from the Born-Infeld action of string theory[25, 28, 29].
In the k-essence gravity, the energy and pressure density of the scalar field ϕ can be defined, respectively, as[23]:

ρK = f(ϕ)[3χ2 − χ], (64)

pK = f(ϕ)[χ2 − χ]. (65)

Therefore, the equation-of-state parameter of k-essence scalar field is written as

ωK =
χ− 1

3χ− 1
. (66)
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This relation shows that the k-essence scalar field behaves like the phantom dark energy when the value of parameter
χ lies in the interval 1

3 < χ < 1
2 [25]. Equating the relation of the equation-of-state parameter of k-essence scalar field

with equation (35) gives

χ =
ωD − 1

3ωD − 1
. (67)

In addition to this result, equating (31) and (64) we have

f(ϕ) =
3H2(13λ− 12)− 18(1− λ)Ḣ

3χ2 − χ
. (68)

1 2 3 4
t
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1000

1500

2000

2500

3000

f HΦL

FIG. 9: For ω = +1, time evolution of k-essence potential for the generalized (λ = 1) Ricci dark energy.

V. CONCLUSIONS

The motivation of fractal gravity is the following: (i) the most of quantum gravity theories define our universe
as a dimensional flow and (ii) we wonder whether and how the features of dark universe are connected to the UV-
divergence problem. Fractal features of quantum gravity demonstrates new types of evolution. Besides, it is known
that the time-varying dark energy models give a better fit compared with the cosmological constant. The holographic
dark energy is one of the most interesting dark energy models. From this point of view, we investigated the extended
versions of Ricci and holographic dark energy models in fractal theory of gravity. If one write λ = 1− ξ in the energy
density for the generalized Ricci dark energy, the definition is reduced to the one for the generalized holographic dark
energy. Next, when we assume ξ = 1 or λ = 0, we recover the energy density of original Ricci dark energy, and
conversely the case of taking ξ = 0 or λ = 1 gives the original holographic dark energy. We performed the required
calculations to find the equation of state parameters of these dark energy models, and plotted them. The analysis
was performed under the limits Λ = 0 (no cosmological constant), and β = 2 (ultraviolet regime). We got phantom
and quintessence types of dark energies.
It is known that the scalar field models of dark energy can be used as an effective theory to investigate dark contents

of the universe. Thence, the reconstruction of the scalar fields based on some dark energy models give very important
results. This point motivated us to reconstruct the quintessence and k-essence models of dark energy. We implement
a connection between generalized fractal Ricci dark energy and two scalar field models. It is important to mention
here that these correspondences are very important to understand how various candidates of dark energy are mutually
related to each other. Such scalar fields have very exciting feature of understanding the phantom crossing while the
reconstructed scalar potential has interesting physical implications on cosmology.
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Appendix: the fractal dark energy in terms of redshift z

The fractal field equations for homogenous, isotropic and flat Friedmann-Robertson-Walker in the ultraviolet regime
can also be rewritten in the following form:

H2 =
1

3M2
p

ρt, (69)

and

Ḣ = − 1

2M2
p

(ρt + pt). (70)

From equation (25), we find the energy density of matter as

ρm = ρm0(1 + z)3t2, (71)

where ρm0 is an integration constant which gives the present value of the dark energy density and

z =
1

a
− 1 = t2Ξ−1(

11

4
;
13

4
;
3ω

2t4
)− 1 (72)

is the redshift. Furthermore, we also get

H = − ż

z + 1
, (73)

and

Ḣ = − z̈(z + 1)− ż2

(z + 1)2
. (74)

So from equations (33), (73) and (74), we can found the expression for generalized Ricci dark energy density ρD as

ρD = 18(1− λ)(1− λ)z̈(z + 1) + 3(7λ− 6)
ż2

(z + 1)6
. (75)
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