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Abstract

After nearly 150 years of patience, the Navier-Stokes equations in 3-D for incompressible fluid flow
have been analytically solved by two different methods. In fact, it is shown that these equations
can be solved in 4-dimensions or n-dimensions. The author has proposed and applied a new law,
the law of definite ratio for fluid flow. This law states that in incompressible fluid flow, the
other terms of the fluid flow equation divide the gravity term in a definite ratio, and each term
utilizes gravity to function. The sum of the terms of the ratio is always unity. This law evolved
from the author's earlier solutions of the Navier-Stokes equations. By applying the above law, the
hitherto unsolved magnetohydrodynamic equations were routinely solved. It is also shown that
without gravity forces on earth, there will be no incompressible fluid flow on earth as is known.
In addition to the usual method of solving these equations, the N-S equations have also been
solved by a second method in which the three equations in the system are added to produce a
single equation which is then integrated. The solutions by the two methods are identical, except
for the constants involved. Ratios were used to split the equations; and the resulting sub-
equations were readily integrable, and even, the nonlinear sub-equations were readily integrated.
The preliminaries reveal how the ratio technique evolved as well as possible applications of the
solution method in mathematics, science, engineering, business, economics, finance, investment
and personnel management decisions. The x—direction Navier-Stokes equation will be linearized,
solved, and the solution analyzed. The linearized equation represents, except for the numerical
coefficient of the acceleration term, the linear part of the Navier-Stokes equation. This solution
will be followed by the solution of the Euler equation of fluid flow. The Euler equation
represents the nonlinear part of the Navier-Stokes equation. The Euler equation was solved in the
author's previous paper. Following the Euler solution, the Navier-Stokes equation will be solved,
essentially by combining the solutions of the linearized equation and the Euler solution. For the
Navier-Stokes equation, the linear part of the relation obtained from the integration of the linear
part of the equation satisfied the linear part of the equation; and the relation from the integration
of the non-linear part satisfied the non-linear part of the equation. For the linearized equation,
different terms of the equation were made subjects of the equation, and each such equation was
integrated by first splitting-up the equation, using ratio, into sub-equations. The integration
results were combined. Six equations were integrated. The relations obtained using these terms
as subjects of the equations were checked in the corresponding equations. Only the equation with
the gravity term as subject of the equation satisfied its corresponding equation, and this unique
solution led to the law of definite ratio for fluid flow, stated above. This equation which satisfied
its corresponding equation will be defined as the driver equation; and each of the other equations
which did not satisfy its corresponding equation will be called a supporter equation. A supporter
equation does not satisfy its corresponding equation completely but provides useful information
which is not apparent in the solution of the driver equation. The solutions and relations revealed
the role of each term of the Navier-Stokes equations in fluid flow. The gravity term is the
indispensable term in fluid flow, and it is involved in the parabolic and forward motion of fluids.
The pressure gradient term is also involved in the parabolic motion. The viscosity terms are
involved in the parabolic, periodic and decreasingly exponential motion. Periodicity increases
with viscosity. The variable acceleration term is also involved in the periodic and decreasingly
exponential motion. The convective acceleration terms produce square root function behavior
and fractional terms containing square root functions with variables in the denominators and
consequent turbulence behavior. For a spin-off, the smooth solutions from above are specialized
and extended to satisfy the requirements of the CMI Millennium Prize Problems, and thus prove
the existence of smooth solutions of the Navier-Stokes equations.
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The Navier-Stokes equations in three dimensions are three simultaneous equations in Cartesian
coordinates for the flow of incompressible fluids. The equations are presented below:

02V, J*V, 9%V, dp v, v, V., v,
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Equatikon (N ) will be the first equation to be solved; and based on its solution, one will be able to
write down the solutions for the other two equations, (N,), and (N,).

Dimensional Consistency

The Navier-Stokes equations are dimensionally consistent as shown below:
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Solutions of the Navier-Stokes Equations
Preliminaries

Option 1
Solution of 3-D Linearized Navier-Stokes Equation
in the x-direction

The equation will be linearized by redefinition. The nine-term equation will be reduced to six terms.

) 2v. 9v. o2 v v v .
Given: (55 + ayV;+ /. —%7;+pgx:p(—x+VxWX+V S W

d%v, d%v, Ve | Opy v, My Wy v,
N8x2 —H 2 .u 8Z Tk TP +pVy e +pV Yy +pV; o =P8y (B)

2 2
s+ G+ e+ B 4T = pe, ©

Plan: One will split-up equation (C) into five equations, solve them, and combine the solutions. On
splitting-up the equations and proceeding to solve them, the non linear terms could be redefined and
made linear. This linearization is possible if the gravitational force term is the subject of the
equation as in equation (B). After converting the non-linear terms to linear terms by redefinition,
one will have only six terms as in equation (C). One will show logically how equation (C) was
obtained from equation (B), using a method which will be called the multiplier method.

Three main steps are covered.

In main Step 1, one shows how equation (C) was obtained from equation (B)

In main Step 2, equation (C) will be split-up into five equations.

In main Step 3, each equation will be solved.

In main Step 4, the solutions from the five equations will be combined.

In main Step 5, the combined relation will be checked in equation (C). for identity.

Preliminaries
Here, one covers examples to illustrate the mathematical validity of how one splits-up equation (C).
Let one think like a child - Albert Einstein. Actually, one can think like an eighth

or a ninth grader. Suppose one performs the following operations:

Example 1: 10+20+25=55 (1)
_ 10 _ 2
10=55X55=55X; (2)
20=55x 3 =55%x % 3)
25=55XE=55X3 4)
Equations (2), (3), and (4) can be written as follows:
10 =55a (5)
20 =55b (6)
25=>55¢ @) Observe also that a+b+c=1
One will call a,b and ¢ multipliers. (” + +_ 1_ =1)
Above, a = 121, b= 11, c=%
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Preliminaries
Example 2: Addition of only two numbers
20+25=45 (8)
20=45Xx22=45X3 (9

25=45x2=45%x3 (10)
Equations (9), and (10), can be written as follows:
20=45a 11
25=45b (12)
Rewrite (8) by transposition.
If 20-45=-25
Then 20=-25d (dis a multiplier)
—45=-25f ( fis a multiplier)
Above, d:&——%, f= —45_-2

25" 2575
Observe also here that d+ f=1 (-%+2=3=1)
a+b=1 (§+3=9=1)

One can conclude that the sum of the multipliers is always 1.

More formally:

Let A+ B+C=S ,where A,B,Cand S.are real numbers. (for the moment), and
one excludes 0.

Let a, b, c be respectively, multipliers of the sum S corresponding to A, B, C.
Then A=Sa, B=Sb, C=Sc;and a+b+c=1

To show that a+b+c=1,

Sa+Sb+Sc=S.

S(a+b+c)=S (factoring out the §)

a+b+c=1.(Dividing both sides of the equation by §)
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Example 3: Solve the quadratic equation; 6x2+11x—10=0
Method 1 (a common and straightforward method)

By factoring, 6x? +11x-10=0
(3x—2)(2x+5) =0 and solving,
Bx—=2)=0o0or 2x+5)=0

2 _5 . 5 2
x=5.,x=-3. Solution set: { 5 3}

Method 2: One applies the discussion in Example 2 | gten 2: 30042 —1205q + 300 = 0
One will call this method the multiplier method. °p < “ a
) ~ 60a> —241a+60=0
Step 1: From 6x“ +11x—-10=0 (D) +J 2
6x% =10a; (Here, a is a multiplier) 120
* ’ ’ p _ 241++/43681
3x? =5a 2) a= 120
11x=10b (Here, b is a multiplier) a= %
Hx=100-a) (at+by=1 2414209 _ 241+209 241209
l1x=10-10a 9T7120 T 120 120
x=10-10a _ 450 32
11 =120 %" 120
(10 1061)2 Sa (Substituting for x in (2) _ %or %
100 — 200a +100a?) _
3( 1 =5a
. Qi _ _15 3 h —_11 —10(-11
Step 3: Since a+b =1, when a=7 or 35 Step 4: When b = 1 11x =10( 4)
3__53 11 —_3
b=1-33=-27or — 4 xX==73
when a=1s b_l_ﬁ_ﬁ When b 1150, 11x 10(125)
_1011y. . _2
=115 ¥=3
Again, one obtains the same solution set {—% , %} as by the factoring method.
About the multipliers
. - _15 3 pop3 o1 ,_4 ,_11
The values of the multipliers obtained were a = 4 or 3 T b=-2 7 or 4 ; 5 b= 5
It easy to understand, say, in 20 =45X 3—2 =45X %, that the multiplier 2 5 can be viewed as the

fraction of the multiplicand, 45 .
Later, one will learn that the multipliers are ratio terms as in Examples 5, 6 and 7, below.
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Example 4 Solve ax? + bx + ¢ =0 by completing the square and incorporating the multiplier
method.

Step 1: From ax? +bx+c=0 b b\ ¢
0 _ 4+ (b)) _C
ax® +bx =—c Step 2 “*24 _\(2a) a
Let ax* =—cd; (d is a multiplier) (D) b _,|b® _c
Let bx=—cf (f isamultiplier) ) 2T 142 a
(andd+f:1) x+£:+ i_ﬂ
ax*> +bx =—cd —cf (Adding equations (1) and (2) 2a "V4a® 44?
x2+hx:_—cd—£f :i\/b2—4ac
a a a 4q?
2 2
2,.b, (b)) _(b) —_c _ b, b2—4ac
* +ax+(2a) (Za) =Tadrh ¥==20* 4
(completing thezsquare 02n the left-hand side)) - b+ \/ é)z _4dac
b)Y _(b) _c _ a
(e da) =(3) -6 @rr=n O
One's interest is in equations (1), (2) and (3).

Example 5: A grandmother left $45,000 in her will to be divided between eight grandchildren,
Betsy, Comfort, Elaine, Ingrid, Elizabeth, Maureen, Ramona, Marilyn, in

1.1 1. 1.5 .1.7.2 o1 1 1.5 1.7 2
theratlo%.18.12.9.36.6.36.9.(Note. 36+18+12+9+36+6+36+9_1)

How much does each receive?
Solution:

Betsy's share of $45.000 =3¢ % $45,000 = $1,250
Comfort's share of $45,000 = 1 x $45,000 = $2,500
Elaine's share of $45.000 = 5x$45.000 =$3,750
Ingrid's share of $45000 = §x $45,000 = $5,000
Elizabeth's share of $45.000 = 5 x $45,000 = $6,250
Maureen's share of $45,000 = % x $45,000 = $7,500
Ramona's share of $45,000 = % X $45,000 = $8,750

Marilyn's share of $45,000 = % x $45,000 = $10,000

Check; Sum of shares [= $45,000
Sum of the fractions = 1
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2 2y
Example 6: Sir Isaac Newton left pg, units in his will to be divided between ,u%x‘g , &&yz ,
d%v, dp v, v, v,
_'u&z2’8xp8t pV&x pV&y pV 1ntherat10abcdfhmn

where a+b+c+d+ f+h+m+n=1. Howmuchdoeseachreceive?

2y
Solution —,ua8 's share of pg, units = apg, units

—u %yz s share of pg, units = bpg, units

—u 8 2 's share of pg, units=cpg, units

%'s share of pg, units =dpg, units
v,
p—=> & 's share of pg, units= fpg, units

pV. %'s share of pg, units = hpg, units

pY, 0;‘;;; 's share of pg, units = mpg, units
v,
pV. == P
Sum of shares = Note: a+b+c+d+ f+h+m+n=1

's share of pg, units=npg, units

Example 7: The returns on investments A, B, C, D are in the ratio a:b:c:d.If the total return
on these four investments is P dollars, what is the return on each of these investments?
(a+b+c+d=1)
Solution Return on investment A = aP dollars
Return on investment B = bP dollars
Return on investment C = ¢P dollars
Return on investment D = dP dollars

Check aP+bP+cP+dP=P
Pla+b+c+d)=P
a+b+c+d=1 (dividing both sides by P)
The objective of presenting examples 1, 2,3,4,5, 6, and 7 was to convince the reader that the

principles to be used in splitting the Navier-Stokes equations are valid.
In Examples 3 and 4, one could have used the quadratic formula directly to solve for x, without

finding a and b first. The objective was to convince the reader that the introduction of a and b did
not change the solution sets of the original equations.

For the rest of the coverage in this paper, a multiplier is the same as a ratio term
The multiplier method is the same as the ratio method.



Linearization of Non-Linear terms

Main Step 1

Linearization of the Non-Linear Terms

Step 1: The main principle is to multiply the right side of the equation by the ratio terms
This step is critical to the removal of the non-linearity of the equation.
pg, 1s to be divided by the terms on the left-hand--side of the equation in the ratio
atb:cidifithim:n (a+b+c+d+f+h+m+n=1
nonlinear terms

Rv,  Rv, v, . I, IV, v,

vV
- — _ x LT Xy v y X
o ‘ué’yz “az2 oax P TPYx o py&y Pzaz—pgx 1

o . . ~all acceleration terms
Apply the principles involved in the ratio method covered in the preliminaries, to the

nonlinear terms (the last three terms.)

Then pV, 80.)‘; L =npg o where n is the ratio term corresponding to pV, 8&\); L,
v
V.S =ng, 2
V, % = ng,. (One drops the partials symbol, since a single independent variable is involved)
dz 4V _ _dz _
dr o =8y vV, = di by definition)
dvx —
vV, dv
Therefore, |V, sz = tx =ng, 4)

Step 2: Similarly, Let pV, aa‘;x =mpg, ( m is the ratio term corresponding to pV, aa‘;x ) (B

|4 d d‘;x =mg, (One drops the partials symbol, since a single independent variable is involved)
DL g, v,=D)
P — g, ©)
Therefore, |V, d;;x = d;:;x =mg, (7N
Step 3: Let pV, %‘jé‘ = hpg, where h is the ratio term corresponding to pV, Wx
4 %Zx = hg, 8)
V. d d‘;x = hg, (One drops the partials symbol, since a single independent variable is involved)
de B g, (v, =)
da"/tx = hg, 9) Therefore, |V, %‘;x = d;;x =hg, (10)




Linearization of Non-Linear terms

From equations (4), (7), (10), V, % =V, % =V, % = %% ang
o4 o\ dv
K I (1)
Thus, the ratio of the linear term ;x i ; % +V % +V, %V—Z’C in

equation (1) is 1 to 3. Unquestionably, there is a ratio between the sum of the nonlinear

. ov. o . :
terms and the linear term 7’5 This ratio must be verified experimentally.

Note: One could have obtained equation (C) from equation (A) by redefining the nonlinear
terms by carelessly disregarding the partial derivatives of the nonlinear terms in equation (1).
However, the author did not do that, but logically, the terms became linearized.

Note also that the above linearization is possible only if pg,. is the subject of the equation,
and it will later be learned that a solution to the logically linearized Navier-Stokes equation is
obtained only if pg, is the subject of the equation.

Step 4: Substitute the right side of equation (11) for the nonlinear terms on the left- side of
nonlinear terms

82V B 82V 22v, L9 s
Haa ~Hga ~Haa v octPo

IV, IV, IV,
+pV, ax+pV &y+pV 8 =pg, (12

all acceleration terms

d%v, 22%v, 22v, A% A%
THog TR TH gt gxp“’Tx”pr =P8y

all acceleration terms

Then one obtains

d%v, d%v, d%v, ov
—u 8x2 —-u 8y2 -u o %+4p7x=pgx (simplifying) (13)

Now, instead of solving equation (1), previous page, one will solve the following equation

PV, PV, Ve 1V L
K Ka';yz K73+ pox 5 = & (k_ﬁ) (14)

ax2
Main Step 2

Step 5: In equation (14) divide g, by the terms on the left side in the ratio atbicid: f.

&2V 82V 82V 10dp _ 07V
Kga =as —K5a=bgss —K7gam=cgs or=dgs 4755 = fs
(a, b, c,d, faretheratlotermsand a+b+c+d+ f=1).
2
i _&. — 8. _ 8. Pox _ 8. 13
As proportions: =15 b =7 c =T Td =T 7T

One can view each of the ratio terms a, b, ¢, d, f as a fraction (a real number) of contributed
by each expression on the left-hand side of equation (14) above.



Solutions of the five sub-equations

Main Step 3

Step 6: Solve the differential equations in Step 5.
Solutions of the five sub-equations

2%V, 82V %V, 1dp
—K&X—Zx:agx &yz ng _Kﬁ:ch Eg_dgx
92V, 22V, 92V, 19p _
k o2 48 K 2? L= —bg K o7 cg Eg_dg
82Vx a 072Vx Q &2Vx < @ — dpg
gxz k > k %22 k ox
Ve __ag Ve _ cg p dpgx+C7
x kTG %— b]§y+C3 dz K itGs
Vi =—55x2 +Cx+ G be , Vis = =53 22 +Cs52+ g = /%
Vio =5y +Gy+Cy 5
Vx _f
ot 4 8x
Vx4 = fix t
Main Step 4

Step 7: One combines the above solutions
Vi=V, +Vo+Vi3+Vy

ag bg Jg
= 2Ié‘x2+C1x+C2 2ky +C3y+C4 2kz +Csz+Co+ 751+ G
b
=-Zxx PV H Cyy - L+ Csz+ %Z+C9

_ag bg cg /8
Zlécx —2]?)72 2]?Z2+C1X+C3y+C5Z+Txt+C9

ag bg cg fg
—2]é‘x - 2Ié‘y - 2]§z +Cx+ Gy + Csz+=-1+Cy
—g—x(axz+by2+cz2)+C1x+C3y+C5z+fgxt+C9

fgx

V.= ng(ax +by? +cz2) + Cix + Cyy + Csz + 5% 4 t+Cy

X

P(x) = dpgx
Vx = Vxl + Vx2 + Vx3 + Vx4

V(x,y,2,1) = —%(wﬂ +by? +cz2)+ Cix + C3y + Csz +%z+ Co
P(x) = dpg,x

10



Main Step

5

Checking in equation (C)

Checking in equation (C)

Step 8:  Find the derivatives, using
V, = —g—%(aﬂ +by? +cz2)+ Cix + C3y + Csz + %t + Gy
P(x)=dpg,x
Ny _ L Ny __Pe. V. _ P8
&X (2 )C)+C1 W——T(by)+c3 TZ——T(CZ)
. PV, _ apgx 5 IV, __bpg, 3 v, __cpg..
. axz .u . ayz ‘u J azz /.L s
av,
4. %degx, 5. atx:%
2 2
Step 9: Substitute the derivatives from Step 8 in —u( O;x‘; 0;;; % Vx 50) + 3Px +4p 0—;"?/; =P8,
to check for identity (to determine if the relation obtained satlsfles the orlglnal equation).
92V, 82V Bsz p IV, Scrapwork
THCGa T gn T )T TP TP v, __apg,
apg, _ bpg, pgx [ ox? T
BA T TR )+dpgx+4ngx—pgx Pv,  bpg, .
? n? u
apg, +bpg, +cpg, +dpg, + Pfgx?:ng 92v, _cpg. .
agy +bg, +cg, +dg, + f8,=¢, 25 L
?
glatb+c+d+f)=g, P _ gro - | [PV S
’ il RS
g.(=g, (a+b+c+d+f=1)
?
8,=8, Yes

An identity is obtained and therefore, the solution of equation (C), p.96, is given by

J 14 Cy; P(x)=dpg,x

Vo (x,y,2,t) = —g—%(ax2 +by? +cz2)+ Cix + C3y + Csz +

The above solution is unique, because all possible equations were integrated but only a single
equation, the equation with the gravity term as the subject of the equation produced the solution.

11



Solutions Summary

Solution Summary for v,, v, and v,

For v, atb+c+d+f=1
J2v 82 azvx dp v, o, v, v,
MG+ g+ g ‘a”’g =P Ve g TV Vg
2y 2y

7 o 32 Tpox 7‘5’
Vx:Vx1+Vx2+Vx3+Vx

oe bg fe
=—2]§x2+C1x+C2_2/26)’2+C3y+c4 kZZ+C5Z+C6+ 4xt+C7+C
asy cg, i

b
) x2+C1x—%y2+C3y_ % 22 +Csz+ 7 1+G

_ag bg cg fe
= 2Ié‘x —2£y2—2£z2+C1x+C3y+C5z+ 4xt+C9

Vy(x,y,z,t)=—%(ax +by +cz2)+C1x+C3y+C5z+%t+C9
P(X)zdpgxx

For vV, h+j+m+n+qg=1
82Vy 82‘/ 82‘/)’ (9]) — Y Y Y Y
‘u(&XZ +&y2 8Z ) ay+pgy_p(7‘}‘vx§+‘/yw+‘/za—z)

%V, %V,

y _ y 19, %Y _
K82 K8y2 K8z2+p8y+48t gy
hg mg. ng
‘/y:—zkx +C1.x ]zy2+c3y__k}Z2+C5Z+Tyt
Vy(x,y,z,t)———(hx + jy? +mz )+C1x+C3y+C5z+%;+C
P(y) =npgyy
For v, r+s+u+v+w—1
v, (v, Oy b, vy Py
(8x2 2 8z2) o T P& = P( Vi etV > +V, aZ)
%, 82 1071? w, _
S e e S
rg. gz g gz
Vz=—2kx +C1.x_2ky +C3y 2kZ +C5Z+ 1 t
P(z) =vpg.z

12



Discussion About Solutions

Discussion About Solutions
d%v, 82V 8 Voo dp

A solution to equation ,u( 0 3y2 ) + + 4p(%) =pg, (C) is
Vi(x,y,2,0) = —g—%(axz +by? + czz) +Cx+ Gy +Csz+ fix t+Cy

P(x)=dpg x; (a+b+c+d+f=1)

This relation gives an identity when checked in Equation (C) above.

One observes above that the most important insight of the above solution is the indispensability of
the gravity term in incompressible fluid flow. Observe that if gravity, g, were zero, the first three
terms, the seventh term, and P(x) would all be zero be. This result can be stated emphatically that

without gravity forces on earth, there will be no incompressible fluid flow on earth as is known.
The above result will be the same when one covers the general case, Option 4.

The above parabolic solution is also encouraging. It reminds one of the parabolic curve obtained
when a stone is projected vertically upwards at an acute angle to the horizontal..

The author also tried the following possible approaches: (D), (E) and (F), but none of the possible
solutions completely satisfied the corresponding original equations (D), (E) or (F) .

2y 2y 2y
‘ua&xe +U8&yzx +u88 5+ P8y 4pi.‘;tx :% (D) (One uses the subject %

56’2VX+£82VX+£82V 18p+&_ x
4 ox?2 4 2 4 g2 4pox

2 2 2 2
vy Oy P8y APy 1dp_ 0%y (F)  (One uses subject aax‘gx

(E), (One uses the subject o

T2 TR T u Tua Tua ae
Integration Results Summary

9%V, 82V (92V
ua Sl e Laapin—pg.  ©

/8.

i t+Cy

Case 1:

Vo (x,y,2,t) = —g;iz‘(azx2 +by? +cz?)+ Cx+Cy+Csz+
P(x)=dpg,x; (a+b+c+d+f=1)

2 2
Case 2: u %xzx +u %y‘;x + U 0; Zx +pg, —4p %Vt % (D). (One uses the subject %

<----Solution

Vi(x,y,z) = g—ﬁ(axz +by? +cz2)+ Cx+ A,x + Cyy + Csz —%t+ C

P(x)=1 pg.x

Ko*Vy KV KPVe 1p g 9V
Case 3: T o0 o 22 +T B, 4p8x+__

aV
(E). (One uses the subject &[x

—(22 _(y 2
V. (x,y,z,t) = (C coslxx+C2 sinA,x)e (A /ﬂ)t+(C3coslyy+C4sin/1yy)e 4y /w)t

+(Cscos Az + Cg sin lzz)e A S)t

P(x)=Ax =dpg,x

4ft+/1x+c8

13
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o d%v, J%v, P8y 4pav, 1dp %, . |9%V,

Case 4: — 2 2 +77+ﬁ§ =0 (F). (One uses the subject 92
\/E _(M)x
V.(x,y,z,t) = (Acos Ay + BsinAy)| Ce’ @ a
Ab /’L\ b
+(Ecos Az + F'sin lz{He( b ( )XJ pg“‘—uk Ax + B+ (A cosAx + B, sin Ax)e= (A2
Zﬂfx +C2X+C3) P(x):dpgxx

Note: Relations for equations with subjects g, and P are almost identical.

By comparing possible solutions for equations (C) and (D), A, = —pg, in relation for (D).

Vo(x,y,z,t) = ;L—Zt(axz +by? +cz?) + Cix+ lpx + Gy +Csz— %t +C;, Px)= %pgxx

Comparative analysis of the possible solutions when checked in each corresponding equation

Equation| Number of terms of
Equation Subject | possible solutions not
satisfying original equation
0%V, 82V 82V
Case o ok 8y2 i )+ & i 4P( X) P P8x Case lNgirfids the solution
v,  d%v. d%v v, dp ap
Case2: u 52 TH 8y2x +u > 5+ Pgy — p#=$ o One term
K8 V., KJ*V, KV, 1 dp g JV, Vv,
Case 3: &x2 Y 2 Y 02 EaJFT— P o At least 2 terms
d%v, % 4p ov d%v 2%V,
Case4: — 8y2x - o'?z2x - p‘i" +7p 8;‘ +%%= 8x2x 8x—2x At least 2 terms
2 2 2 2
Case 5: — %x‘;x - 80-) ‘;x - p‘ix + %% + %% = %y‘;x %y‘;x At least 2 terms
/4
0%V, 9%V, P8  4pdV, 1dp_09%V, 9%V,
Case 6: 8y2 ~ 0 T +—= T 7+ﬁ$_ 57 2 At least 2 terms

Note above that only Case 1 is the solution, and this may imply that the solution to the Navier-Stokes
equation is unique. Out of six possible subjects, only one subject produced a solution. The above
results show that a relation obtained by the integration of a partial differential equation must be
checked in the corresponding equation for identity before the relation becomes a solution, Cases 2,
3,4,5 and 6, are not solutions but integration relations. For example, it would be incorrect to say
that the equation in Case 3 has a periodic solution; but it would be correct to say that the equation in
Case 3 has a periodic relation, since the relation obtained by integration does not satisfy its
corresponding equation. It would be correct to say that the equation in Case 1 has a parabolic
solution or a parabolic relation.

Below are detailed explanation of results of the identity checking process.

14



Discussion About Solutions

Outcome 1: With g, included and with g, as the subject of the equation. The solution is

straightforward and the possible solution checks well in the original equation (C). Also, if g, or pg,
is not the subject of the equation, the linearization of the nonlinear terms could not be justified.

Outcome 2: With g, i i 8;)‘ as the subject of the equation.
1 8]9 )J ) 8x _&Vx %gxt

) Vv,
There are two problems when checking . 1. For e —Eg — - 4p 75 2= o Af

With d and f in the denominators, the multipliers sum a+b+c+d+ f =1 is false.

Outcome 3 : With g, , a;x as the subject of the equation, there is one problem:

_1b_ Ve
dpox o - - ipd .With d in the denominator a+b+c+d+ f =1 is false

2
Outcome 4 : With g, included, and O;X‘gx as the subject of the equation, there are at least, two

problems in the checking with the multipliers ¢ and f in the denominators.
Checking for a+b+c+d+ f =1 is impossible.

Outcomes 5 and 6 are similar to Outcome 4.

Characteristic curves of the integration results
Equation
Equations Subject | Curve characteristics

0%V, 82V 82V
Case 1: —u( ) 8y2 + )+§+4p( L) =pg, pg. Parabolic and Inverted

v, v, az N, p op

Case 2: u 52 TH 2? + U = 2" +pg, — p7 = P Parabolic
9%V, 9%V, 9%V, v, av,
Case 3: Ij &x2 Ij &yz + [i ) %% + %: 8;‘ 8;6 Periodic and decreasingly
exponential
2 2 2 02V
Case4: — J ‘;x - %V PEx +— 4p % + l% = %x‘;x 2 Periodic, parabolic, and
& 22 H H decreasingly exponential
2 2 2 o2
Case5: — %x‘;x - &; ‘;x _ P&y + 4_p% + l% = 4 ‘;x 8ny Periodic, parabolic, and
< H H H & decreasingly exponential

2 2 2 %V,
Case 6: 8 Z - a&x‘; _ Py +—= 4p 8;’“ + 1 % = aa Zx a—zx Periodic, parabolic, and
% AR H < < decreasingly exponential

The following are possible interpretations of the roles of the terms based on the types of curves
produced when using the terms as subjects of the equations.

. g, and 8p are involved in the parabolic motion; g, is responsible for the forward motion.

2. a;[/x is involved in the periodic and decreasingly exponential bevavior.
a2V, J?V, 9%V, . . . L . .
2 nd 2 are involved in the parabolic, periodic and decreasingly exponential

motion. As i increases, the periodicity increases

15



Discussion About Solutions

Definitions and Classification of Equations

PV, V. PV, 1P o
w2 Kor Ko o 8t (k=2)

-K

One may classify the equations involved in Option 1 according to the following:

Driver Equation: A differential equation whose integration relation satisfies its corresponding

equation.

Supporter equation: A differential equation which contains the same terms as the driver equation
but whose integration relation does not satisfy its corresponding equation but
provides useful information about the driver equation.

Note that the driver equation and a supporter equation differ only in the subject of the equation.

Equation # of terms of
Equation Subject | Type of | relation not
equation satisfying original
equation
9%V, 82V o'? V,
Case 1: —u( M ay2 ’“)+g+4p( ) =P8 | pg. Driver | None
Equation
d%v, 82V %, v,
Case 2: u 8x &yzx TH % zx +pg —4p—- 8t 3xp % Supporter | One term
equation
KoV KIVe KPVe 1 8 V,
Case 3: - 8x2 + 1 8y2 + 1 e —4—5 q= atx atx Supporter | Atleast 2 terms
equation
2 2 2 2 Supporter
Cased: — %y‘;x — &az‘;x — pix + 7 X4 %% = a&x‘gx 8&)6‘;;( eqlrl)stion At least 2 terms
d?v, Jd%v, pg, 4p 1dp _d%v d%v
Case 5: — 2x — zx — =Xy Lo Xy~ = 2x 2x Supporter At least 2 terms
ok o " " pox oy o equation
82V 82V 4 0%V, 22V,
Case 6: ayz axz pﬁx + Tp + %% = 822x azzx Supporter At least 2 terms

equation

One can apply the above definitions in solving the magnetohydrodynamic equations (Option 6)
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Discussion About Solutions

Applications of the splitting technique in science, engineering, business fields

The approach used in solving the equations allows for how the terms interact with each other.
The author has not seen this technique anywhere, but the results are revealing and promising.
Fluid flow design considerations:

1. Maximize the role of g, forces, followed by; 2. % ; .a;t/x

(Make g, happy by always providing a workable mgsin@) .

For long distance flow design such as for water pipelines, water channels, oil pipelines. whenever
possible, the design should facilitate and maximize the role of gravity forces, and if design is

p

impossible to facilitate the role of gravity forces, design for e to take over flow.

2y,
—— should be studied further, since its role is the most complicated: periodic,

ox

parabolic, and decreasingly exponential.

Tornado Effect Relief
Perhaps, machines can be designed and built to chase and neutralize or minimize tornadoes during
touch-downs. The energy in the tornado at touch-down can be harnessed for useful purposes.

Business and economics applications.
1. Figuratively, if g, is the president of a company, it will have good working relationships with all

The performance of

the members of the board of directors, according to the solution of the Navier-Stokes equation. If g,
is present at a meeting g, must preside over the meeting for the best outcome.

p

2.If g, is absent from a meeting, let P preside over the meeting, and everything will workout well.

However, if g, is present, g, must preside over the meeting.

To apply the results of the solutions of the Navier-Stokes equations in other areas or fields, the

p

properties, characteristics and functions of g, i 7* must be studied to determine analogous

terms in those areas of possible applications. Other areas of applications include investments choice
decisions, financial decisions, personnel management and family relationships.

Option 2
Solutions of 4-D Linearized Navier-Stokes Equations

One advantage of the pairing approach is that the above solution can easily be extended to any
number of dimensions.

2
If one adds u%s—‘zlx and pV, 0—;& to the 3-D x—direction equation, one obtains the 4-D Navier--

2 2 2
Stokes equation —u( O;XV 0;;; J V 07 Vx ) oy P + 4p(— %V =P8,
2 2 2
After linearization, —u( O;XV 0;;; + 07 Vx + 07 Vx ) + 81? + 5p( vy )= P8y and its solution is
— P8 2 2 &
Vo (x,y,2,8,t) = 2 (ax® + by +cz> +es?) + Cjx + C3y + Csz+ Cos + 3 t+Cy

P(x)=dpg,x (a+b+c+d+e+f=1)

For n—dimensions one can repeat the above as many times as one wishes.

Back to Options
17



Solutions of the Euler Equations

Option 3
Solutions of the Euler Equations of Fluid flow

In the Navier-Stokes equation, if ¢ =0, one obtains the Euler equation. From

d%v 82Vx v, op v, v, v, v, .
(8x2 2 + o7 _a"'ng:P(W"‘VxW"'VyW"'Vza_Z)’One()btams
(= 0) P Ve oy Vo oy My I
Euler equation : (1 =0) o P8 = p( +V, o T |4 8y +V, r ) or
p( o, +V, &6"3 +V %‘;‘ +V, x ) + pr = pg, <---driver equation.
v v, v, L1 &‘p

X _ X _ X o 1 1
Euler equation (1 =0): +V, e +V, Yoy +V 07 Do g, <---driver equation

Split the equation using the ratio terms f,, h,, n,, q,, d,,,and solve. (f, +h,+n,+q,+d, =1)

3" v, IV, v, 19 _
fgx Vi &XX: egx 8}] l’legx . 8 j— qegx 5- p 8x - dggx
f 8.t dv. dv, dv,
edx x X _ _ 1
Vx4 — fgxl‘ x dx hegx y dy Me8x 2 dy =4q.8x 5% = degx
VidV, = h,g.dx | V,dV, =n,g,dy V.dV, =q,8,dz; P
sz _ ViVe=n.g8y+y,(V) V Vi=q.8:2 +y.(V.) ox d.pg.
2 - egx'x or n g y l//y(V) V — qegx + l//z(v) p:depgx.x+C7
V:i=2hgx Vie=—9"~+—y— R V.
. 8 Y ! V,#0
Ve=t2hgx | V,#0 ¢
ngy . 4.8z Yy  y.(V)
+ X X Z
Vo(x,y,2t)= f.gt+ 2h,g x + V. v + v v +C
P(x)=d,pg x (fe+he+ne+qe+de=l)Vy¢0,VZ¢0
Find the test derivatives to check in the original equation.
OW = fg |2V =2hg 2V, Do mong |3 Dol | OV, _ass | s, %:depgx
WV, _ heg ” ’ o V.
F= V=0 v, #0 V,#0
v v v L1 ap _

I I Iy . )
o +V, o +V, 8y + V 32 p Pk (Above, v, (V) and y_(V,) are arbitrary functions)
?

f.8.+ Vs heg’“+V ‘”“;’7" +V, qilgx +pdePgA
y Z
()

fo8x T h8 + g +q,8, +d,g =g,
9
g (fo+h +n,+q,+d,=g,
?
gx(l):gx (f;)+he+ ne+qe+de:1)

?
8x=8x Yes

18



Solutions of the Euler Equations

The relation obtained satisfies the Euler equation. Therefore the solution to the Euler equation is

ngy  ag,z V() v (V)
v, YVt A

arbitrary functions

Ve(x,y,2,0) = fg,t +/2hg x + +C

P(x)=dpg, x; V, # 0,V,#0

The above is the solution of the driver equation. There are 5 supporter equations not covered here.
Let it be known that the Euler equation of fluid flow has been solved for the first time in this paper.

Note: So far as the solutions of the equations are concerned, one needs not have explicit
expressions for V., V. and V..

However, by solving algebraically and simultaneously for V,, V, and V, the (ng,y/V,) and

(98,z/V,) terms would be replaced by fractional terms containing square root functions with

variables in the denominators and consequent turbulence behavior

The impediment to solving the Euler equations has been due to how to obtain sub-equations from
the six-term equation. The above solution was made possible after pairing the terms of the equation
using ratios (ratio terms). The author was encouraged by Lagrange's use of ratios and proportion in
solving differential equations. One advantage of the pairing approach is that the above solution can
easily be extended to any number of dimensions.

Extra:
Linearized Euler Equation: If one linearizes the Euler equation as was done in Option 1, one
obtains 4 8t /1) gxp g, ; whose solution is V, = %t +C; P(x)=dpg,x.(see Option 1 results)
Results for the Euler equations are presented below: for V., V| and V,
av, av, av,
For V. §+p 5 L+ pV, &xx +pV, 8; +sza_Zx)=ng
—_— v, (V) Vv
V(o) = fiut £ 2hg x + 182 1 982 P VL OD by o
X X N X V» VZ )% VZ X
' Y x-direction
arbitrary functions
Vi#0,V, 20
, ov. v, v,
For V,, &p+p +pV, ==+ pV, ==+ pV, =+ = pg,
dy ot ox TV oy o
Ggy‘x )’Sgyz WX(V) l//z( ) —
Vy(x,y.2.1) =Asg,t £\[22,8,y ' V. V. v, > P(y)=2ipg,y y-direction
V.#0,V,#0

. o, ov.
For V._: gp+pat+pv ax“rpVyW“rpVZa_zZ:ng

Beg.x B8y W (V) ¥, (V)
V.(x,y,2,t) = t+,/2 e S TR ; P(2)=
2 (42,20 = Byt £ 2Byg 2+ V. vV v, (@ =BiP8Z| 4ot ction
Vi#0,V,#0

Note:By comparison with Navier-Stokes equation and its relation, a relation to Euler equation can
be found by deleting the Navier-Stokes relation resulting from the t -terms.
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Solutions of the Navier-Stokes Equations (Original)

Option 4
Solutions of 3-D Navier-Stokes Equations (Original)
Mehod 1

As in Option 1 for solving these equations, the first step here, is to split-up the equation into eight
sub-equations using the ratio method. One will solve only the driver equation, based on the
experience gained in solving the linearized equation. There are 8 supporter equations.

nonlinear terms

82V 82V dxv, odp IV av. V. av.

Hoo — (9)72 —H o2 T tP o +pVW+pV Ea +pV; r = P8x (A)

d%v, d%v, %V, 18p v, vV, v, V.,
_Kgxz_K(;yz_ng +p8x &+V é)X+V ay+V % "8

Step 1: Apply the ratio method to equation (B) to obtain the following equations:

(K=2) (B)

072V ) &’ZV ) 2% a1l Y,
1. 0.)2 =ag ; 2. - 9y2 t=0g; 3. -K 8z2x =cg ;4. P dg ;5. 8tx = /8,
aV, Vv, aV,
6. V, e =hg; 1.V, P =q8,; 8'VZ_8Z =ng,

where a, b, c,d, f, h, n, g are theratioterms and a+b+c+d+ f+h+ n+qg=1

Step 2: Solve the differential equations in Step 1.
Note that after splitting the equations, the equations can be solved using techniques of ordinary
differential equations.

One can view each of the ratio terms a, b, c, d, f, h, n, g as a fraction (areal number) of
contributed by each expression on the left-hand side of equation (B) above.

Solutions of the eight sub-equations

%V, %V, 2V, 1dp_
1. 52 = 98 2. -K 8y2 =bg. 3. -K 53 =8 4. Dor dg.
%V, o2V %V,
) 3x2x B K ayzx =—bg, K azzx =8, %% =dg,
k2 k8« 8y2x =78 o2 & 8« ol pg.
83‘;‘ --%x+c IV, _ bg, 3(;@ T p=dpg.x+C,
FERRRS V.
agy o gy o 5. =% = fg,
Vx1= 2k ‘x +C1'x+CZ V= ng 2 C C Vx3=— 2k Z +C52+C6 ot
2T T YTyt Gy Ve = fot
Vv, V., Vv, .
6. VX W = hgx . ay = ngx a = qu NOte.
V.—>=hg dVy _ X = are arbitrary
" g >y ~ " Cdp ~ 18 functions
ngiVx = hg dx VidV, = ng.dy “j ?’/V 48x df_ W) (integration
=qg.z
Vé =hg x V V.=ngy + Wy(V) 98« W(ZV )z constants)
e ngy WV | Ve =TEa V,#0
Vs =%y 2hg x +C; Ve = «%’/xy yV x V. VZ v #£0
y y
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Solutions of the Navier-Stokes Equations (Original)

Step 3: One combines the above solutions
Vix.y,2.) =V + Vo +Vig + Vi + Vs + Vig + Vg

__ag, bg, cg, oo ngy 98z VY, (V) w (V)
=—57% T 25 & T Csz+ fg it £\ 2hg X + v, + V. + v, + V.

relation for linear terms relation for non - linear terms

ng.y 482  V,(V)) w.(V)
+ + . + C.

9
Vy |2 v |2

X2 +Cx - y2+Cyy—

_%(wﬂ +by? +¢z2) + Cx + Cyy+ Csz + fot = [2hg x+

arbitrary functions

P(x)=dpg.x; (a+b+c+d+f+h+n+qg=1) Vy;tO, v, #0

Step 4: Find the test derivatives

Test derivatives for the linear part Test derivatives for the non-linear part
2v, |ov, v, | |av, | V=2hgx oV, _ng, |V, _4q8,
X TR T T T T |y Mg @d Y|k V
_9Pg. | _bpg, | _CP8: | dPEr | JE o
u u H %‘% = “ix Ve 20

Step 5: Substitute the derivatives from Step 4 in equation (A) for the checking.

NV, NV, 92V, v, v, v, v,
TR TR T R +%+p o PV PV TPV = e (A)
(3P, _bpg. _cpg, he, "8y 98x)*
S =T ) des + fps+ PV + PV () + AV = s

9

apg. +bpg, +cpg, +dpg, + fpg, + hpg, + npg, + qapg.=ps,

?
ag, +bg, +cg, +dg +fg.+ hg + ng. +qg =8,
)

ga+tb+c+d+f+h+n+q)=g,
)

g (D=g, Yes (a+b+c+d+f+htn+qg=1)

Step 6: The linear part of the relation satisfies the linear part of the equation; and the non-linear
part of the relation satisfies the non-linear part of the equation.(B) below is the solution.

Analogy for the Identity Checking Method: If one goes shopping with American dollars and
Japanese yens (without any currency conversion) and after shopping, if one wants to check the cost
of the items purchased, one would check the cost of the items purchased with dollars against the
receipts for the dollars; and one would also check the cost of the items purchased with yens against
the receipts for the yens purchase. However, if one converts one currency to the other, one would
only have to check the receipts for only a single currency, dollars or yens. This conversion case is
similar to the linearized equations, where there was no partitioning in identity checking.
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Solutions of the Navier-Stokes Equations (Original)

Summary of solutions for V. V,, V, ( P(x)=dpg,x; P(y)=A,pg,y , P(z)=B,pg.z)
V. =

X

ng.y . 48:2, ¥yVy) w (V)
Vy 1 ‘/Z 1 Vy T ‘/Z IC9 (B)
P(x)—dpgx, (a+b+c+d+h+n+qg=1) Vy;tO,VZ;tO

—— S (ax byt ety Cvk Coy + Cazhfgd £ 2hg o+

P(y)= /14pgyy v, #0,V, 20

A8 X A&z y (V) v (V)
v. V. V. "V

Z X Z

V) ¥y
v,=- i B+ Boy*+ Bia?) + Covs Gy Csz Bg.r 428,24 ﬁégz ﬁ};gzy’%‘f E v

y X y

Vv, #0, Vy;tO

The above solutions are unique, because from the experience in Option 1, only the equations with
the gravity terms as the subjects of the equations produced the solutions.

Option 5
Solutions of 4-D Navier-Stokes Equations

In the above method, the solution can easily be extended to any number of dimensions..

2
Adding ,uO;—‘gx and pV, WV to the 3-D x—direction equation yields the 4-D N-S equation

Os

9%V, 82V 82V 82V Vv, Vv, v, av, Vv,
.u(ax 8y2 + )"‘ap"'pojt +pVy 8X+PV 3y+PV o +pV; s P8x
whose solution is glven by
Vo (x,y,2,8,t) =
pgx (ax2+ by*+ cz? + es? W Cyx+ Cyy+ Csz + Costfg 1 + Jy'm+n‘€/xy+quz+r%‘s+
y Z s
VW) v (V) W)
‘/.y T ‘/Z 1 ‘/s T 9
arbitrary functions
P(x)=dpg,x (at+b+ct+d+e+f+h+n+qg+r=1) Ve #0, v, #0, v, #0,
For n—dimensions one can repeat the above as many times as one wishes.
Back to Options Option 5b
Two-term Linearized Navier-Stokes Equation (one nonlinear term)
V. av. V.

By linearization as in Option 1, if one replaces pV, > +pV, 0 by 2p—=~ > in

d%v, 82 d%v, av. av. V. V. :
—H ax 55,2 —H 53 +§+P& TPVt PV 0~,y+pV o = pg, one obtains

2v, v, Pv, 2
u(%‘xz &&yz 8 8 3t o0 P 3P(—x) +pV, %‘x/ = pg,.» whose solution is

Vixy.zn = —%(ax2+ by2+ cz?)+ Cix + Cyy + Csz+ f%‘ +./2hg . x+ Cg
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Conclusion :Solutions of the Navier-Stokes Equations

Conclusion (for Option 4)

Since one began solving the Navier-Stokes equations by thinking like an eighth grader, and one was
able to find a ratio technique for splitting the equations and solving them, perhaps, it is appropriate,
after a few months of aging, to think like a ninth grader in the conclusion. One will reverse the
coverage approach and begin from the general case and end with the special cases.

Solutions of the Navier--Stokes equations (general case)
x—direction Navier-Stokes Equation (also driver equation)

2V, V. 9V, op . dV v, v, v,

X X

—U o —-u e - U 57 +§+p &X"‘va o +pV, Py +pV, e = pg,| x—direction

Vx(x’y’Z9t) =
solution for linear terms solution for non - linear terms
4%
—gﬁ(ax2 +by* +cz2)+ Cix+ Cyy + Csz + fg, t +./2hg x+ n“g;‘y + Qf/xZ + 1//}‘(/ y)+ WZ‘(/Vz) + G
/.t y Z y Z

arbitrary functions

P(x)=dpg x; (a+b+c+d+h+n+qg=1) Vy;tO, V,#0

One observes above that the most important insight of the above solution is the indispensability of
the gravity term in incompressible fluid flow. Observe that if gravity, g, were zero, the first three

terms, the 7th term, the 8th term, the 9th term, the 10th term and P(x) would all be zero.

This result can be stated emphatically that without gravity forces on earth, there will be no
incompressible fluid flow on earth as is known. The above is a very important new insight, because
in posing problems on incompressible fluid flow, it is sometimes suggested that the gravity term is
zero. Such a suggestion would guarantee a no solution to the problem, according to the above
solution of the Navier-Stokes equation.

The author proposed and applied a new law, the law of definite ratio for incompressible fluid flow.
This law states that in incompressible fluid flow, the other terms of the fluid flow equation divide
the gravity term in a definite ratio, and also each term utilizes gravity to function. This law was
applied in splitting-up the Navier-Stokes equations. The resulting sub-equations were readily
integrable, and even the nonlinear sub-equations were readily integrated.

The x—direction Navier-Stokes equation was split-up into sub-equations using ratios. The sub-
equations were solved and combined. The relation obtained from the integration of the linear part of
the equation satisfied the linear part of the equation and the relation obtained from integrating the
nonlinear part of the equation satisfied the nonlinear part of the equation. By solving algebraically
and simultaneously for V., V| and V,, the (ng,y/V,) and (qg,z/V,) terms would be replaced by
fractional terms containing square root functions with variables in the denominators and consequent
turbulence behavior. One may note that in checking the relations obtained for integrating the
equations for possible solutions, one needs not have explicit expressions for V., Vy , and VZ , since

these behave as constants in the checking process. The above solution is the solution to the driver
equation. There are eight supporter equations (see below and see also Option 1 solution, p16). Only
the solution to the driver equation completely satisfies its corresponding Navier-Stokes equation.

A supporter equation does not completely satisfy its corresponding Navier-Stokes equation. The

above x—direction solution is the solution everyone has been waiting for, for nearly 150 years. It
was obtained in two simple steps, namely, splitting the equation using ratios and integrating. The

task for the future is to solve the equations for V,, V| and V, simultaneously. and algebraically, in
order to replace two implicit terms of the solution.
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Conclusion :Solutions of the Navier-Stokes Equations

Supporter Equations

Ve PV PV 9 ov. v, , V.
Hgd ~H 7 ~H 50 T Pat vy TPYTg TR TPV,
WPVe PV PV o ov. V. v, V.

&xz_ Byz_ 82 &x+pVa+pV8y+pV8+px p&

X ox

WPV PV OV, v, v v, _»

3 THTGE THGE TR TP PV TPV TRV =
RV, PV, oV, N, . W, 92V,
ay +pV; o P8 ="MH—575 8)62

,uo';yz 'u82 a"‘pa[

Explicit Functions for V., V,,and V_,
For explicit functions for V., Vy ,and V_, one has to solve (algebraically) the simultaneous system
of solutions for V., V|, and V..

System of Navier — Stokes relations to solve for V,_, Vy ,VZ simultaneously (algebraically).

V =
(- p—u( x>+ by +ez®) +Cek Coy4Csztfg 1 12hg )V, Vot [qg.z + y (V)IV, Hng y+w (V)IV,
WY

Vy:

(- p—(ﬂ,lx2+ﬂ,2y +322 HC x+C3y+Csz+Asg, 1t 2l7g Y IVVHAgg, 2ty (VOIViHAcg X+ (V)IV,
V.V,

VZ:

(= %% (Bix*+Boy*+B32° WO x+Csy+CszBs g 11 2 Bg8. 2 Vi VyH B g+ (VOIV,HB g y+yr (V)IV,
V.V,

Back to Options Special Cases of the Navier-Stokes Equations

1. Linearized Navier--Stokes equations

One may note that there are six linear terms and three nonlinear terms in the Navier-Stokes
equation. The linearized case was covered before the general case, and the experience gained in the
linearized case guided one to solve the general case efficiently. In particular, the gravity term must
be the subject of the equation for a solution. When the gravity term was the subject of the equation,
the equation was called the driver equation. A splitting technique was applied to the linearized
Navier-Stokes equations (Option 1). Twenty sub-equations were solved. (Four sets of equations
with different equation subjects). The integration relations of one of the sets satisfied the linearized

Navier-Stokes equation; and this set was from the equation with g, as the subject of the equation.
In addition to finding a solution, the results of the integration revealed the roles of the terms of the
Navier-Stokes equations in fluid flow. In particular, the gravity forces and dp/dx are involved

mainly in the parabolic as well as the forward motion of fluids; dV, /or and 9%V, / ox? are involved
in the periodic motion of fluids, and one may infer that as u increases, the periodicity increases.
One should determine experimentally, if the ratio of the linear term 0V, /dt to the nonlinear sum

V (9V, /%) + V, (V, [y) + V.(IV, 02) s 1 to 3.
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Conclusion :Solutions of the Navier-Stokes Equations

Solution to linearized Navier— Stokes equation

Vo (xX,9,2,0) = —%(axz +by? +cz2) + Cpx + Csy + Csz +%z+ C, ; P(x)=dpg.x

Linearized Equation

Py, v v v
THoa THGn THGa T TP T T gy

2. Solutions of the Euler equation
Since one has solved the Navier-Stokes equation, one has also solved the Euler equation.

Euler equation (1 = 0): &Vx +V, i—gj +V, %‘;C "‘V 6’z };g

n8:y , 4.8z, VsV  y (V)
V.(x,y,2,0) = fg.t £ 2hgx+ Vv vty Vv +C

y Z y Z . .
x-direction

arbitrary functions

P(x)=d,pg x (fu+h,+n,+q,+d, =)V, #0,V, 20

A Euler solution system to solve for Ve, Vy V.
(f.8.t £\ 2hg X)V,V, +1q.8.2 +v_ (VIV, +[ngy+w (V)IV,

V.=

V.V.
y'z
 Asgyt £ 2058, YIV,V, + 18,2+ Y, (VOIV, + [Asg,x +y, (VOIV,
v A2
(Bt 28,82 )VV, +IBgx+y (VOIV, +[B gy +y,(V)IV,
T V.V
xVy

Back to Options
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Back to Options

Solutions of the Magnetohydrodynamic Equations

Option 6
Solutions of the Magnetohydrodynamic Equations

This system consists of four equations and one is to solve for V,, Vy7 Vz B, By, B, P(x)

Magnetohydrodynamic Equations

W, Wy V. - .
1. o + 07y 31 =0 < - - continuity equation

Navier—Stokes

V. Vv, aV, &V 1
> +pV, o +pV, iy pV, - o 5‘x+u(VXB)XB+ng

Lorentz force

2. p

33. p%? Vx(VxB)+nV?B

QB 9B &’B 923
PG = Vx(VxB)+n( &yz )

(n = magnetic d1ffusw1ty)

4. VeB=0

9B, , 9B, 6’BZ_0
o " 8y

Step 1:
1. If pis constant : (for incompressible fluid)

NV, 8 8‘/ =0 < - - continuity equation
3)6 ay Yy ¢€q

Navier - Stokes Lorentz force

vV, v, v, vV,
2. p—=* o L+ pV, &;erv e pV, & = —%+%(VxB)xB+pgx

V. V. V. V.,
PG PV GE PV, G PV, —%+l(32( Z) B(&x 8y)+pgx
V. av 8V av oB. 8B

3. p%? Vx(VxB)+nVZB
B~ 9(V,B,~V,B) -2 (V.B,~V,B) + (58 + S B+ B

Por = oy >
pdB _ 9 9 Jd Jd J’B, J°B, _J°’B,
PO = oy VB G VB — G VB G VeB 4 +”ay2 50"
4. VeB=0
dB, IB, OB, _
x oy T 0
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Solutions of the Magnetohydrodynamic Equations

i’tf‘:grztile "vector juggling" one obtains the following system of equations which one will solve.
1. %‘; &Qy V. _

2. pao.‘; +pV, %xvx +pV, %‘;x +pV, azx +%—ﬁ3z ag;x +1p Ogi ﬁBy%— 7 yag; = pg,
<Zan v oB, B, WV, . an VN, \, B, p Iy nd°B. _nd’B, nd’B,_,
d o Fdy 9y 9y 8y By Vg By~ am noz:  noz2

4. a;ix 85; 9B, =0

At a glance, and from the experience gained in solving the Navier-Stokes equations, one can identify
equation (2) as the driver equation, since it contains the gravity term, and the gravity term is the
subject of the equation. However, since the system of equations is to be solved simultaneously and
there is only a single "driver", the gravity term, all the terms in the system of equations will be
placed in the driver equation, Equation 2. As suggested by Albert Einstein, Friedrich Nietzsche, and
Pablo Picasso, one will think like a child at the next step.

Step 3: Thinking like a ninth grader, one will apply the following axiom:

Ifa=band c=d, thena+c=b+d;and therefore, add the left sides and add the right
sides of the above equations . That is, (1) + (2) + (3) +(4) = pg,

oV, 8 av IV, IV, V, B, oB oB
>t 8y +p o + pV, > =+ pV, Yy +pV 8 8p LILBZ B + sz%%BW
JB pa B, o, B I aB av B, . IV, _
B O B G B VB VB
J2B, nd?B, nd*B, JB, 9B aB : .
Ln (9x2x - nn 8y2x — nﬂ 312 e 8yy Z=pg, (Three lines per equation)
Step 4: Writing all the linear terms first
Vv, 8 av oy e, pOB, MI*B, nd’B, 19’B, B, 8By 8B
xTatE PRt a e et at T
Vv, av Vv, JB, B, 1 , 9B, dB, 8B v,
<+pVx&x+pVW ngz /JBZ’ 8z+ Bz&xz+uBy&x /JByQy any BY&y
JB, | 8B 8V oB, , dV, . .
+V, P B 8y B, 8Z -V, 8z B, e = pg, (Three lines per equation)

(Since all the terms are now in the same driver equation, let pg, "drive them" simultaneously.)

Step 5: Solve the above 28-term equation using the ratio method. (27 ratio terms)
The ratio terms to be used are respectively the following: (Sum of the ratio terms = 1)

Bi. B> ﬁ3’a byc,d, f,m, q, TS, O, @), 03,004,055, O, 4y, Ay A3, Ay, As, /16’/17’ A5, Ag

8V 6’V an
ﬁlpgx ay ﬁ2pgx 3. =5+ ﬁ?}pgx 4. Y ot =apgy
dV dV oV
= Bipg. dV = B,pg, = B3p8. &x =ag,
Vx ﬁpgxx+c V ﬁpng+C V. = t+C
! 0 Vi = ﬁngxy +Cyy ’ 8 x = A8 T
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Solutions of the Magnetohydrodynamic Equations

5. 6. 7.
OB 02B
% =bps: P35 =P8 N7 =P8y
dp _ JB d’B d
E — bpgx atx = ng dxzx —_—— l;]gx
P(x)=bpg,x +C | 4B dB, _  dpg.x
dr =C8y dx = — 1 + C2
Bx —cht+C1b d x2
B, =- p%] +Cx+C,
8. 9. 10.
J’B J0’B oB
N = IPe Nt = Mpg; Sx=qpg,
2 2 Bx
d’B, _ _ Jpg, d B;x __mpg, ", = gps,
dy” d a gl B, =qpg.x+C
dB, _ _ fpg.y i dB, _ _mpg,z “C, x x 19
dy n 4 dz n
2 _mpg.z
B =——fp§;c7y +Cy+ € Be=m"0p +CX+C7
11. 12. 13. 14.
OB oB Vv, Vv,
gy =rpg, g = 5Pgy p‘;vax = 0,8, PVy gy = @2P8:
ddi = rpgx dZZ - spgx V d_x = wlgx “;y;l/vx_: wzgxcj?) V
y BZ = Spng+ C21 V dV a)lgxdx yrx — 0,8,y l1l/y( y)
_rpgxy+C20 Vz Vo= 0,8,y llfy(Vy)
X — o x xT Ty + v
2 lgx y y
V.2 =2m,8,x V,#0
Vo=t 20 + G
15. 16 17.
aV, oB 8
PV~ = 3Py B, ~5 == 0414pg; B =5 = wslpg,
dVy _ B.dB, = ~w,pg,dz 5 9B,
VZ d_z - w3gx BZBX — _(U4,Upng + l//z (Bz) dX wS;upgx
Vsz = 38,2+ l//Z(VZ) x Bz I BZ &i
Vo= @82 W.V) | B 20 2 = wSupgxx
;o v B.” =2wsppg,x
V. =0 B, i\/2a)5‘upgxx+C
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Solutions of the Magnetohydrodynamic Equations

18. 19 20
OB OB
ByWy = WcHPS ‘U )’ &y llpgx _y = )IQng
dB dB, dB
By = 06 1pg, B, d_y =~ P8, Ve ==Aps,
By(ziBy - w6uupgxdx Byde = _)]’lﬂpgxdy V dB = ﬂapgxdy
BL — WPg,X Bysz —)q.upgxyﬂ;”y (BBy) VxBy = _/’[ngxy + l//x(vx)
22 B =-— ll,Llpgxy+‘//y( y) B = _A'Zpgxy + l//x(vx)
By = 2w6‘upgxx . By By y Vx Vx
B, =+ 20supg,x+C B, #0 V. #0
21. 22. 23.
V. OB, v,
-B, i P8, vy e A4P8yx B, Wy = Aspg.
dv, dB dV
'y dy = _ﬂ’_v‘pgx Vy v l4pgx x dy ),Spgx

B dV = _A’Bpgxdy

V dB l4pgxdy

B.dV, = Aspg,dy

Bny = _;legxy + l)l/y(By)
308,y . Yy (By)

VyBx = Aapgcy + ¥, (Vy)

vay = 15pgxy + l//x(Bx)

Aapgey . ¥y(Wy) A B
V.o=— B = xY L _Aspgy Wi (B)
x B, B, x 4 124 Vi B, + B,
B, #0 V,#0 B, #0
24, 25. 26
oB OB
V: da_x = 2’6pgx B, 81 ;l’7pgx -V ? = ;LSng
B B
v dZ = A6P8. B, dZ = A7P8x Vi dz =—AgP8x
V.dB, = A¢pg.dz B dV, = A;pg . dz V.dB, = —Agpg . dz
Vsz = AsPgx 2+ Y (V) BxVZ = A7p8. 2+ (By) =—gpg. 2+ (Vy)
AP8xZ V A1P8xz (B,) Agpg.z Vy)
_ 6Fox W( ) V. = 7P8x +Wx X B =— P8x +Wx X
B, = v, + v, z B, B, z V. V.
V. #0 B, #0 V. #0
27.

5
- z 8_Z = )’9pgx

BdV

Z dz = _)“9pgx
B.dV, =—-2A9gpg.dz
Bzvx = _/’L9pgxZ + l//z(Bz)

v _hapc V(B

Z Z
B, #0
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Solutions of the Magnetohydrodynamic Equations

Step 6: One collects the integrals of the sub-equations, above, for V,, Vy V. B, By’ B, P(x)

V.(x,y,z,t) = (sum of integrals from sub - equations #1, #4,#13,#14,#15,#21,#27)
By)) v,(V}) v.(B,)
L e ca @28 Apgy, 0382 Aopgiz Y (V) Wy (By) ¥y(Wy) w (B), |
ﬁlpgxx"' ag,t T 20,8, x Vy By v, B, v, By Vy B, s
arbitrary functions

(integral from sub—equation #5)
P(.X') = bpgxx + C2

(sum of integrals from sub—equations #2,#23)

A B
Vy(y)=ﬂngxy+—sgf"y + —W"é e

X

.%f_/ .
arbitrary function

(sum of integrals from sub—equations #3, #25)
Apg,2 B
V()= Bpgie+ TEEE, ValB)

X X
| —

arbitrary function

(sum of integrals from sub - equations #6, #7, #8, #9, #10, #16,#19, #22, #24)
Bx(x’yﬁzﬁt):

B, = —g;‘;;f(dx2 + 2+ mz%) + gpg x + Cyx + Cpy + Cyzt +cg it — MM g Ecd l4€gxy - awgp Exly
Yy Yy z
APz, W (B) ¥y(By) v, (V) (V)
+ 5t + + 2=+ C
Ve B, B, vy Vi ’

arbitrary functions

(sum of integrals from sub—equations #11,#18,#20)
8xY V%)
B, =rpg,y .\ 206Hpg X~ AQ"ZX + vax =+ G

| —

arbitrary
function

(sum of integrals from sub—equations #12,#17,#26)

_Mpgez o W (Vy)
v, v,

X
—

arbitrary function

B, = spg,z+ \2051pg +Cy
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Solutions of the Magnetohydrodynamic Equations

Step 7: Find the test derivatives for the linear part

1. 2. 3. 4. 5. 6.
AV, aV, V. vV, dB,
o = Bipso | Zr=(Bapgo | g = (Papg | 5 = (agy) % =(bpg,) | —z; =(c8x)
7. 8. 9. 10. 11. 12.
0?B,_ dpg. | 9*B.__ fpg.| d*B,_ mpg B 9B,
8)(,'2 = — n &yz - n azz = n = 8 - ngx Wy: rpgx 31 spgx
Test derivatives for the nonlinear part
13. 14. 15. 16 17.
aVx_ W8 aVx _ W8y an _ 38y an_ 604,Upgx %_ WsHPG,
oV, d VY oz YV oz B. ox B,
18. 19. 20. 21. 22.
B, _weupg, | Be__hppg. | By,  Aypg, | Ve __Japg. | 9B, _ Aps,
ox By dy By ady Vi dy By dy Vy
23. 24. 25. 26. 27.
% — )«5ng an = )‘6ng 8VZ — l7pgx aBz - _ 2’Bpgx avx: _ %pgx
dy ~ B, oz V. 04 B, oz Ve o o

Step 8: Substitute the above test derivatives respectively in the following 28-term equation

JB

oB

AV, N &VZ N AV, o'?p poB, nd?B, nd*B, nd*B, IB, LB
PR ay ETPd Tt o e e Tk Ty T
v, v, v, B, B, 1,98, | _ 0B, IB 9V,
1+PV, 8 +§V > 8z HBZ T sz%uBy&x ,UBy 8y any Byé’y
V 8 &V oB V.,
y B . :
8y <y + V B, B -V o B, 81 = pg, (Three lines per equation)

(ﬁlpgx> +(Bopg,) +(Bspg,) + plag,) +(bpg,) + plcg,)—n(-

(gpg.)+ (rpg,) + (spg) + PV (2 1g")+pV( 2g")+pV( 3g’c)
Z

(_

+

PgX) (- fpgx) (- mPgX)+
4llpgx

B (a)Sgpgx)_i_ (w6.upgx) ( Al:upgx) V( ﬂngx) B ( A’3pgx )+V (2’4pgx)+

(Four lines per equation)

A A /1
B(ZSP80) 4 v, (oPEr e ( g’gﬁ—w—%)—&(—%):pgx
X X Z

BiPS, + BaP8y + B3Pgy +apg, +bpg, +cpg,+dpg, + P8 +MPqpgy +rPgy + Py + 1P,
+03P8, + WsPg, + VP8 + MUPE, + A2 P8 + A3P8yHAsP8xt AsPEy + W2P8 + D308,
9

(Three lines per equation)

|+ 26082108, + A3 P81t AoPg =P8,
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Solutions of the Magnetohydrodynamic Equations

{ﬁlgx + :B2gx + ﬁng + agy + ng + C8y + dgx + fgx + mg,q8y + r8yx + S8 + wlgx + 38 + ngx
?

+w6gx + )'lgx + A’ng + )‘3gx+)‘4gx+ )“ng + W8« + 38y + )“6gx+)‘7gx + )'ng+)‘9gx igx (2 lines)

{gx(ﬁ1+ﬁ2 +B3t+a+b+ctd+ fHm+qg+r+s+o;+03+ 05+ L4+ As + 0, + 03+ A +44

+wg + A4+ A, + 18+/19); 8y (Two lines per equation)
8 (1)i 8 (Sum of the ratio terms = 1)
8 ;gx Yes
Since an identity is obtained, the solutions to the 28-term equation are as follows
V.(x,y,z,t) = (sum of integrals from sub - equations #1, #4,#13,#14,#15,#21,#27)
Bupg,ct ag,t £ 20,8, +szng _ lsggxy N w%gxz _ /lgggxz +l/fz‘(/Vz) J’yéBy) J’yé"y) +‘//21ng) .q|

y Y z < z y y

<

arbitrary functions

(integral from sub—equation #5)
P()C) = bpgxx + CZ

(sum of integrals from sub—equations #2,#23)

ﬂ/ X xB.x
Vy = Bapg.y + ngy"‘ Wé )

X

+ Gy

.H_J .
arbitrary function

(sum of integrals from sub—equations #3, #25)
g q
/17/)ng l//x(Bx)
t—p t B

X X

Vz = ﬁ3P8xZ +Cy

| S—
arbitrary function

(sum of integrals from sub - equations #6, #7, #8, #9, #10, #16,#19, #22, #24)
Bx(x’y’ZJ):

B, = —&(dx2 + fy?+ mz?) + qpg. x+Cx+C,y+ Cizt+ tcg, t —

2n By Vy
Aspgyz  W.(B) Wy(B) v (V,) y (V)
A S T A

arbitrary functions

MUPSLY | AaP8rY _ D4lPgyZ.

B

Z

(sum of integrals from sub—equations #11,#18,#20)
Vv,
By =TpP8yYy * oY 2w6‘u'pgxx_ Zﬁ‘efxy + Wx‘gx X) + C8

arbitrary
function

(sum of integrals from sub—equations #12,#17,#26)

D tloe x z V)
B, = spg 2t 20s1pg . x ~ ﬂgf}% + —"/)‘V 2 +Cy

X
—

arbitrary function
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Solutions of the Magnetohydrodynamic Equations

Supporter Equation Contributions

Note above that there are 28 terms in the driver equation, and 27 supporter equations, Each supporter
equation provides useful information about the driver equation. The more of these supporter
equations that are integrated, the more the information one obtains about the driver equation.
However, without solving a supporter equation, one can sometimes write down some characteristics
of the integration relation of the supporter equation by referring to the subjects of the supporter
equations of the Navier-Stokes equations. For example, if one uses (119?B, /dx?) as the subject of a
supporter equation here, the curve for the integration relation obtained would be parabolic, periodic,
and decreasingly exponential. Using p(dV/dr) as the subject of the supporter equation, the curve

would be periodic and decreasingly exponential. Using (dp/dx), the curve would be parabolic.

Comparison of Solutions of Navier-Stokes Equations
and
Solutions of Magnetohydrodynamic Equations

Navier-Stokes x—direction solution

ngy . g8z, ¥y y. (V)

A

arbitrary functions

Vi (x,y,2,t) = —%(ax2+ by*+cz?) + Cyx +C3y + Csz +fgt \/2hgx+

P(x)=dpg x (Vy #0,V, #0)

For magnetohydrodynamic solutions, see previous page

1. V, for MHD system looks like the V, for the Euler solution.
2. P(x)) for N-S and MHD equations are the same.
3. V, and V, for MHD are different from those of N-S equations.

4. B, is parabolic and resembles V, for N-S, except for the absence of the square root function.
5. B, and B, resemble the Euler solution.

Conclusion for Magnetohydrodynamics
The author proposes the law of definite ratio for magnetohyrodynamics.
This law states that in magnetohydrodynamics, all the other terms in the system of equations divide
the gravity term in a definite ratio, and each term utilizes gravity to function. As in the case of
incompressible fluid flow, one can add that, without gravity forces, there would be no
magnetohydrodynamics on earth as is known, according to the solutions of the
magnetohydrodynamic equations.

Encouraged by the solution method for the magnetohydrodynamic equations, one will next solve
the Navier-Stokes equations again by a second method in which the three equations in the system
are added and a single equation integrated

Back to Options
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Back to Options
Solutions of Navier-Stokes Equations (Method 2)

Option 7
Solutions of 3-D Navier-Stokes Equations
(Method 2)

Here, the three equations below, will be added together; and a single equation will be integrated

RV, RV, RV p Ny Ny

“HCHS ay;‘+ SRR Gl A ayx+V Z")=pgx (1)
J2v, a2v a2vy ap v, v, v, vV,
(ax ayg 32) at (&+V ax+V8y )—pgy (2)
PV, PV, PV, P v . V. av

“HCo St e 92) +(a¢ 8X+Vy(9y ) =P8 )
Step 1: Apply the axiom, if a =b and ¢ =d, then a+c = b +d; and therefore, add the left sides
and add the right sides of the above equations . Thatis, (1) +(2) +(3) = pg, + pg, + pg.
%V, %V, %V, BZV 82V B 82V d%V, d2V, %V, 81.9 ap
TR THGE TR T g TR T G TR T e Ty

V., av, aV. V., V., WV, av, av, v,
§p+pat+p&t+p &tz+pV &x+pv é)y+pV = +pV, 8xy+pv~"W+pVZé’_z
+pV, gz +pV, gz +pV, azz =(pg, +pg, +pg.) (Three lines per equation)

+ gz‘ to obtain

Let pg, +pg, + pg. = pG , where G =
82V B 82V 3 82V 82V 82V B 82V 6’2V 2V, J*V,
waz 8y2 Hoz ~H g 8y2 Hop ~H 2 —H oy? o2
P P, M, W I IV, V. vV,
+8x+07y a'*”&*”aﬁ”aﬁ”va*’way PV, o

av, v, aV, av. A av,
+pvx&cy+pvy8y+pvz 8Zy+pVx > +pV, ay+pV 8Z—pG

Step 2: Solve the above 25-term equation using the ratio method. (24 ratio terms)
The ratio terms to be used are respectively the following: (Sum of the ratio terms = 1)

ab,c.d,fom,n, q,r, Bi. By Bs. By Bs. Bo- Mi» Ao, As. Ay As. A g A7, A, Ag

92V, 92V, 92V, 92V,
M X = apG ; u8y2 =bpG ; “0"’2 =cpG ; _u&x{:dpG;
ov, 32V, a v , r2v,
.y 7 = fpG ; - U 8z =hpG ; 8x2 =mpG ; _”#yz =npG ;
92V,
“H =G % = BipG:; % = popG ; %= BspG ;
v, v, v, v,
P = BapG; P = BspG P =BG PVi = ApG
v, v, v, v,
PVi gy =hpGs PVogi=AapGr pVigm=AipG PV, gy =AsPG
v, vV, vV, v,
PVige =ApG: PV i=ApG: PV 5t =AepG PV. o = JoPG
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Solutions of Navier-Stokes Equations (Method 2)

1 2 3
D2V, 22V, 22V,
o ——%pG M5 =bpG —H—5=cpG
av, a 0%V b 82V)C
X =_=20Gx+C X —_ 2 - =cpG
x T uP j ! T 8/:V8Z2 P
S o IV, __C
V. ‘qu2+C1x+C2 8y :—%pGy+C3 o2 ‘qu
2 9Vx _C
x=—%pGy7+C3y+C4 % = uPoitGs
2
sz—ﬁpG%+C5z+C6
4 5 6
2V 2y,
—u &ny :dpG 82‘/)) —-u 8Z2} :hpG
IV, “Hg = /PG 92V,
—U——"=dpG T o= _hpg
> o2 d2V, pr 072 M
Vo__d T N, __h
K2 I G aVy f e a—z——ﬁpGZ-i-C]l
=S + 2
%=—ipGx+C7 ) /Jp YT Vy:—ﬁpG%+C“z+C12
ol v,=-Lpc¥ vcyec 3
=— PS5 y
Vy:—%pG%+C7x+C8 y = PO T+ G
7 8 9
PrAY %V, %V,
—/.Lax—zz:mpG —u 8y22 =npG —/,L—azzz =rpG
02V, 92V. 02V,
=G Vet G = 1pG
VN, _ m V. N, _ _r
o - PO +Gs j:—ﬁpG)wCls % - uPeitGs
__m x2 2 _r 2
VZ = _EPG7+C13X+C14 VZ = _%pGyT+C15y+C16 VZ = _EPG%+C17Z+C18
10 11 12
% = pipG % = B,pG %é B:pG
d, d
L =BipG fl—f;zﬁzpc; & =BG
P(x) = BipGx + Cyg P(y)= BopGy +Cy, | D =P3pGz+Cyy
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Solutions of Navier-Stokes Equations (Method 2)

13 14 15 16
av, V. av, v,
lz{ V&’tx = PapG P =PspG ’; Vﬁl = PepG Pan‘;Wx = ApG
dv,
aohG | oo NG S
V. = B4Gr + Cy V, = BsGt + Cy V. =BGt +Cyy & aiilxx =MG
V. dV, = 2,G dx
V2
5= MG x
V2, =21,Gx
V, =2 24,G x + Gy
17 18 19 20
v, % V. V.
PVi gy =hpPC PV 5 =MpG PVy o= MpG PVigy = AsPG
dv dv, _ dav. dav.
V, g =AG Vogz = M6 Vot =2,G Vyd_yy: G
V,dV, = ,G dy “;Z;i/Vx_:lléG c_li_z W) V.dV, = 2,G dx V,dV, = A5G dy
VWe=hGy+y, (V) = xiézz WW(ZV)Z VVy = Gxty (V) 2
y < AaGy V) He Vo Vy:l“x/Gx*wxxgvx) %z:)LSGy
X ‘/y Vy X X ‘/y _22/5Gy
21 22 23 24
av, av, av. av,
PV. 5= AepG PV, 5-=2qpG PVi gy =ApG PV. 5= hopG
dv dv, dv, av; _
Vzd_zy = AG Volge =MC Yy afyZ =40 i A6
V.dV, = 4G dz V,dVv, = 1,G dx V.dV. = 4G d VAV, = A,G dz
RN VY. =AGx+y (V) |- g 2
ViV = AGzrye (V) et VS W= AGy v ()| X 22,62
_AGz y. (V) |V, = + Gy ¥,(Vy) 2 _
VWw=—v—*"V¥ Vi Vi Vo=—y—+—y V" =2AGz
¢ : y YooV =124,G 2+ Cyy
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Solutions of Navier-Stokes Equations (Method 2)

Step 3 : One Collects the integrals of the sub-equations, above, for V., V,,V_, P(x), P(y) ,P(z)

x> 'y> 'z
For V., P(x) For V,, P(y) For V,, P(2)
Sum of integrals from Sum of integrals from Sum of integrals from
sub-equations #1, #2, #3, sub-equations #4, #5, #6, sub-equations #7, #8, #9,
#13,#16, #17,#18, #10 #14, #19, #20, #21 #11 #15, #22,#23,#24, #12,
Vx:_%PG%+C1x+C2 Vy:—%pG%+C7x+C8 V. :_%PG%"'CBX"'CM
b Y f o~y __m Gy
Vi==y PG +Gy+C, Vy==3PGo+Coy+Cy V== PG + syt G
Vx:_ﬁPG%"'CsZ"‘Cs Vy:—%pG%+CHz+C12 V. :_ﬁPG%"'CnZ"'Cls
V, = BsGt + G, V, = BsGt +Cy, V, = BsGt +Cs,
V, = + = z V V.
V. = lsz n Wy(vy) Y Ve Vi # /lng v ()‘C/ )
TV, v, V,=%24;G y + Cy v, =287 0 e
_ MGz y (V) Gz w.(V) v
P(x) = BpGx + Cyq P(y) = BopGy + Cy P(2) = B3pGz+ Gy

From above,

For V., Sum of integrals from sub-equations #1, #2, #3, #13, #16, #17, #18, #10
Vx(x’y’z’t)

2 b 2 2 G Gz
=—QpG%+Clx——pGyT+C3y—QpG%+C5z+ﬁ4Gti4/2/’thx +—’12V v, 4Gz

u u u g v,
Vi

P(x) = BpGx + Cyg ‘/’y‘g ») + 1//‘5V)
y Z

arbitrary functions

For Vy : Sum of integrals from sub-equations #4, #5, #6 #14, #19, #20, #21 #11

Vy(X,yaZ’t)

__d x> _f oAy hoo 2 MGx AGz

= uPG2+C7x #pG2+C9y ‘qu2+Cllz+ﬁ5Gt+i4/2lsGy+ V. + V.

P(y) = ﬂszy + C20 + ll/x(Vx) WZ(VZ)
v, V.

%f_—/
arbitrary functions

For VZ: Sum of integrals from sub-equations #7, #8, #9 #15, #22, #23, #24,#12,

m x> n .~y ro~z° s G x
V.
P(Z) _ ﬁ3sz+C21 + 2'8‘?)) + WX‘E'VX) + WY‘E' y)
y x y

arbitrary functions

37



Solutions of Navier-Stokes Equations (Method 2)

Step 4: Simplify the sums of the integrals from above..(Method 2 solutions of N-S equations

G LGy MGz
Vi(x,y,2,1) = —12)—‘u(61x2 +by? +cz2) + Cix + Cyy + Csz + B4,Gt £ 24,G x + sz + 3VZ
v,(Vy) oy (V)
P(x) = BipGx + Cy (v, #0, v, 20)  + yVyy + VZZ
arbitrary functions
A Gx 26G 2
Vi(x,y,2, t)——z (dx® + f? +hz2?) + Cox + Coy + Cp 2+ Cyo BsGt £ 12456 y + 4V 6VZ
V. V
P(y) = B,pGy + Cy (v. #0, v, #0) +Wx( ) l//Z( )
X z Vx VZ
arbitrary functions
Vo(x.y.2.0 = (mx +ny? +7122) + Cjyx + Cisy + Cipz + PGt £ 226G 7 + 17\9)6 18\?);
x y
- v, (V) ¥, (V)
P(z) = B3pGz+ Cy, (v, 20, v, #0) + xvxx + v
arbitrary functions

The above are solutions for V, V,, V, P(x), P(y), P(z) .of the Navier-Stokes Equations
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Solutions of Navier-Stokes Equations (Method 2)

Comparison of Method 1 (Option 4) and Method 2 (Option 7)
of Solutions of Navier-Stokes Equations

Method 1: x—direction solution of Navier-Stokes equation

% ng.y 48,2

Vo (x,y,2,t) = —%(ax2+ by*+cz?) + Cix + Cyy + Csz + fg, 1 £ 2hg x+ /A
y b4
V.
P(x)=dpg.x; (a+b+c+d+h+n+q=1) (v, #0,V,#0) :Wyé y)a ""(,V)a Co (A)
y b4

arbitrary functions

Method 2: x—direction solution of Navier-Stokes equation

Vi(x,y,2,0) = —ﬁ(ax2 +by2 +cz2)+ Cx+ Cyy+ Coz + B,Gt £ 20,G x + 2Gy + 4Gz
* 2‘u N Vy ‘/Z
V.
P(x) = BipGx + i (v, #0,v,#0)  + Wyé 2 L (B)
' y z
arbitrary functions

It is pleasantly surprising that the above solutions (A) and (B) are almost identical (except for the
constants), even though they were obtained by different approaches as in Option 4 and Option 7.
Such an agreement confirms the validity of the solution method for the system of
magnetohydrodynamic equations (Option 6). For the system of magnetohydrodynamic equations,
there is only a single "driver" equation. For the system of N-S equations, there are three driver
equations, since each equation contains the gravity term. Therefore, one was able to solve each of
the three simultaneous equations separately (as in Method 1); but in addition, one obtained an
identical solution (except for the constants) in solving the simultaneous N-S system by adding the
three equations in the system and integrating a single driver equation. In Method 1, the gravity term
was pg.In Method 2, the gravity term was pG, where G is the magnitude of the vector sum of the
gravity terms. Note that in Method 1, the sum of the ratio terms (8 ratio terms for each equation)
equals unity, but in Method 2, the sum of the ratio terms (24 ratio terms) for the single driver
equation solved equals unity. Note that in Method 2, only a single "driver" equation was solved, but
in Method 1, three "driver" equations were solved. In Method 2, one could say that the system of N-
S equations was "more simultaneously" solved than in Method 1.

To summarize, solving the Navier-Stokes equations by the first method helped one to solve the
magnetohydrodynamic equations; and solving the magnetohydrodynamic equations encouraged one
to solve the Navier-Stokes equations by the second method.

( " Navier-Stokes equations "scratched the back" of magnetohydrodynamic equations; and in return,
magnetohydrodynamic equations "scratched the back" of Navier-Stokes equations")

About integrating only a single equation
If one asked for help in solving the N-S equations, and one was told to add the three equations

together and then solve them, one would think that one was being given a nonsensical advice; but
now, after studying the above Option 7 method, one would appreciate such a suggestion.

Back to Options
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Solutions of 3-D Linearized Navier-Stokes Equations: Method 2

Option 8
Solutions of 3-D Linearized Navier-Stokes Equations
Method 2
Here, the three equations below, will be added together; and a single equation will be integrated.
82V 82V %V,
axz - 8}72 —u o2 al?+4p 81‘ = P8x (1)
%V, %V, %V, é?p
\ .u&xz ‘ué’yz .uaz 8y+4p8t =P8y (2)
PV, _ PV PV p
—H 8)(2 - &yz —u 8Z2 8Z +4P atz =P8 (3)

Step 1: Apply the axiom, if a =b and ¢ =d, then a+c=b+d; and therefore, add the left sides
and add the right sides of the above equations . That is, (1) +(2) +(3) = pg, + pg, + pg.

82V 9%V, 92V, dp, 82V 82Vy 82Vy ap s
W2 —Hoan “az'ax“”at “Hga T hgn T ey
d2V, %V, %V, . .

-u 8x2 -u 8y2 -u 2 g‘z4p 3:‘ = pg, + P8y + pg. (Two lines per equation)
Let pg, +pg, +pg, = pG ,where G=g, +g,+ gz‘ to obtain
PV, Ve PV, op PV, Ve PV W,

THE THGE TR a+4pa¢ THga THga TH TPy
2 2 2

—u %x‘g .y %y‘; -u 88‘2/ glz) + 4p# pG (Two lines per equation)

Step 2: Solve the above 15-term equation using the ratio method. (14 ratio terms)

The ratio terms to be used are respectively the following:
a,b,c,d,f,h,j,m,n,q,r,s,u,v,w.

(Sum of the ratio terms = 1)
(Sum of the ratio terms = 1)

PV _ PVy o PV Pp_
—H 55 = apG;, - U 3 - bpG; —u P cpG; P dpG
v, %V, I’v, %V,
p— =IPG  — U5 =hpG — 22 =JpG: —H—s =mpG:
P_ e Ny e Ve PV _ o
oy npG; 4p o qpG; —u o2 rpG; M N spG;
2
—u% =upG; % =vpG; 4p%/h =wpG
%V, v, 2%V,
—H—3 =apG —-u 52 =bpG —-u o2 =cpG
PV, a4 2V, p ?Ve __c
1 aax2 =Tuho 5 T 3 a&z2 =Tuho
% : V,
P :—%PG?HQ a&‘;" =—%pGy+C3 o _‘ﬁPGHCs
Ga Gc
V, = pz—ux“CvHCz Vx=—p2CLby2+C3Y+C1 V,=— p2/»tz +Csz+Cy
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Solutions of 3-D Linearized Navier-Stokes Equations:

4 5 6
v, 02V,
%: dpG % = fpG ~f—"=hpG
ox
P(x)=dpGx +C; V. _fG PVy __h
i 7} =—=pG
G ox2 u
Vx I I+C8 aVy h G C
LR
‘/y :—pz—ih_xz +C9.x+C10
7 8 2
o2V d%V. dp _
H g = PG H gz =mpG N
2V, | G 9*Vy =-,G Y= npoy+ s
W .Up o2 u
v, it
Wy=—iPGy+C11 a_zy:_%pGZ+C13
pGm
V,=- gﬂ] y2+Cy+Cp Y= T 2u &+ Gzt Gy
10 11 12
oV 82V 2%V,
4p7y:qu — U= 52 =rpG —u &yZZ:sPG
8V G (9 V r 82V
_49 —
Iy ad =Tk T
G \%
v, :th+C16 j“=—ﬁPGx+C17 %=—ﬁPGy+C19
pG
‘/Z ‘LL x +C17X+C18 ‘/Z :—%y +C19y+C20
3 14 15
92 P _ vV, _
—H 072 =upG oz =vpG 4P ot =Wpo
PV, _u g P(2) = vpGz + Cy3 V. _wG
072 u 4 !
V. v.=%G,,c
=P Cy SR
V,=~— p2(‘L;L 7+ Cz+ Gy
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Solutions of 3-D Linearized Navier-Stokes Equations: Method 2

Step 3: One collect the solutions from Step 2 for (V, Vy, V., P(x), P(y), P(z))

For V., Sum of integrals from sub-equations #1, #2, #3, #5, and for P(x), from #4

Vo (X,y,2,t) = —%(ax2 +by? +cz2)+ Cix + Cyy + Csz + %t +Cyq: P(x)=dpGx +C,
For Vy Sum of integrals from sub-equations #6, #7, #8, #10, and for P(y), from #9.
Vi(x,y,z,0) = —%(hx2 + jy? +mz?) + Cox + C,,y + Cpzz + %t +Cie: P(y)=npGy+Cis
For VZ: Sum of integrals from sub-equations #11, #12, #13, and for P(z), from #14

V.(x,y,2,1) = —%(rx2 +sy? +uz?) + Cx+Coy+Cyzt+ %t + Gy P(2)=vpGz+Cyy

Comparison of the above methods for the solutions of
Linearized Navier-Stokes Equations

Note below that the solutions by the two different methods are the same except for the constants
involved. Now, one has two different methods for solving the system of Navier-Stokes equations.
Such an agreement and consistency confirm the validity of the method used in solving the
magnetohydrodynamic equations.

Solutions by Method 1

Vo(x,y,z,t) = —g—“%(axz +by? +cz?) + Cix+CGy+Csz+ fix t+Cy; P(x)=dpgx

P8, . q8
Vi(x,y,z,0) = —2—‘J(iz)c2 + jy2 +mz?) + Cix+CGy+Csz+ Tyt +C; P(y)=npg,y

V(x,y,2,t) =~ g‘% (rx? + sy2 +uz?) + Cix+Cy+Csz+ sz t+C;  P(2)=vpg.z
Solutions by Method 2
Vi(x,y,2,0) = —%(axZ +by? +cz2)+ Cix + Cyy + Csz + %t +Cg; P(x)=dpGx +Cy
PG . 2 .2 2 qG
Vy(x,y,z,t)z—ﬁ(hx +y°+mzt)+ Cox + Gy + Caz+ =t + Cg: P(y)=npGy + Cis
Vz(x,y,z, t) = —%(I’xz + sy2 + uZZ) + C17.x + Cl9y + CZIZ + %t + C24; P(Z) = VpGZ + C23
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Overall Conclusion

Overall Conclusion

The Navier-Stokes (N-S) equations in 3-D and 4-D have been solved analytically for the first time
by two different methods. In Method 1, the three equations were separately integrated.

In Method 2, the three equations were first added together and a single equation was integrated.
The solutions from these two methods were the same, except for the constants involved. The system
of magnetohydrodynamic (MHD) equations has also been solved analytically for the first time. The
experience gained in solving the Navier-Stokes equations guided the author to solve MHD
equations; and the experience from solving the MHD equations encouraged the second method of
solving the N-S equations. The N-S solution is unique. After each term of the equation had been
made subject of the equation to produce nine equations, and all nine equations had been integrated,
only the equation with the gravity term as the subject of the equation produced the solution.

The experience gained in solving the linearized equation helped the author to propose a new law,

the law of definite ratio for incompressible fluid flow. This law states that in incompressible fluid
flow, the other terms of the fluid flow equation divide the gravity term in a definite ratio, and each
term utilizes gravity to function. The sum of the terms of the ratio is always unity. The application
of this law helped speed-up the solutions of the non-linearized N-S equations as well as solutions of
the magnetohydrodynamic equations, since there was no more experimentation as to subject of the
equation. The experience from the linearized solution is that for a solution of the N-S equation, the
gravity term must be the subject of the equation.

It was also shown that without gravity forces on earth, there will be no incompressible fluid flow

on earth as is known; and there will also be no magnetohydrodynamics.

After using ratios to split the equation with the gravity term as the subject of the equation, the
integration was straightforward. The solutions and relations revealed the role of each term of the
Navier-Stokes equations in fluid flow. Most importantly, the gravity term is the indispensable term
in fluid flow, and it is involved in the parabolic as well as the forward motion. The pressure gradient
term is also involved in the parabolic motion. The viscosity terms are involved in parabolic, periodic
and decreasingly exponential motion. As the viscosity increases, periodicity increases. The variable
acceleration term is also involved in the periodic and decreasingly exponential motion. The
convective acceleration terms produce square root function behavior and behavior of fractional terms
containing square root functions with variables in denominators and consequent turbulence behavior.

From Option 1 and Option 4 results, the following statements can be made:

1. The N-S equations have unique solutions.

2. The N-S equations have parabolic solutions.

3. The N-S equations have square root function solutions.

4. The N-S equations do not have periodic solutions but have periodic relations.

5.. The N-S equations do not have decreasingly exponential solutions but have decreasingly
exponential relations.

Determining the ratio terms
In applications, the ratio terms a, b, ¢, d, f, h, n, g and others may perhaps be determined using
information such as initial and boundary conditions or may have to be determined experimentally.
The author came to the experimental determination conclusion after referring to Example 5, page 6..
The question is how did the grandmother determine the terms of the ratio for her grandchildren?
Note that so far as the general solutions of the N-S equations are concerned, one needs not find the
specific values of the ratio terms.
Finally, for any fluid flow design, one should always maximize the role of gravity for cost-
effectiveness, durability, and dependability. Perhaps, Newton's law for fluid flow should read
"Sum of everything else equals pg" ; and this would imply the proposed new law that the other
terms divide the gravity term in a definite ratio, and each term utilizes gravity to function.
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. Back to Options
Option 9
Spin-off: CMI Millennium Prize Problem Requirements
Proof 1

For the linearized Navier-Stokes equations
Proof of the existence of solutions of the Navier-Stokes equations

Since from page 11, it has been shown that the smooth equations given by

Vi(x,y,2.0) = —g;‘;f(ax2 +by? +cz2)+ Cix + Cyy + Csz + fix t+ Cy ; P(x) =dpg x|are solutions

2 2
a&’x‘;x agy‘; 9 Vx)+§+4p%:pgx , it has been shown that

smooth solutions to the above differential equation exist. and the proof is complete.

of the linearized equation, —u(

From,above,jfy:(),z:() V()C t)——piz‘ax +C1x+f§xt+C9; P(x):dpgx+C10

Therefore, V,(x,0) = V°(x) = p‘% ax? + Cipx + G
Finding P(x,t)
1. V.(x.,0)= —%(axz) +Cpx+ %t +Co; P(x)=dpg.x 2. % = dpg;

Required: To find P(x,t) (thatis, find a formula for P in terms of x and ¢)

dp _ dp dx
dt — dx dt
dp _dp @_
dt ~ dx Va ( =V
d, d,
p dpgx( P8« (ax?)+Cx + fi" t+C, ) (d—i’:dpgx)

P(x,t)= J‘dpgx(—%(aﬂ) +Cix+ %t + G, ) dt

P(x,t) = dpgx(—ag%x% + Cyxt + fééx 12 +Cyt )+ Cio

For the corresponding coverage for the original Navier-Stokes equation, see the next page
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Proof 2

For the Non-linearized Navier-Stokes equations (Original Equations)

Proof of the existence of solutions of the Navier-Stokes equations
From page 22, if y=0,z=0in

Solution to Linear part
(v
Vey,z,0=— pgx (ax2+ by*+cz?) + CxtCy+Cz+ fg t x 2hgxx+n€"y+quz+w-‘"(/ y)+%‘(/vz)
contlnuedl Y : i -
solution of Euler equation
P(x)=dpg x

one obtains

V. (x,0)= p(g;f ax? + Cx + fg t £2hg x + Cy;  P(x) = dpg x;

V. (x,0)=V2(x) = ,Dg/’j ax? + Cyx £ 2hgxx +Cy; P(x)=dpg x;
Since previously, from p.21, it has been shown that the smooth equations given by
Vo(x,t)=— p‘% ax®> +Cyx + fg,t + N/Zhgxx +Cy: P(x)=dpg x; are solutions of

%V,
“H—5 8x2 8p o T P 8t
shown that smooth solutions to the above differential equation exist, and the proof is complete.
Finding P(x,t):

03; = pg, (deleting the y—and z — terms of (A)), p.20, one has

1. V.(x,t)=- p“% ax® +Cyx + fg, t * 2hgxx +Cy; P(x)=dpg x; 2. %zdpg;

dp _dp dx

dr ~ dx dt

dp _dp dx _
dr ~ dx Vi Car =V

d pg g,
lezdpgx(_ 2 x (ax2)+C]xi4/2hgxx + fg, 1+ C ) (d—];:dpgx)

P8

P(x,t) = fdpgx( (ax?)+Cyx £ \[2hg x +fgxt+ Cg) dt

P(x,t):dpgx( g‘ix X t+C1xt+t4/2hgxx +

References:

For paper edition of the above paper, see Chapter 11 of the book entitled "Power of Ratios"

by A. A. Frempong, published by Yellowtextbooks.com.

Without using ratios or proportion, the author would never be able to split-up the Navier-Stokes
equations into sub-equations which were readily integrable. The impediment to solving the Navier-
Stokes equations for over 150 years (whether linearized or non-linearized ) has been due to finding
a way to split-up the equations. Since ratios were the key to splitting the Navier-Stokes equations,
and also splitting the 28-term system of magnetohydrodynamic equations, and solving them, the
solutions have also been published in the " Power of Ratios" book which covers definition of ratio
and applications of ratio in mathematics, science, engineering, economics and business fields.
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