A conjecture on primes involving the pairs of sexy primes

Marius Coman Bucuresti, Romania email: mariuscoman130gmail.com

Abstract. This paper states a conjecture on primes involving two types of pairs of primes: the pairs of sexy primes, which are the two primes that differ from each other by six and the pairs of primes of the form [p, q], where q = p + 6*r, where r is positive integer.

Conjecture:

If n and n + 6 are both primes (in other words if [n, n + 6] is a pair of sexy primes), where $n \ge 7$, then the number m = n + 3 can be written at least in one way as m = p + q, where p and q are primes, q = p + 6*r and r is positive integer.

Verifying the conjecture:

(for the first fifteen pairs of sexy primes)

:	for $[n, n + 6] = [7, 13]$ we have $[p, q, r] = [5, 5, 0];$
:	for $[n, n + 6] = [11, 17]$ we have $[p, q, r] = [7, 7, 0];$
:	for $[n, n + 6] = [13, 19]$ we have $[p, q, r] = [5, 11, 1];$
:	for $[n, n + 6] = [17, 23]$ we have $[p, q, r] = [7, 13, 1];$
:	for $[n, n + 6] = [23, 29]$ we have $[p, q, r] = [13, 13, 0];$
:	for $[n, n + 6] = [31, 37]$ we have $[p, q, r] = [5, 29, 1]$ or
	[17, 17, 0];
:	for $[n, n + 6] = [37, 43]$ we have $[p, q, r] = [11, 29, 3]$ or
	[17, 23, 1];
:	for $[n, n + 6] = [41, 47]$ we have $[p, q, r] = [7, 37, 1]$ or
	[13, 31, 3];
:	for $[n, n + 6] = [47, 53]$ we have $[p, q, r] = [7, 37, 1]$ or
	[13, 37, 4] or [19, 31, 2];
:	for $[n, n + 6] = [53, 59]$ we have $[p, q, r] = [13, 43, 5]$ or
	[19, 37, 3];
:	for $[n, n + 6] = [61, 67]$ we have $[p, q, r] = [17, 47, 5]$ or
	[23, 41, 3];
:	for $[n, n + 6] = [67, 73]$ we have $[p, q, r] = [11, 59, 8]$ or
-	[17, 53, 6] or [23, 47, 4] or [29, 41, 2];
•	for $[n, n + 6] = [73, 79]$ we have $[n, q, r] = [17, 59, 7]$ or
•	[23, 53, 5] or $[29, 47, 3]$:
•	for $[n, n + 6] = [83, 89]$ we have $[p, q, r] = [7, 79, 12]$ or
-	[13, 73, 10] or $[19, 67, 8]$ or $[43, 43, 0]$:
	for $[n \ n + 6] = [97 \ 103]$ we have $[n \ \alpha \ r] = [11 \ 89 \ 13]$.
•	or $[17 \ 83 \ 11]$ or $[29 \ 71 \ 7]$ or $[47 \ 53 \ 1]$
	$ (\mathbf{r}, \mathbf{r}, \mathbf{r}) $