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Abstract

We propose a modification of Einstein-Cartan gravity equations. The modified
cosmology departs from the standard model of cosmology for small Hubble param-
eter. A characteristic Hubble scale h0, which is intrinsically related to cosmological
constant, marks the boundary between the validity domains of the standard model of
cosmology and modified cosmology. Such a role for h0 is similar to Planck’s constant
in the quantum/classical context, or to the speed of light c in the relativity/classical
context. For large Hubble parameter, the standard model of cosmology is restored.
In the opposite limit of small Hubble parameter, which is the case for present epoch,
Lorentz-violating effects would manifest themselves. One of the implications is that
there may be no need to invoke dark matter to account for cosmological mass discrep-
ancies.
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1 Introduction

The dark matter hypothesis states that there is a vast amount of unseen mass in the uni-
verse. An alternative to dark matter is the modification of Newtonian dynamics[1, 2]
(MOND). It is a classical dynamics theory, which explains the mass discrepancies in galac-
tic systems without resorting to dark matter.

We propose a relativistic theory with modification of Einstein-Cartan equations. The
modified torsion explicitly breaks local Lorentz gauge symmetry[3], while preserving dif-
feomorphism invariance. MOND is recovered in weak field limit1. We apply our mod-
ified gravity theory to cosmology. Friedmann equations are updated and their implica-
tions are discussed. The deviation from the standard model of cosmology is noticeable
when Hubble parameter becomes comparable to or less than a characteristic Hubble scale.

2 Gauge Theory of Gravity

In de Sitter gauge theory of gravity[6, 7], gravitational gauge field can be written as a
Clifford-valued 1-form[8]

A =
1

l
e+ ω, (1)

e = eaγa = eaµdx
µγa, (2)

ω =
1

4
ωabγab =

1

4
ωabµ dx

µγab, (3)

where e is vierbein, ω is spin connection, µ, a, b = 0, 1, 2, 3, ωabµ = −ωbaµ , and γab ≡ γaγb.
Here we adopt the summation convention for repeated indices. Clifford algebra vectors
γa observe anticommutation relations

{γa, γb} ≡
1

2
(γaγb + γbγa) = ηab, (4)

where ηab is of signature (+,−,−,−).
The constant l is related to Minkowskian vacuum expectation value (VEV) of gravity

gauge field

Ā =
1

l
ē+ ω̄ =

1

l
δaµdx

µγa. (5)

Gravity curvature 2-form is given by

F = dA+ A2 = R +
1

l
T +

1

l2
e2, (6)

1See [4, 5] for two examples of different relativistic MONDian theories. See [2] for a comprehensive list.
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where spin connection curvature 2-form R and torsion 2-form T are defined by

R = dω + ω2 =
1

4
Rabγab =

1

4
(dωab + ηcdω

acωdb)γab, (7)

T = de+ ωe+ eω = T aγa = (dea + ηbcω
abec)γa. (8)

(9)

Here exterior ∧ products between forms are implicitly assumed.
One can write down the action for general relativity as[8]

SG =
c4

8πG

∫ 〈
−ie2F

〉
(10)

=
c4

8πG

∫ 〈
−ie2(R +

1

l2
e2)

〉
(11)

=
c4

8πG

∫ 〈
−ie2(R +

Λ

24
e2)

〉
(12)

=
c4

32πG

∫
εabcde

aeb(Rcd +
Λ

6
eced), (13)

(14)

where Λ is cosmological constant

Λ =
24

l2
, (15)

c is speed of light, G is Newton constant2, i is Clifford unit pseudoscalar

i = γ0γ1γ2γ3, (16)

and 〈· · · 〉 means Clifford scalar part of enclosed expression. The action of gravity is in-
variant under local Lorentz gauge transformations.

Field equations are derived by varying total action

S = SG + SM (17)

with gauge fields e and ω independently, where SM is matter part of the action. The
resulted Einstein-Cartan equations read

c4

8πG
(Re+ eR +

Λ

6
e3) = Ti, (18)

c4

8πG
(Te− eT ) =

1

2
Si, (19)

where T is energy-momentum current 3-form, and S is spin current 3-form.
2See [8] for how Newton constant G is related to l and VEV of gravity Higgs field.
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3 Lorentz Violation and Modified Gravity Equations

Local Lorentz gauge transformation is characterized by

RL(x) = e
1
2
εab(x)γab , (20)

where a, b = 0, 1, 2, 3, εab(x) = −εba(x), and γab are generators of Lorentz algebra. Gauge
field 1-form e(x), spin connection curvature 2-form R(x), and torsion 2-form T (x) trans-
form as3

V (x) → RL(x)V (x)RL(x)−1, (21)

while spin connection 1-form ω transforms differently as

ω → RL(x)ωRL(x)−1 − dRL(x)RL(x)−1. (22)

The Einstein-Cartan equations (18) and (19) are covariant under local Lorentz gauge trans-
formation, thanks to above transformation property for e(x), R(x), and T (x).

With the assumption of Lorentz symmetry violation, we study the remaining symme-
try under local gauge transformation

RS(x) = e
1
2
εjk(x)γjk , (23)

where j, k = 1, 2, 3. Gravity gauge fields

eS = ejγj = ejµdx
µγj, (24)

eT = e0γ0 = e0µdx
µγ0, (25)

ωT =
1

4
(ωj0γj0 + ω0jγ0j) =

1

2
ωj0µ dx

µγj0, (26)

transform as

V (x) → RS(x)V (x)RS(x)−1, (27)

while gauge field

ωS =
1

4
ωjkγjk (28)

transforms differently as

ωS(x) → RS(x)ωS(x)RS(x)−1 − dRS(x)RS(x)−1. (29)

3See e.g. chapter IX.7 of [9] for discussions about local Lorentz gauge transformation in the context of
differential forms.
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With violation of Lorentz symmetry, we propose a change to Einstein-Cartan equation
(19) in the form:

c4

8πG
(T̃ e− eT̃ ) =

1

2
Si. (30)

Here modified torsion 2-form T̃ is defined by

T̃ = T + ∆TT + ∆TS, (31)

where

∆TT = (αT z)−
1+δ
2 (ωT eS + eSωT ), (32)

∆TS = (αSz)−
1+δ
2 (ωT eT + eTωT ), (33)

z = |
12( e

l
)2(ωT

e
l

+ e
l
ωT )

( e
l
)4

| = |12le2(ωT e+ eωT )

e4
|. (34)

The modified torsion T̃ breaks local Lorentz gauge symmetry, while preserving diffeo-
morphism invariance. Because of the transformation property (27) for eS , eT , and ωT , the
modified Einstein-Cartan equations (18) and (30) are covariant under local gauge trans-
formation (23)4.

Three dimensionless parameters δ, αT and αS are to be determined by comparing
predictions of our proposal with astronomical observations. If αT and αS are equal, the
modification to torsion can be written as

∆T = ∆TT + ∆TS = (αz)−
1+δ
2 (ωT e+ eωT ), (35)

where α = αT = αS .

4 Weak Field Limit

In static weak field limit (gravity gauge field almost Minkowskian A ≈ Ā = 1
l
δaµγadx

µ),
the modified Einstein-Cartan field equations (18) and (30) are reduced5 to

∂iω
i0
0 =

4πG

c2
ρ, (36)

∂ie
0
0 − ωi00 (1 + (αT z)−

1+δ
2 ) = 0, (37)

where

z = l(ωi00 ω
i0
0 )

1
2 , (38)

4Since ωS transforms differently as (29), the modified torsion can not be dependent on ωS individually.
5We are interested in galactic systems in this section. Spin current S and cosmological constant Λ term

are set to zero, since their effect is negligible.
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and ρ is mass density.
The acceleration of a non-relativistic test body moving in the gravitational field is

given by

~a = −c2∇e00 = −∇VN [1 + (
|∇VN |
a0

)−
1+δ
2 ], (39)

where

∇2VN = c2∂iω
i0
0 = 4πGρ, (40)

and the characteristic acceleration scale a0 is given by

a0 =
c2

αT l
. (41)

It is intrinsically linked to cosmological constant (15) as

a0 =
c2

αT

(
Λ

24

) 1
2

. (42)

In the limit |∇VN | � a0, Newtonian dynamics is restored, provided 1 + δ > 0. For
|∇VN | � a0, one can calculate circular orbit rotation velocity in potential

VN = −GM
r

(43)

as

v4 = a1+δ0 GM1−δr2δ. (44)

According to Tully-Fisher law[10] of galactic rotation curves, one has an estimation of
parameter

δ ≈ 0. (45)

The characteristic acceleration is approximately

a0 ≈ 10−8cm/s2 ≈ c2

6
(
Λ

3
)
1
2 . (46)

Thus parameter αT of our model is determined as

αT =
c2

la0
=
c2

a0
(

Λ

24
)
1
2 ≈ 2. (47)
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5 Cosmology and Modified Friedmann Equations

In this section, we apply our modification to cosmology6. The spatially homogeneous
and isotropic universe is described by Robertson-Walker (RW) metric

ds2 = c2dt2 − a(t)2
(

dr2

1− κr2/R2
0

+ r2dΩ2

)
, (48)

where Ω2 = dθ2 + sin2θdφ2. With the above metric, (18) and (30) are reduced to modified
Friedmann equations as

H̃2 =
8πG

3
ρ+

c2

3
Λ− κc2

R2
0a

2
, (49)

d(aH̃)/dt

a
= −4πG

3
(ρ+

3

c2
p) +

c2

3
Λ, (50)

where

H̃

(
1 +

(
H̃/h0

)− 1+δ
2

)
= H, (51)

H =
ȧ

a
=
da/dt

a
, (52)

h0 =
c

3αSl
=

c

3αS

(
Λ

24

) 1
2

. (53)

Here H is Hubble parameter, H̃ is modified Hubble parameter, h0 is a characteristic Hub-
ble scale, ρ is mass density, and p is pressure. Spin current S is assumed to be zero. It is
noted that torsion modification ∆TT is relevant for Schwarzschild metric, while ∆TS is
relevant for RW metric. Hence, a0 and h0 are dependent on αT and αS , respectively. The
relation between the characteristic Hubble scale (53) and MOND acceleration scale (41) is

h0 =
1

3c

αT
αS
a0. (54)

Since the free parameter δ is estimated to be very close to zero, we will assume that
δ = 0 in the following analysis. The modified Hubble parameter H̃ is determined via
equation (51) as

H̃ = µ(H/h0)H, (55)

with interpolation function

µ(x) → 1 for x� 1, (56)
µ(x) → x for x� 1. (57)

6See [11] for a review of other modified gravity theories and their applications in cosmology.
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One can potentially regard (49) as a phenomenological model

(µ(H/h0)H)2 =
8πG

3
ρ+

c2

3
Λ− κc2

R2
0a

2
, (58)

with the interpolation function specified by (56) and (57).
In the limit of H � h0, one has H̃ ' H . Therefore, (49) and (50) are reduced to the

usual Friedmann and acceleration equations[12, 13] as,(
ȧ

a

)2

=
8πG

3
ρ+

c2

3
Λ− κc2

R2
0a

2
, (59)

ä

a
= −4πG

3
(ρ+

3

c2
p) +

c2

3
Λ, (60)

where ä = d2a/dt2.
In the opposite limit of H � h0, H̃ is given by

H̃ ' H

h0
H. (61)

The modified Friedmann equations then read

1

h20

(
ȧ

a

)4

=
8πG

3
ρ+

c2

3
Λ− κc2

R2
0a

2
, (62)

1

h0

(
2ȧä

a2
− ȧ3

a3

)
= −4πG

3
(ρ+

3

c2
p) +

c2

3
Λ. (63)

Let’s study a simple case of one-component universe with κ = 0, Λ = 0, and matter
density ρ = ρ0a

−3. We assume that it starts with H � h0. From equation (59), ȧ follows

ȧ ∼ t−
1
3 , (64)

which is decelerating. Eventually, the decreasing Hubble parameter will enter the regime
H � h0. Therefore, according to (62), ȧ should follow

ȧ ∼ t
1
3 , (65)

which is accelerating. This scenario of late-time cosmic speed-up without cosmological
constant is otherwise not possible in the standard model of cosmology7.

For certain values of κ > 0 and Λ > 0, numerical simulations show that the universe
can even experience two periods of decelerating and accelerating phases. The first cycle
of deceleration and acceleration is dominated by matter and characterized byH � h0 and
H � h0, respectively. The second cycle is driven by positive curvature and cosmological
constant, respectively.

7See [14, 15] for reviews of cosmological constant and its implications in cosmology. See e.g. [16, 17] for
earlier theories of cosmic acceleration without cosmological constant.
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6 Modified Density Parameter

Dividing the new Friedmann equation (49) by H̃2, one can get the density contributions
for different components of the universe. The modified density parameter for baryonic
matter is given by

Ω̃b =
8πG

3H̃2
ρb =

H2

H̃2

8πG

3H2
ρb =

H2

H̃2
Ωb, (66)

where Ωb = 8πG
3H2ρb is the usual density parameter for baryonic matter.

In the standard model of cosmology, cold dark matter(CDM) is invoked as an addi-
tional source of matter, since Ωb is lower than what is observed. Here we propose that
there is neither galactic CDM nor cosmological CDM. The modified density parameter Ω̃b

can be higher than the observed value Ωb, thanks to the factor H2/H̃2. This may eliminate
the need for CDM. In the standard model of cosmology, cold dark matter(CDM) is in-
voked as an additional source of matter, since Ωb is lower than what is observed. Here we
propose that there is neither galactic CDM nor cosmological CDM. The modified density
parameter Ω̃b can be higher than the observed value Ωb, thanks to the factor H2/H̃2. This
may eliminate the need for CDM.

Now we try to determine the magnitude of H2/H̃2. With the estimated value of char-
acteristic acceleration [2] in terms of Hubble constant H0 (which is the present value of
Hubble parameter H0 = H|t=t0),

a0 '
c

6
H0, (67)

equation (54) gives

h0 '
1

18

αT
αS
H0. (68)

With (68) and (51) (and δ = 0), the present value of factor (H2/H̃2)|t=t0 can be calcu-
lated as 1.6 or 6.9 for αT/αS = 1 or 18 (i.e. H0/h0 = 18 or 1), respectively.

7 Conclusion

We propose a modification of Einstein-Cartan equations. Spin current is coupled to mod-
ified torsion, which breaks local Lorentz gauge symmetry and leaves diffeomorphism
invariance intact.

By setting the free dimensionless parameter δ to zero, one recovers MOND in weak
field limit. Galactic rotation curves are explained without invoking dark matter. The
characteristic acceleration scale a0 is intrinsically linked to cosmological constant via VEV
of gravity gauge field.
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We then apply the new gravity theory to cosmology. The updated Friedmann equa-
tions are dependent on a modified Hubble parameter. The modified cosmology is in a
sense similar to MOND: one replaces Hubble parameter H with µ(H/h0)H in Friedmann
equation, whereas for MOND one replaces acceleration a with µ(a/a0)a in Newton equa-
tion. The deviation from the standard model of cosmology is noticeable when Hubble
parameter becomes comparable to or less than h0. The characteristic Hubble scale h0 is
proportional to MOND acceleration scale a0.

One of the implications is that there may be no need to invoke dark matter to account
for cosmological mass discrepancies. Another interesting observation is that our model
can accommodate late-time cosmic acceleration without cosmological constant.
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