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Abstract. An efficient technique is developed to simplify the computations in the
field of vector analysis. The evaluation of vector algebraic and differential operations
becomes more simple and straightforward by simply transforming the vector
operations into matrix operations. The matrix operations are especially useful when
there are mixed coordinate basis involved in the vector operations.
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Introduction

Many problems in science and engineering require substantial amount of vector and

matrix analysis. In many situations, it is generally more efficient to work with matrix
operations than to deal with vector operations. In this paper a useful technique, "Vector
operation Transforms into Matrix operation" (VIM), is developed to simplify the
manipulation of vector algebraic and differential operations. Generally, in vector
operations, components and basis unit vectors are inseparable and must stick together;
while in VIM technique, components and basis unit vectors can be dealt with separately
and usually, only the vector components are involved by skipping the basis unit vectors
[1]. The matrix manipulation is especially more favorable when there are different

coordinate basis involved in the vector operations [2].

As an illustration, for a vector differential operation

H=VxA
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the explicit expression of both sides in spherical coordinates may be written in vector
expression as

7 0  rsinfé
1 0 0
Psind| or 90 o
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or converted into matrix form as
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Obviously, the matrix form is more simplified and favorable than the vector expression,
since in the matrix form, the unit vectors (#,6,4) are not required to be shown and can be

omitted. Also, the operator Vx and the operand A are clearly separated, which makes the
operation easier to manipulate. Therefore, any vector operations can be performed more
efficiently by simply converting them into matrix operations.

To derive explicit formulas of double vector differential operations in spherical
coordinates, such as VVv.A, VxVxA, V’f=V.Vf, V2A=VV-A-VxVxA, it may generally
take several hours to get the explicit results through the conventional approach, while it
can take only few minutes to accomplish the same results by using the VIM technique.

Some interesting examples related to VIM will be demonstrated in the later sections.

In addition, an application in electromagnetic field solutions is provided to show the merit
of VIM technique presented.

2 Basic Operations
A matrix representing a vector or vector operator are to be enclosed by brackets,

possibly with superscript indicating its coordinate basis. The superscripts ¢, d, and s are
respectively used to denote the Cartesian, cylindrical, and spherical coordinate basis.
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These superscripts may be omitted, inside or outside of the brackets as needed. For
example, [A°],[ A°-],and [ A°x] represent the vector, dot-product, and cross-product
operators in  the  Cartesian  basis; while  [V],[V-T,[Vx],[VV]  and
[VV- —VxVx] represent the gradient, divergent, curl, scalar and vector Laplacian

operators in the spherical basis. Also, because of the particular scheme relating to
coordinate transformations [2], the order of the spherical coordinate variables and

components is purposely arranged as (6, ¢, r) instead of the conventional (r, 6 ¢).
In the following basic expressions for the curvilinear orthogonal coordinate system, a

vector A is inthe w=(u,,u,,1;) coordinate basis with =4, i,,4,) as basis unit vectors and
h=(h,h,,h) as metric coefficients. A scalar quantity is denoted as s which may be

eithera 1 x 1 single element matrix as in [A] s or a3 x 3 diagonal matrix as in s [A],
following the rule of matrix multiplication.
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The single and double vector differential operators may be expressed in compact form as

where

Al 0 A o,
O0=|0,|, O-=|0, 0, O3], Ox=| 0, o -9, ,
o] [ o o

hl
h= I ) o = h h, by
h3
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It should be noted that the expressions of the Vector operations Transform into Matrix
operations (VIM) presented here are somewhat different from those of the author’s
previous expressions, Matrix Formulation of Vector Operations (MFVO) [1] and from
those of the Generalized Differential Matrix Operators (GDMO) [3.,4]. The vector
differential operators, such as gradient, divergent and curl, are represented, respectively,
by (V), {V} and [V]in[1], and by |V), (V| and [Vx] in [3]. In the present article, they
are denoted by [V], [V'], and [Vx], respectively. The brackets for these expressions may
be removed provided no confusion exists.

It is worthwhile to mention that the vector differential operations may be written as

) . a; of
rad /' =Vf = £ =
grad f f E Ty oy
F

divF =V -F = E u; oF
— /1;  Ou;
7

curl F =V xF = E M. oF
— /1;  Ou;
7

These are straightforward expressions, however, they deal with basis unit vectors as those
in the usual vector expressions.

The vector operations transform into matrix operations in Cartesian, cylindrical and
spherical coordinate systems are specially tabulated in the next section.
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3.  VTM in Three Major Coordinate Basis

Cartesianl Coordinates: c= (x, », z), (h.h,.h)=(111)
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Cylindrical Coordinates: d= (p, ¢, z), (h,.h,h)=(1,p,1)

[a] - {
(a7 = [4 4 4]
[a] - {

[ |
<

| S—
1

M

g‘m

1
op p po¢ oz

o -2 1o
Oz pOog

o
op

[V Vvix] = [0 0 0]
0
[V"x V‘/] _ 0
0
[VM_ v :I — ‘:A:! :I
2 2 2
aoo D10 10 o
op° pop p Op° Oz
[ ,1o 1t 1 & 10 &
op* pop P’ p Opdp p’op  Ipoz
[v/ v ] = 1 9 1o 1 e 1@
p Opdp p’o¢ p’ o p 0z0¢
@ 1o 1@ o
L opoz  p oz p 0z0¢ oz*
[ 122 & 1 & 10 o
T io 2 o2 - t—= =
p°OP Oz p Opd¢p p° Op Opoz
> > > >
[viuvin] = L& 1o & 10,1 & 12
p Opd¢ p’ o op° pop p° 0z pozog
o 1o 1o 2 10 12
|l  0poz poz  pozdg op* pop p’og’
AL 20
P P’ o9
[V v = vixvix] = 22% A—L o
p- 0
0 0 A!

36



International Journal of Mathematical Engineering and Science
ISSN : 2277-6982

http://www.ijmes.com/

Volume 1 Issue 1

https://sites.google.com/site/ijmesjournal/

Spherical Coordinates: s= (0, ¢, r),

(h,,hw,h, )=(r,rsin0,1)
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4 Basic Vector Operation Identities

The printing area is In matrix formulation of vector operations [1], it is often necessary
to manipulate entry operations, such as removal of parenthesis, exchange of entry order,
etc. It should be emphasized that AxBxC=4Ax(BxC), but #(4xB)xC, and

AxB-C=Ax(B-C), but #(4xB)-C. This is sometimes contradictory to many of the vector

analysis textbooks. The identity operations must always follow the rules of matrix
multiplication. The following operation identities for two entries are fairly simple to
derive and are very expendable to manipulate the vector algebraic and differential
operations. Applying the basic vector operation identities can derive all the vector
differential operation formulas extensively listed in the next section. For completeness of
presentation, the operation identities for three entries are also included. Some of the
operation identities listed are quite similar to those of “Symbolic vector expressions”
presented in [S].

4. Axs =5 Ax

5. A-B=B-A
=AB-—BxAx=AB-—Ax Bx+(Ax B)x
=BA-—AxBx=BA-—BxAx+(BxA4)x

6. AxB = —BxA4

7. A-Bx=—B-Ax

8. A B-=BxAx+ B-A

9. AxBx=B A- —B-A

10. (AxB) =AxB=—-BxA4
11. (AxB)- =A-B x=—B-Ax

12. (AxBYyx=A-B—AB-+AxBx= —B-A+BA-—Bx Ax
= —AB-+BA-=AxBx—BxAx
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13.

15.

16.

17.

19.

20.

21.

22.

23.

24.

A-BxC=B-CxA=C-AxB
=-B-AxC=-C-BxA=-4-CxB
=BxCA-+CxAB-+AxBC-
=BC-Ax+CA-Bx+AB-Cx

AB-C=B-CA=C-AB+Cx AxB
=AC-B=C-BA=B-AC+Bx AxC

A-BC-=C-A-B=B-C-A+B-Cx Ax
=B-AC-=C-B-A=A-C-B+A-CxBx

A-BC=CA-B=B-CA+BxCxA4
=B-AC=CB-A=A4-CB+AxCxB

A-B-C=B-CA-=C-A-B+C-AxBx
=A-C-B=C-BA-=B-A-C+B-AxCx

A-BxCx= B-C-A-B-CA-=C-AB-—-C-A-B-C-AxBx
=-B-AxCx=-A4-C-B+A4-CB-=-C-BA-+C-B-A+C-Bx Ax

AxBxC=C-AB-CA-B=BC-A-B-CA-BxCxA
=-AxCxB=-B-AC+BA-C=-CB-A+C-BA+CxBx A

A-BCx=CxA-B=B-CxA+B-CAx—-BC-Ax+BxCx Ax+BxC-A-BxCA-
=B -ACx=CxB-A=A4-CxB+A-CBx—AC-Bx+AxCxBx+AxC-B— AxCB-

AXB-C=B-CAx=C-AxB+CxA-B-CxAB-+Cx AxBx+C-ABx—CA- B x
=AxC-B=C-BAx=B-AxC+BxA-C-BxAC-+Bx AxCx+B-ACx—-BA4-Cx

AB-Cx=-C-ABXx—-Cx AxBx=B-Cx A+ B-CAx—BC-Ax+Bx(Cx Ax
=-AC-Bx=B-ACx+Bx AxCx=-C-Bx A—C-BAx+CB- Ax—Cx Bx A%

AXBC-==BxC-A-BXxCxAx=C-AXxB+CxA-B-Cx AB-+Cx Ax Bx
=-BXAC-=AxC-B+ AxCxBx=-C-BxA—CxB-A+CxBA-—-CxBx Ax

AXBXxCx=-CxB-A-C-BAx-CxBx Ax
=BA-Cx-B-ACx=-C-AxB—-C-ABx+CA-Bx-Cx AxBx-Cx A-B
=AXCB-—AxC-B=-B-CxA-B-CAx-BxCx Ax-BxC-A+BxCA-
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Employing some basic operation identities may solve equations involving vectors.

Example: Solve the following equation for Z:
SL+AXZ+B-ZC+DXxZXE+ZxFxG=W
By some necessary rearrangement, we have
MZ =W = Z=M"'WwW
where
M =(s+ Ax+CB-—Dx Ex+F G-—G F")

Some special cases that the solutions may be directly expressed in explicit closed form
without going through matrix inversion:

SZ+AXZ =W - :M
s(s+A4-A)
SZ+AB-Z=W = _ (= BxAIW
s(s+A-B)
SZ+ AxBXZ=W = _G-BA)W
s(s—A-B)
sAXZ+BC-Z=W = _(sA4d-+Cx AxBX )W
sA-BA-C
A-7= B
® (B7=0) = 7 =SB AXV
BxZ=V, ~B
A-Z=p
B-Z=q = Z=PB><C+qC><A+rA><B
A-BxC
C-Z=r
B-CxW
x=
B-CxA
Ax+By+Cz=W = y:C~AxW
C-AxB
Z_A~B><W
A-BxC
AW
x=
A-BxC
BxCx+CxAy+ AxBz=W = y= B-W
B-Cx4
R4
C-AxB
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Vector Differential Operation Formulas

—_ -
N =

WoW W W W N
D~ OO0

® NN A WD

._.
S o

SRR
BB REREES RIS 0ED

35.
36.

Vu

V-A

VxA

C-VA

B-CxVA4

Vuv =vVu +uVv

VA-B=BxVxA+B-VA+ AxVxB+ A-VB

V-Au=uV-A+ A-Vu

VxAu=uVxA—AxVu

V-AxB=B-VxA—-—A-VxB

VxAxB=AV-B—A-VB—-BV-A+ B-VA4

C-VAu= AC-Vu+uC-VA

C-VAxB=AxC-VB—-BxC-VA

C-VA-B=A-C-VB+B-C-VA

(VxA)xB=—-BxVxA—AxVxB+AV-B—-A-VB

(VxA)-B=B-VxA—A-VxB

(VxADu=uVxA—AxVu

V-AB=BV-A+ A-VB

V-ABu=uBV-A+uA-VB+ BA-Vu

V-Au=uV-A+ A-Vu

(CxV)xA=CxVxA—CV-A+C-VA4

(CxV)-A=C-Vx A4

(CxV)u=CxVu

(C-V)A=C-VA

(C-VYu=C-Vu

Vuvw = vwwVu + wuVv + uvVw

V-Auv =uvV - -A+vA-Vu+uAd-Vv

VxAuv =uvV x A—vAxVu—uAxVv

VA-Bu=A-BVu+uBxVxA+uB-VA+uAxV xB+uA-VB

V-AxBu=uB-VxA—uA-VxB+ A-BxVu

VxAxBu=uAV-B—uA-VB—uBV-A+uB-VA— A-BVu+uAB-Vu— Ax BxVu

VXAB-C=B-CVxA—AXxCxVxB—AxBxVxC—AC-VB— AB-VC

V-A4-BC=C-BxVxA+C-AxVxB+C-B-VA+C-A-VB+ A-B-VC

VA-BxC=AxBV-C—AxB-VC—-AxCV-B+ AxC-VB+BxA-VC—-CxA-VB
+BxCxVxA-CxBxVxA+B-CxVA

V- AxBxC=A4-B-VC—-—A4-BV-C—A-C-VB+ A-CV-B+B-CxVx A

VxAxBxC=AC-VxB—AB-VxC—-BxA-VC+CxA-VB—BxCV-A+B-CxVA
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Some of the most familiar vector differential formulas are derived here for illustration:

VA-B = VA,-B+VA-B,
=VA,-B+VB,- A4 by (5) in Sec. 4.
=(A4,xVx+A4,-V)B+ (B, xVx+B,-V)A4 by (8)
=AxVxB+A-VB+BxVxA+B-VA remove ', ', and rearranged

VxAxB=VxA,xB+VxAxB,

=VxA, xB-VxB,xA by (6)
=(A4,V-—4,-V)B—(B,V--B, V)4 by (9)
=AV-B—A-VB—BV-A+B-VA

V-AxB=V-A xB-V-B,x A by (6)
=—A,-VxB+B,-VxA by (7)
=—A-VxB+B-VxA

C-VAxB=C,-VA,xB—C,-VB, x 4 by (6)
=4, x(C,-V)B—B, x(C,-V)A by (4) since (C,-V)=s

=AxC-VB-Bx(C-VA

Here, a quantity with subscript "o" denotes that the quantity to which it is attached is
momentarily being held fixed. It may be freely removed whenever no differential
operator is ahead of it.

It follows that

VA-BxC =AxVx(BxC)+ A-V(BxC)+(BxC)xVxA+(BxC)-VA
=Ax(BV-C-B-VC—-CV-B+C-VB)+(BxA-VC—-CxA-VB)
+(BxCx—CxBx)Vx A+ (B-Cx)VA (by(11)and (12))
=AxBV-C—AxB-VC—-AxCV-B+ AxC-VB+BxA-VC-CxA-VB
+BxCxVxA-CxBxVxA+B-CxVA
V- AxBxC=-A4-Vx(BxC)+(BxC)-Vx A4
=—A4-(BV-C-B-VC—-CV-B+C-VB)+B-CxVxA4
=—A-BV-C+A4-B-VC+A-CV-B—A-C-VB+B-CxVxA4
VxAxBxC=AV-(BxC)—A-V(BxC)—(BxC)V-A+(BxC)-VA
=A(-B-VxC+C-VxB)—(BxA-VC-CxA-VB)—BxCV-A+B-CxVA
=—AB-VxC+ AC-VxB—-BxA-VC+CxA-VB—BxCV-A+B-CxVA4
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6 Transformation of Coordinate Basis

Vector functions, position vectors, and unit vectors related to the any two coordinate
systems may be expressed as [2]

(A= [T )]
[ =0T
(1= ["T"](d]

where [YT"] isa coordinate transformation matrix relating - to v- coordinate systems,

PT1=["T'T" =[*T"T, and det['T*]=1.

For example,
cosg sing 0 cosd 0 —sind
[‘T‘]=|-sing cosg O |, 'Tl7=| 0 1 0
0 0 1 sind 0 cosd

cosfcosg cosfsing —sind
['T1= ['T‘1[‘T]=| -sing cos¢ 0
sinfcos¢ sinfsing cosd

Description of coordinate transformation between any two coordinate systems
involving both axis rotations and origin relocations may be found extensively in [2].

This transformation of coordinate basis may further extend to the matrix formulation of
vector operations [1]:

[AY] = ["TYI[A"]
[AY-] = [AY]["TY]
[AY><] = ["TYJLAYX]["T"]
[VY] = ["T*IIVY]

[VY] = [V*I*TY]

[VV<] = [YTYIIV*<]["T"]
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Example: Find 4= B x C, where A isinspherical components,and B and C are
given, respectively, in Cartesian and cylindrical components. That is,

A =04,+pA,+FA, B =3B +PB +iB, C'=pC, +¢C,+:C,

And
A =B xC’
Then,
[A]=[B"<][C°1=["T 1B <] “T 1 ["T“][C]
or
[4°]1=["T B <I[“T][C’]
Explicitly,

A, cosfcosg cos@sing —siné
A, |=| -—sing cos¢ 0
A/

sinfcos¢g sinfsing cosd

0 -B. B, | cosg —sing 0 |C,
B, 0 -B | sing cosg 0|C,
-B, B 0 0 0 1]cC

x

The desired result is thus obtained by simple straightforward direct matrix multiplication.
In the same manner,

DY = 4°xB° < C®
ES = B¢ Dzl . C.\-
yields
[D =T LA <][" T I B <][“ T ][C"]
[E"]=["T B IO ][ T][C"]

Example:  Find the dot-product of two position vectors, r(8,¢,r) and r'(6',¢',r").
That is,

S=r-r

then
[s1=[r" 1T 1[x"']
=[P TTN T )" ]
Or

sinfcos¢ sinfsing cosd 1 —sin@’ 0 cosd’ r'

cos@cosg cosOsing sinH]{l 0 O]|:cosﬁ'cos¢' —sing’ sinH’cos¢']|:0]
[s]=[0 O r]| -sing cos ¢ 0 0 1 0} cos@'sing’ cosg’ sin&'sing' || 0
0 0
r'sin @ cos ¢’
=[rsin@cosg rsin@sing rcosf ]| 'sin@'sing’
¥ cos @’
=[r#'(cos@cos O’ +sinOsin &' cos(¢ — ¢"))]
If the two position vectors are not in the same coordinate frames, then [‘T¢] must be
replaced by the coordinate transformation matrix with three Eulerian angles [2].
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It is very convenient to derive useful formulas as a whole, instead of one-by-one.

- 8 0 o . . .
Let derive —,—,— intermsof —,—,— in spherical coordinates.
ox Oy 0z 00 0¢ or

Since
[V 1=[‘T"1[V’]

Explicitly, we have

9 15
ox *%
cosfOcos¢p —sing sinfcosg r
0 . o 1 1 2
v = | cos@sing cos¢g sinfsing ;sinﬁa
v —sin@ 0 cos@ 5
9 o
=_ v
oz
cosfcos¢p O 51.n¢ i+sin6’cos¢£
r 060 rsinf o¢ or

_ cos¢9sin¢i+ cos¢ O
r 060 rsin@ O¢

_sin 0 +cos€E

r 00 or

o
+sinfsing—
¢8r

The same results can be obtained, a little more laboriously, by either of the following:
[Ve1=[V 1" T°]

[V =["TI[V'X]["T°]

The formulas

2 2 2 2 2 2
a—, aﬂ AR , 9 , ° may also be found in a similar
X' oy oz OxOy 0OyOz 0Oz0x

manncr:
VYV I=[“TIVV T

[VExVEx]=[T [V x V' x |['T°]

Detail derivations are given in Appendix B.
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7 Application in Electromagnetic Fields

It is well known that the Maxwell’s equations [6] in the isotropic medium with time

: ot
harmonic e/,

VxH(r) = jocE(r)+J(r)
V x E(r) = — jeopH(r)

the desired solutions, electric field E(r) and magnetic field H(r), can be determined:

E(r) = —jouA(r)+ ;VV -A(r)
Joe

H(r) = VxA(r)
where A(r) is a vector potential due to the given current distribution J(r),

A = [ g(r—r DIEHD
e

4rzr

g =

Generally, as in antenna applications, the resulting fields are most likely expressed in
spherical components. If the vector potential is given in Cartesian components, the
desired fields may then be found through the transformation of coordinate systems.
Employing the matrix formulation of vector operations, the magnetic field H(r) can be
written as

[HD]® = [V'}X][PT][AM]°
Explicitly,
10 1 0
0 _767” sin@%
H 89 s r or r
0(0.9,r) o o
H¢(9,¢,}") = —= r 0 T A A
r or r 00
H,(0,9,r) 1 0 1 0

- —— —sin@ 0
rsin@ O0¢ rsin@ 00

cos@cosgp cosfOsing —sinf || 4,(6,¢,r)
—sin ¢ cos ¢ 0 A4,0.9.r)
sinfcos¢ sin@sing cosd || A,(0,9,r)

The operator is clearly separated from the operand, compared to those of the conventional
complicated expression.
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After some manipulation, it may further be simplified as (see Appendix E)

[HOT = [V'x]y [T lo[Am)]

Explicitly,
0 _o _1 9
H,(0,4,r) 5 or r SiI; Qaaqﬁ
H,(6,¢,r) = or 0 PEY)
H,(0.¢.1) 1 2 108

" rsin@ é¢  r 00

cos@, cosp, cosO, sing, —sind, A (O,p,7)
—sing, cos @, 0 A,(0,8,7)
sin@, cos¢, sind, sing, cos O, A_(O,¢,7)

Here the “modified” differential operator v =] o is derived from the “formal” operator
[V *x]; and the coordinate transformation matrix [*T¢],, is exactly identical to [*T°]

but treated as a constant matrix. The subscript “o0” may be freely removed whenever no
differential operators are ahead of it. As a result, the computation is significantly
simplified.

From the above two expressions for [H(r)]’, an identity [ V'x ] ['T]=[ V'x ],,['T°], can be
established between the formal and modified differential operators. Other identities,
including double differential operations, such as [ v*V*. | [*'T] =[ V'V*. ],,[*T¢],, are
also useful and listed in Appendix A [7].

Before finding the field H(r) directly related to the given current distribution J(r), we
need to consider a very special case that the vector potential A(r) is a function of » only,
but not of & and ¢.

— jir

A@)=N,g(r)=(N, 5+ N, j+N, 2)5—
Ay

where N, is a constant vector. The field [H(r)]" may then be expressed without

differential operations after performing only the r-differential operations on the modified
formulas

[H) = —jkg(r)(1+ ijr) [ExTTT N
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And then in the usual vector expression,
- 1y
H(r) = Jkg(r)(1+jkr)r><No

Applying this procedure, the desired magnetic field H(r) directly related to J(r) can be
obtained:

H(r)= —jk[ (_—;kv x)g(R)JI(r')dv'
. 1 fal ’ ’
= k[ e@la+ ﬁ)nx] J(r')dv
And the desired electric field E(r) may be obtained in the similar manner (Appendix E):

E(r)=—jkn| (1+ %VV-) 2(R)I(r')dv'

1

JAR " (jkR)

(JKR)?

——jkn|, g®[a+ D= RR) + (- =2 )RR T3

where
R = RR = r—r, R=|r—r'|

and k=w\pue and n=\u/c-

In summary, the desired electric and magnetic fields can be found by

E(r) = —jkn[ Gy(mg(r—r' NIr)d

Hr) = - jk[ Komg(r-r DIe)dv
— 1
G (r) = 1+?VV-
K () = %J_kv x
Or

E(r) = — jkn, g RIGRM(r)dv
H()= —jk[ gRKRIE)

é(r)=(1+$+ ,l ZJ (1-Ff-) + (—i— _2 ] PE
jkr (jkr) Jkr (jkry

K(r):(ﬁ—j%} Fx
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Therefore, the solutions of Maxwell’s equations are determined by the integration of
those vector functions that are derived either through the complicated vector differential
operations involving gradient, divergent, and curl operations, or by the simple vector
algebraic operations involving only dot-product and cross-product operations. The later
formulation is found to be especially convenient for numerical computation involving
mixed coordinate systems. The similar results have been also found in some other
approach [9].

The desired solutions can further be explicitly written in matrix form such that both the
current sources and the resulting fields are expressed in terms of any coordinate system.
To show this formulation, we express the fields in spherical coordinate system s :(6, ¢, r),
and the current source in Cartesian coordinate system ¢': (x',)",z’) . The fields may then be
written in matrix form as

[EM] = —jkﬂJ',,g(R)[”T"' IGAR)T [* T] [I)] dv
H®] = *jk.[l,g(R)[‘T"”] KR [*T] [J)]ydv

where s, (6;.6;,R) is the spherical coordinates with radial vector R=r —r’, and

R = \/ (rsin@cosp —x")? + (rsinBsing — y")? + (rcos @ — z')?
0 -~ Cos,l[rcosgfz']
R R

p tal’l_l(rSiHQSin¢7y,j
® remuysme—»y

rsin@cos ¢ — x’

If the electromagnetic field in the far region is of primary interest, then for »>>r'0
we have R—r, R>T, 0, >0, ¢, > ¢, R—r for the amplitude factor, and R —»r —r-r’
for the phase factor. The fields are then simply

E(r) = —jkng(r)(1—##)[I") /" av
H(r) = —jkg(r) Bx [ J(r) ™" '

Explicitly in matrix form:

E,(0,¢,r) e 00 ‘ J.(x,y,2")

E,(0,¢,7) | = —jkn Z " 010 J.Z J.: j: J (), 2" | @M cosdryisinisinO = eos Ol gy gt gt
E,.(0,4,1) 00 J( 2

H,(0,¢,r) e 0 -1 0 o J.(x',y,2)

H,(0.¢,r) | = —jk - 1 0 0 jw J.-'x: le J (2" | @/ KL coswxisingysindezeos O] gt gy !
H . (6,¢,r) 0O 0 O J.(x',y',2)

The radiation field may thus be determined when the current distribution is given.
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8 Conclusion

An efficient technique “Vector operations Transform into Matrix operations” has been
presented in detail. The objective of this technique is to simplify the evaluation of vector
algebraic and differential operations in applications related to vector problems. The
technique is especially useful when there are mixed coordinate basis involved in the
vector operations.

It is interesting to note that in many literatures, the electric field E(r) is expressed in
dyadic form as [9]

E(r) =—jkn L 1+ %VV) g(R) - J(r')dv'

1 T _ DD 2 ’ ’
=—jkn| g(R) (HEJ’( R (T -RR)+(——— e (kR) —~ )RR]- J(r')dv

and for the far field, »>>#'[]
E(r) = —jkng(r)(1-£t)- J' Iy Ty
v

The dyadic form seems to be identical to the vector form described in the previous
section. Both will certainly yield the same exact results. However, in the vector form the
differential operations can directly carry out in spherical coordinates by VIM approach,
while in the dyadic form the differential operations must perform in Cartesian coordinates
and then return back to spherical coordinates, which is fairly laborious in computation.

Applying VIM technique may easily resolve some problems, which appear to be
impossible or difficult to accomplish. It seems to be a very easy task for us to derive
some of vector differential formulas, such as VxAxBxC, V-AxBxC, and VA-BxC.
However, simply applying the existing well-known formulas of VxAxB, V-AxB, and VA-B
will fail to achieve the results, unless having a formula of C-VAxB to work with. Perhaps,
this is the reason why these formulas appear rarely in any textbooks and literatures in
vector analysis.

No claim is made that the VIM technique presented is superior to those conventional
evaluations appeared in most of vector analysis textbooks. It is not intended to replace the
existing well known establishment in vector problems, but rather to aid readers in
overcoming the difficulties in resolving some applications related to vector operations.
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Appendix A. Modified operators related to formal operators

The identities, relating the formal operators to the modified operators, are listed below:

[V I1[TT=[V" 10T,

[V ] [TT=[V'x 10T,

[VVS ] [T]=[ V'V [T,

[VxVx ] [T =[ V' xVix L['T,

V'V - -V xV'x | [T] = [V'V°- = V" xV'x 1,['T],

where [#T<] is the transformation matrix from Cartesian to spherical coordinates. While
both [*T¢], and [*T¢] are identical, the matrix [*T<]_ should be treated as a constant

matrix.
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The formal vector differential operators in spherical coordinates are already given in
Sec. 3. The modified vector differential operators are listed below for reference:

10
r o6
. 11 9
[Vl ]M = T oA
r sin@ 0¢
9
or
. (10 1 o o
vl o[l L2
| 700 rsin@op or
o 2 112
or rsinf 0¢
0 10
Vix|, = — 0 -———
[ ]M [ r o060
11 0190
| rsin@og ro
1@ 18 11 @ 1wt d 1o 10
r* 06° ror r* sin@ 0004 1> sin’ @ o¢ rorod r* 00
[viv] 11 @ les§ o 1 1 & lesfd 10 1.1 & 1.1 0
M r?sind 000¢ r’sin’@dg rPsin’00¢> 1 sin’000 ror rsindordg r*sind og
1o 10 11 e 119 o
| rorod r* 00 rsing orog 1> sinf o¢ or’
[ 10 1 1 & 1les#d 1 1 3 les§d 108 10
o’ ror r*sin®@0g*> r*sin@ 00 r>sing 0004 r’sin’0o¢ rorod r’ o0
[YV] 11 @ 1 cos@ 0 o 10 18 11 & 1 1 0
VixVixly = 20 A Tl s 2pAg T2 T AT i A T o AAr 2 A As
r*sin@ 000¢ r” sin" 0 0¢ or~ ror r- o0 rsin@ orop r* sinf 0¢
168 198 11 & 118 10 lesf#d 1 1 & 20
| r0r00 r* 00 rsin@ordp r*sn@op 1’00 rPsin@ 00 rsin®004> ror
AN 0 0
[vive—vixvis], =] 0 & o0
0 0 A
. 19 lces#o 1 1 0° 8 290
A= St ot A Tt
r©00° r°sin@ 00 r°sin@0p° oOr° ror
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Appendix B. Partial differential operators in term of spherical coordinates

. o o o . .
B.1 Find —, —, — interms of spherical coordinates
& oy oz

It can be obtained by applying either one of the following three identities:

L [V ]=[TI V']
0
= 1
ox -——
cosfcosgp —sing sinfcosgp r o8
0 . . 11 9
@ = | cos@sing cos¢ sinfsing ;sin907¢
—siné 0 cos@ a
cosfcosg 0 s1T1¢ i+sin€cos¢i
r 060 rsinf 0¢ or

cos@sin¢i+ cos¢g O

r 06  rsinf o¢

. .0
+sinfsing—
¢6r

sin@ 0 0
— +cosf@—
00 or

I
EEE
Rl

=[ V- 1,[°TY, (Pure matrix multiplication)

8 0 8 cos@cosg cosfsing —sind
{67 6)/ a—z}:[li 1129 E} —sing cos¢g 0

00 indd¢g o
o0 rsin6og or sinfcos¢ sinfsing cosf

=[p, b, D]

3. [ Vix 1=[T] V'x [I'T]

=TI V°x 1,[*T], (Pure matrix multiplication)
B Lo oiaa
=z 0 "o ren0dp
3 Y cos@cosgp —sing sinfcosgp . or rsm9?¢ cosfcosg cosfsing —sinf
= 0 A =|cosfsing cos¢ sinfsing ai 0 —laﬁ —sin¢g cos¢ 0
. r r . S
P —sin@ 0 cos@ 1106 10 sinfcosg sinfsing cos |

0
oy ox rsin@op oo
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o> &

B.2 Find L

oy’

o> o &
oxdy  dyoz bzox’

82
"o

in spherical coordinates

It can be obtained by applying either one of the following two identities:

4 [VV[TIVY T]
[TV LT,

(Pure matrix multiplication)

0
0);“2 6{@ Biczaz cosfcosg —sing sinécosg
0—7 ‘ = |cosfsing cosg sin@sing
oyox  dy° Oz .
& PN —sinf 0 cos &
Ozox o2y 07
12 10 11 w00 10 1o
00> ror r* sin@ 0004 1’ sin’ 0 O rorod r* o0 cosBcosg cosOsing —sind
11 & lewsdo 1 1 & leos#od 10 11 & 11 .
7 -5 Tt oot T oo -5 -sing  cosg 0
r°sin@ 0009 r-sin“@0¢ r sin“@0¢” r-sin"@00 ror rsin@ordg r°sindop o n0si 9
laz ,ii lLaz ,i#i i sinfcosg sinfsing  cos .,
rorod r* o0 rsin6 orog 1’ sind 0 ot
Dw DU Dv:
=|D, D, D,
D:r D:y‘ D:z
50 [VExVEX] =TV x VX[ T)
=[NV’ xV* x]y,[*T¢]y  (Pure matrix multiplication)
N
2 o2 f 5
l?; azaz 6):? ’9:202 cosfcosg —sing sinfcosg
d - Oz f =| cosdsing cosg sinfsing
yox  dz" ot Oz )
2 2 2 2 -sinf 0 cos 6
@10 11 desfd 11 & lesfd 18 14
2 2290 2 2 FIONPY - 7
Or r@; r°sin”00g” - smélaﬁ 7 s1m98298¢) 7 sin”6 0¢ 7ror8t9 =00 cosOcosg cosfsing —sind
1 1 & 1 cosf 0 o 19 10 11 o 1190 .
20 o00d L<l0dd Al rdr 2Ap? L sind orod 2 sinf od -sing cosg 0
= sin@ 000¢ - sin” 6 09 o ror 100 rsind 0rdg - sinf 0 g inBsi 0
1E 1o 11 @ 110 10 G 11 @ g M R el
rored 200 rsinfordg 2sin0dp 206> sind o0 rsin?0og> ror
'Dj'y Dzz ny Dx:
=| D, DD, D,
sz Dzy 'Dxx'Dyy
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Appendix C. Time derivative of unit vectors and vector functions

C.1. Time derivatives of unit vectors (v,¢,., and (v,p,., in terms of (6,4,7)

sinfcos¢ sinfsing cosé

0 cos@cosg cosfsing —sinf| | x
$l=| -sing cos¢g 0 ¥y
7 z

{7‘ [—sinOcosg —sin@sing —costﬂ —cos@sing cos@cosp 0 cosfcos¢ —sing sin@cosgp 0
9= L'\ - . . ., —cos¢ —sing 0 cos@sing cos¢g sinfsing ¢
J _cosflcosg  cosOsing —sinHJ —sinfsing sinfdcosg 0 —sind 0 cosd 7
fO 0 —11 [ 0 cos@ 0 6
= Coeo oo , [ . —sin@ ¢
Ll 0 OJ L 0 sin@ 0 3
0 cosé ¢ . | I——\
= |—cos@ ¢ . e ;1 v
T
0 00 -1 0 cos® 0 0 —sin@ 0 o
#|=16|0 0 0|+@|—cos®@ 0 —sin@|+60p|sind 0  —cosf | b
P 1.0 0 0 sin@ 0 0  cosd 0 7
0 cos @ 0 A
6|0 0 0 |+d|—cos®@ 0 —sin6|: e
0 sin 6 0 z
0 0 cos @ 0 0 —2sind O
=4J4|0 0 +¢ —cos® 0 —sin@|+64|0 0 0
1 0 sin @ 0 0 2cosf O
-1 0 0 —cos? 6 0 —cosOsind|| [
+6%10 0 0|+g¢> 0 -1 0 #
0O 0 -1 —cos@sind O —sin? @ 7
—19'2—cosz6‘(/52 cosO¢ —2sin 0 O¢ —é—cosﬁsin@é2 1
= —cosO¢ 7¢ —sin@¢ ¢?
é—cosﬁsinﬁéz sin@ ¢ +2cos0 O¢ —éz—sin2¢9¢52 7
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C.2 Time derivatives of vector functions L and - . ,,,.,

Voo

where  F(0,4,r)=Fp+F;+F,=Fpo+ Fyp+ F,i

] | R o
F,| = Fy @
| F, | Fo||7
(%, [ £ 6 F, 0
Fy| = Fy b + Fy &
F, E. ||7 F. ||7
F, F, [0 0 -1 0 cos® 0O 6
= Fy + Fy 610 0 0|+d|—cos® O —sin@ é
F, F, |1 0 O 0 sin & 0 7
E, Fycos6¢ - F,6 6
= —F¢0050¢ F¢ —F¢sin0¢f ]
F.0 F.sinf¢ E. 7
Fg ﬁg 6 Fg é Fy é
Fﬂ’ = F’¢ gl+2| F ¢ +| F ¢
F, Eol 7 E |7 F. ||#

E, 00 -2 0 2cos6 0

= { . 1 [ Ha[o 0 o}rq{uose 0 25in€ﬂ
2.0 0 0 2sin@ 0

F,) 0 0 -1 cos® 0 0 -2sin@ 0

+ glo 0 0 +¢ —cos@ —sin@ |+ 04| 0 0 0

1 sin@ 0 0 2cosd® O

-1 0 0 —cos? 0 0 —cos@sind 0
+6%10 0 0|+4° 0 -1 0 4

0 0 -1 —cosfsin@ 0  —sin’@ 7

Fg—Fgéz—F500529¢z 2F, cos ¢+ FycosO ¢ —2F,sin00¢ —2F59—F99—F500505in9¢2 0
=| —2F;cos04-Fycos0¢ Fy—Fy ¢’ —2Fsin0 § - Fysin0 § ¢
2F.0+F,0—F,cosOsin0¢* 2F,sin0+ F,sin0¢+2F, cos 00 F. - F,6% - F.sin>04° 7
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C.3. Differentiation of unit vectors in spherical coordinates

vx6=14 v.g=1cos0
r 7 sin@
Vxg=-Lgslnls Vg=0
r r sin@
Vxr=0 V-;=£
-
Vxvxh=L L ; AT e — ﬁich’se‘
2 sin2 0 »2 sin2 @ p2 sind
VXVX¢:L2 12 P VW-4=0
r< sin“ @
~ 2 .
VxVxr=0 VV-r=——2r
-
(VY- —VxVx)d=—t L 5 2080,
#2 sin2 6 72 sin@
(VV-—VxVx);zZ=—L2 12 #
r< sin“ @
~ 2 .
(VV~—V><V><)r=——2r
¥
ié=—r i4§=cos€¢3 ié=0
o0 0 or
iﬁ=0 iﬁ=—cos€é—sin9f i¢?=0
20 o9 or
Oisg 9 i —sinop 90
20 o9 or
2 N 2 N 2
6—29=— O = —cos 06 - cos Osin 67 P 4=
20 op or
2 2 2
o . ? . . % .
72¢=0 72¢=—¢ 72¢=0
20 op or
2 2 A 2
8—2’ =-r a—zf=—coso9sin00—sin20f a—zﬁ=0
20 op or
2 2 o
2 . P . .
2 §=—singp 6=0 °_4=0
0004 oro0 Orog
2 2 ~2
T_j=o T_j-0 T G0
0604 oro orog
2 2 ~2
0 F=cos6p 0 7=0 ¢ ;=0
0009 orod orog
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Examples for derivation:

o 1 1 1 0 r 1 1
0 - : 0 — 0
or r r sind 0¢ 1 00 r
A o 1 10 1
V][0 ¢ 71 = - 0 -~ o1 0/=[— 0 0
Ve gl or r r 06 r
_l .1 i li+lc?s6 0 00 1 0 10956
| rsin@dp rof rsind ] L r sin@
1 00

VS04 71 = li+10959 1 .1 0 £+E 01 0l= 1cosd 0 2
rof rsinf rsinfop or r
0 01

94
00 0 cosfcosg cosfsing —sind || X
ié —iqg =—| -—sing cos¢g 0 y
00 00| .| o8| . N Jj
5 r sinfcosg sinfsing cosf || z
06" |
[—sinfcosgp —sin@sing —cos@| [cosfcosg —sing sinbcosd 0
= 0 0 0 || cosfsing cos¢ sinfsing ¢
| cosfcosg  cosfsing —sind —siné 0 cosf 2
[0 0 —1|0] |-
=10 0 0l¢l=|0
|10 0]r 0
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Appendix D. Vector differential operations to vector algebraic operations

Vector differential operations can convert into pure vector algebraic operations
when the operands involve only functions of R, where R=r—r".

V-R=3
VxR=0
VR-J)=J

V- (RxJ)=0
Vx(RxJ)=—2J
J-VR=1J

- 1 A
V(R-J)_E(I—RR-)J
V- (RxJ)=0

Vx(RxJ)= —%(l+ RR\)J

VxRI=RxJ
V-f(R)I=R-f(R)J
Vx f(R)JI=Rxf(R)J
V f(R) =Rf"(R)
V-F(R)=R-F'(R)
VxF(R)=RxF'(R)
V(F(R)-J)=RF'(R)-J
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VxVf(R)=0
2 ! 14
V-Vf(R)=Ef(R)+f (R)
V-Vx f(R)J=0

v f(R) =((1- fui-)% f'(R)+RR- f"(R))
VxVx f(R) = —((1 + ﬁﬁ-)% f'(R)+(1-RR) f"(R))J
(VV -V xVx) f(R)J = (% SR+ f"(R))

VxV(F(R)-J)=0
V.V(F(R)-J) = (%F'(R) +F'(R))J
V-VxF(R)=0

VV-F(R)=(1- fui-)%F'(R) +RR-F'(R)
VxVxF(R)=-(1+ ﬁﬁ-)%F'(R) —(1-RR)F"(R)

(VV -V x Vx)F(R) = %F’(R) +F'(R)

Here

R=r-r'=x-x)x+(y-)y)VW+(z-2)z

R=[r-r'|=[(x=x) +(y=)) +(z-2)"]"
~ R r-r .OR .OR .OR
R=— = = X—+y—+z—

R |r-r ox "oy Oz

and the vector differential operator V operates upon r, but not r', and J is treated as a
constant vector under V. Also F(R) and f(R) are vector and scalar functions of R,
respectively. It is noted that the all derived formulas are independent of coordinate
systems.
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Appendix E. Derivation of some equations in Sec. 7 of main text

E.1 Derivation of [H(r)® =[VxI5,[*TC1o[A®)E from [H(r)]® =[Vx]* [T [A®r)

In HEO)P =V [P T [Ar)°
Let
o Lo 10 ]
Or  rsin@ o¢ 0 - - 0
S _rALTS s_| O 10 1
[Vx]” =[0x]” +[Cx]° = o 0 20 + . 0 0
_ 1 0 10 0 0o 80,
rsind o¢p r o6 rsing
Then,

HOP = [V TENA@E = (0x1° +[CI ) TN A
=[PP TENAMIE +[OP [P TEAM]

=[x [ TCIo[AM) +[ox° [P TNAM)G +[CxP [ TN AMm)°

Since
0 1 0
0 "o rsin60¢ —lsm(ﬁ lcosgﬁ 0
7 [[cosfcosg cosfsing —sind r r )
[ox°[5T¢ = 02 0 —lai —sing cos¢ 0 | = _cosf ) _cosf ing sin@
r r
1 o 10 sinfcos¢ sinfsing cosd cosf cosd
- ¢ 2 —sing - cosg 0
rsin@o¢ rof rsing 0
0 L 0
r cosfcosg cosfsing —sind
L 0 0 —sing cos¢ 0 [=-[Cx°[°TY
,
cosf sinfcos¢g sindsing cosé
rsin@
We have
HO)® =[x T o[ AMm)]
That is,

HE)P =[Vx3, [ T o[ Am)
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E. 2 Derivation of

H(r) =—jk I Ky (1) g(R)J(r')dv' = —jkj g(RMKMR)I(rYdv'  and

4 14
E(r) = *J'kﬂ_‘-(_‘-v(l‘)g(R)J(l")dV'*.ikﬂj-g(R)é(R)J(r')dV'
14 V

Consider H(r) due to J(r):

H() = —jk [ Ry (0 r —r' DI
V

Rome b vs
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—— jkj}ﬁv x g(R)I(r')dv'
|4
H(r)® = fjkj[STSR ]}ﬁ[VSR LSRTRIRT @RI dv'
V

:fjkj[sTSR]_iﬂc[vSR R TR Y[R T g (R dv'
14
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=——|a+— 0 0
472'R “ ij)
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1 ~ —
= g(R)(1+—)RxI°r = g(RMIKR)I°F
JkR
then

[H(IO)] = —jk [ gRU T K ET*# T[T N[ dv’
)

H(r) = —jk [ g(RK(R)I(r)dv", KR) =(1+ )R
7 JkR
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Next, consider E(r) due to J(r):

_ _ 1
B =~k [GyDg(r-r I, Gym=1+- 5V
vV

=—jkn j 1+ %VV)g(R)J(r')dv'
v
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k2
14

= [T VT PR TN R T e (R av'
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Y(1-RR)+(—+
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E. 3 Alternative derivation of

H(r) =—jk .[ Ky ()g(R)I(r)dv' = — jk J' g(RKMR)IT)d'  and

14 14
E(r) = *jkﬂJ. Gy (N)g(R)I(r)dv'— ijJ. g(RGR)I(r)dv'
V V

From some formulas in App. D
Ky (2RI = _—i.kv x g(R)I(r)
— L Rugrua)
Gy (DRI =(1+ k%VV-)g(R)J(r )

= g(RIE)+ 5 g (R LA-RR)I) + L g"(RRR-I(r)
K2 R K2

Since

g (R) =—jk(1+ ﬁ)gm)

g"(R) = —k*(1+ J% , (jsz)z )g(R)
then

RyR)g(RI(r) = g(RY(1+ ——)RxJ(r)
JkR

=g(RKR)I(r)
Gy R)g(RIr) = gRN(1+ ——+ — )1 -RR) + (== + —2 )RR )J(r)
KR (jiRy? TR (jiR)?

=gRGR)I(T)

This completes the alternative derivation.
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