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1 Introduction 

Many problems in science and engineering require substantial amount of vector and 
matrix analysis.  In many situations, it is generally more efficient to work with matrix 
operations than to deal with vector operations.  In this paper a useful technique, "Vector 

operation Transforms into Matrix operation" (VTM), is developed to simplify the 
manipulation of vector algebraic and differential operations. Generally, in vector 
operations, components and basis unit vectors are inseparable and must stick together; 
while in VTM technique, components and basis unit vectors can be dealt with separately 
and usually, only the vector components are involved by skipping the basis unit vectors 
[1]. The matrix manipulation is especially more favorable when there are different 

coordinate basis involved in the vector operations [2].  
 

As an illustration, for a vector differential operation  
 

  H =  A 
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the explicit expression of both sides in spherical coordinates may be written in vector 
expression as 
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or converted into matrix form as 
 

1 1
0

sin

1 1
0

1 1
sin 0

sin sin

r r

r
r r r

r
r r r

r r

H A

H A

H A

 

 

 




   

 


 

 


 

 


 

 
 
    
    

     
       
 
 
 

 

 

Obviously, the matrix form is more simplified and favorable than the vector expression, 
since in the matrix form, the unit vectors ˆ ˆˆ( , , )r    are not required to be shown and can be 

omitted. Also, the operator  and the operand  A  are clearly separated, which makes the 
operation easier to manipulate. Therefore, any vector operations can be performed more 
efficiently by simply converting them into matrix operations. 
 

To derive explicit formulas of double vector differential operations in spherical 
coordinates, such as 2 2,  ,  ,   f f      A A A A A , it may generally 

take several hours to get the explicit results through the conventional approach, while it 
can take only few minutes to accomplish the same results by using the VTM technique.   
 

Some interesting examples related to VTM will be demonstrated in the later sections.  
In addition, an application in electromagnetic field solutions is provided to show the merit 
of VTM technique presented.  
 

2 Basic Operations  

A matrix representing a vector or vector operator are to be enclosed by brackets, 

possibly with superscript indicating its coordinate basis.  The superscripts c, d, and s are 
respectively used to denote the Cartesian, cylindrical, and spherical coordinate basis.  
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These superscripts may be omitted, inside or outside of the brackets as needed.  For 

example, [ ], [ ], and [ ]c c c A A A  represent the vector, dot-product, and cross-product 

operators in the Cartesian basis; while [ ] ,  [ ] ,  [ ] ,  [ ]s s s s     and 

 [ ]  s  represent the gradient, divergent, curl, scalar and vector Laplacian 

operators in the spherical basis. Also, because of the particular scheme relating to 
coordinate transformations [2], the order of the spherical coordinate variables and 

components is purposely arranged as (, , r) instead of the conventional (r, , ). 
In the following basic expressions for the curvilinear orthogonal coordinate system, a 

vector A is in the 1 2 3( , , )u u uu  coordinate basis with 
1 2 3

ˆ ˆ ˆ ˆ( , , )u u uu  as basis unit vectors and 

1 2 3( , , )h h h h  as metric coefficients.   A scalar quantity is denoted as  s  which may be 

either a    1 x 1 single element matrix as in  [A] s  or  a 3 x 3 diagonal matrix as in  s [A],  
following the rule of matrix multiplication. 
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The single and double vector differential operators may be expressed in compact form as 
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It should be noted that the expressions of the Vector operations Transform into Matrix 
operations (VTM) presented here are somewhat different from those of the author’s 
previous expressions, Matrix Formulation of Vector Operations (MFVO) [1] and from 
those of the Generalized Differential Matrix Operators (GDMO) [3,4]. The vector 
differential operators, such as gradient, divergent and curl, are represented, respectively, 

by  (), {} and [] in [1], and by |, | and [] in [3].   In the present article, they 

are denoted by [], [], and [], respectively. The brackets for these expressions may 
be removed provided no confusion exists. 

It is worthwhile to mention that the vector differential operations may be written as  
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These are straightforward expressions, however, they deal with basis unit vectors as those 
in the usual vector expressions. 
 

The vector operations transform into matrix operations in Cartesian, cylindrical and 

spherical coordinate systems are specially tabulated in the next section. 
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3.   VTM in Three Major Coordinate Basis  
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4 Basic Vector Operation Identities 

 
The printing area is In matrix formulation of vector operations [1], it is often necessary 

to manipulate entry operations, such as removal of parenthesis, exchange of entry order, 
etc. It should be emphasized that ( ),   but  ( )A B C A B C A B C        , and 

( ),   but  ( )A B C A B C A B C        . This is sometimes contradictory to many of the vector 

analysis textbooks.  The identity operations must always follow the rules of matrix 
multiplication. The following operation identities for two entries are fairly simple to 
derive and are very expendable to manipulate the vector algebraic and differential 
operations. Applying the basic vector operation identities can derive all the vector 

differential operation formulas extensively listed in the next section.  For completeness of 
presentation, the operation identities for three entries are also included.  Some of the 
operation identities listed are quite similar to those of “Symbolic vector expressions” 
presented in [5]. 
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Employing some basic operation identities may solve equations involving vectors.  
 

Example:   Solve the following equation for Z: 
 

sZ A Z B ZC D Z E Z F G W            
 

By some necessary rearrangement, we have 
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Some special cases that the solutions may be directly expressed in explicit closed form 
without going through matrix inversion: 
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5 Vector Differential Operation Formulas  
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Some of the most familiar vector differential formulas are derived here for illustration:  
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Here, a quantity with subscript "o" denotes that the quantity to which it is attached is 

momentarily being held fixed.  It may be freely removed whenever no differential 
operator is ahead of it. 
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6 Transformation of Coordinate Basis 

 
Vector functions, position vectors, and unit vectors related to the any two coordinate 

systems may be expressed as [2] 
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where  ]T[ uv  is a coordinate transformation matrix relating  u- to v- coordinate systems,  
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Description of coordinate transformation between any two coordinate systems 

involving both axis rotations and origin relocations may be found extensively in [2]. 
 

This transformation of coordinate basis may further extend to the matrix formulation of 
vector operations [1]: 
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Example:   Find   A =  B  x  C,  where  A  is in spherical components, and  B and  C are 
given, respectively, in Cartesian and cylindrical components.  That is, 
 

ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ,        ,      s c d

r x y z zA A A r A B xB yB zB C C C zC                

And 
s c dA B C   

Then,  
[ ] [ ][ ] [ T ][ ][ T ] [ T ][ ]s s s s c c c s s d dA B C B C     

or 

[ ] [ T ][ ][ T ][ ]s s c c c d dA B C   

Explicitly, 
cos cos cos sin sin 0 cos sin 0

sin cos 0 0 sin cos 0  

sin cos sin sin cos 0 0 0 1

z y

z x

r y x z

A B B C

A B B C

A B B C

 

 

      

   

    

          
        

          
                

 

 

The desired result is thus obtained by simple straightforward direct matrix multiplication. 

In the same manner,  
 

d s c s

s c d s

D A B C

E B D C

  

 

 

yields 
s c s

c s

[ ] [ T ][ ][ T ][ ][ T ][ ]

[ ] [ T ][ ][ ][ T ][ ]

d d s s c c s

s s c d d s

D A B C

E B D C

  

 

 

 

Example:   Find the dot-product of two position vectors, ( , , ) and ( , , )r r      r r . 

That is, 
s ss

 r r  

then 

[ ] [ ][ T ][ ]

    [ ][ T ][ T ][ T ][ ]

s s s s

s s c c c c s s

s
 

   

 

 

r r

r r
 

Or 
cos cos cos sin sin 1 0 0 cos cos sin sin cos 0

[ ] [0 0 ] sin cos 0 0 1 0 cos sin cos sin sin 0

sin cos sin sin cos 0 0 1 sin 0 cos

s r

r

         

      

      

            
            
       

                

 

sin cos

sin sin

cos

sin cos    sin sin   cos

(cos cos sin sin cos( ))

     [ ]

    [ ]

r

r

r

r r r

r r

 

 



    

     

  

  

 

    

 
 
 
  



 

If the two position vectors are not in the same coordinate frames, then [ T ]c c  must be 

replaced by the coordinate transformation matrix with three Eulerian angles [2].  
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It is very convenient to derive useful formulas as a whole, instead of one-by-one.  
 

Let derive  , , , ,  in terms of    
x y z r 

     

     
  in spherical coordinates.  

 
Since 

s[ ] [ T ][ ]c c s    

 
Explicitly, we have 

 

1

cos cos sin sin cos
1 1

 cos sin cos sin sin  
sin

sin 0 cos

cos cos sin
sin cos

sin

cos sin
               

     

r

r

r

r r r

r

x

y

z

    

    
 

 

  
 

  

 

 
  
       

         
     

  
    

  

  
 

  















cos
sin sin

sin

sin
cos

r r

r r


 

  






 
 
 

  
  

 
 
  

  
   

 

 
The same results can be obtained, a little more laboriously, by either of the following: 
 

[ ] [ ][ T ]c s s c      

 

[ ] [ T ][ ][ T ]c c s s s c      

 
 

The formulas 
2 2 2 2 2 2

2 2 2
, , , ,   and  

x y z x y y z z x

     

        
 may also be found in a similar 

manner: 
 

[ ] [ T ][ ][ T ]c c c s s s s c        
 

[ ] [ T ][ ][ T ]c c c s s s s c        

 

 
Detail derivations are given in Appendix B.  
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7     Application in Electromagnetic Fields 

 

It is well known that the Maxwell’s equations [6] in the isotropic medium with time 

harmonic tje  , 

 
( ) ( ) ( )

( ) ( )

j

j





  

  

H r E r J r

E r H r
  

 

the desired solutions, electric field E(r) and magnetic field H(r), can be determined: 
 

1
( ) ( ) ( )

( ) ( )

j
j




    

 

E r A r A r

H r A r

 

 

where  A(r) is a vector potential due to the given current distribution J(r), 
 

 
V

vdg )(|)(|)( rJrrrA
 

( )
4

jkre
g r

r



  

 
Generally, as in antenna applications, the resulting fields are most likely expressed in 

spherical components.  If the vector potential is given in Cartesian components, the 
desired fields may then be found through the transformation of coordinate systems.  
Employing the matrix formulation of vector operations, the magnetic field H(r) can be 

written as 
 

ccsss )]([]T[][)]([ rArH   

Explicitly, 
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The operator is clearly separated from the operand, compared to those of the conventional 
complicated expression. 
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After some manipulation, it may further be simplified as (see Appendix E) 
 

c
O

cs
M

ss )]([]T[][)]([ rArH   

 

Explicitly, 
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ooooo
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Here the “modified” differential operator 

M
s ][   is derived from the “formal” operator 

][ s ; and the coordinate transformation matrix c[ T ]s

O
 is exactly identical to ]T[ cs  

but treated as a constant matrix.  The subscript “o” may be freely removed whenever no 

differential operators are ahead of it.   As a result, the computation is significantly 
simplified. 
 

From the above two expressions for [ ( )]s
H r , an identity [ ] [ T ] [ ] [ T ]s s c s s c

M O      can be 

established between the formal and modified differential operators.   Other identities, 
including double differential operations, such as [ ] [ T ] [ ] [ T ]s s s c s s s c

M O       , are 

also useful and listed in Appendix A [7]. 
 

Before finding the field H(r) directly related to the given current distribution J(r), we 
need to consider a very special case that the vector potential A(r) is a function of  r  only,  

but not of   and  . 
 

ˆ ˆ ˆ( ) ( ) ( )
4

jkr

O ox oy oz

e
g r N x N y N z

r



   A r N    

 

where NO is a constant vector.  The field [ ( )]s
H r  may then be expressed without 

differential operations after performing only the  r-differential operations on the modified 
formulas 
 

ˆ[ ( )] ( )(1 ) [ ] [ T ] [ ]1
O

s s s c cjk g r
jkr

   H r r N  
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And then in the usual vector expression, 
 

ˆ( ) ( )(1 )1
ojk g r

jkr
   H r r N  

 

Applying this procedure, the desired magnetic field H(r) directly related to J(r) can be 

obtained: 

ˆ

1
( )  ( ) ( ) ( )d

1
        ( ) (1 ( )d[ ]

V

V

jk g R v
jk

jk g R v
jkR

   


    



 R

H r J r

) J r

 

 

And the desired electric field E(r) may be obtained in the similar manner (Appendix E): 
 

2

2 2

1
( ) (1 ) ( ) ( )d

1 1 2 2ˆ ˆ ˆ ˆ       ( ) (1 )(1 ) ( ) ( )d
( ) ( )

[ ]

V

V

jk g R v
k

jk g R v
jkR jkR jkR jkR





    

          





E r J r

RR RR J r

 

where 

|   |          ˆ rr,rrRR  RR  

 

and     /   and   k .  

 

In summary, the desired electric and magnetic fields can be found by  
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1
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    Or 
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2 2

1 1 2 2
ˆ ˆ ˆ ˆ ( ) 1 1
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1
ˆ( ) 1
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Therefore, the solutions of Maxwell’s equations are determined by the integration of 
those vector functions that are derived either through the complicated vector differential 

operations involving gradient, divergent, and curl operations, or by the simple vector 
algebraic operations involving only dot-product and cross-product operations. The later 
formulation is found to be especially convenient for numerical computation involving 
mixed coordinate systems. The similar results have been also found in some other 
approach [9]. 
 

The desired solutions can further be explicitly written in matrix form such that both the 
current sources and the resulting fields are expressed in terms of any coordinate system. 

To show this formulation, we express the fields in spherical coordinate system s :(, , r), 

and the current source in Cartesian coordinate system : ( , , )c x y z    . The fields may then be 

written in matrix form as 

  [ ( )]    ( )[ T ][ ( )] [ T ] [ ( )] d

  [ ( )]    ( )[ T ] [ ( )] [ T ] [ ( )] }d

R
R R

R R R

s
s ss s c c c

V

s s ss s c c c

V

jk g R v

jk g R v

   

  

 

 





E r G J r

H r K J r

R

R

 

 

where  : ( , , ) R R Rs R   is the spherical coordinates with radial vector  rrR  ,  and 
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R

zr

zryrxrR
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cossin

sinsin
tan

cos
cos

)cos()sinsin()cossin(

1

1

222
 

 

If the electromagnetic field in the far region is of primary interest, then for r r  , 

we have ˆ, ,ˆ R r R r  , ,R R R r       for the amplitude factor, and ˆR r  r r  

for the phase factor.  The fields are then simply 
 

ˆ

ˆ

ˆ ˆ( ) ( )(1 ) ( )

ˆ( ) ( ) ( )

jk

V

jk

V

jk g r e dv

jkg r e dv

 



    

   





r r

r r

E r rr J r

H r r J r

 

Explicitly in matrix form: 
 

[( cos sin ) sin cos ]

- -

( , , )

( , , )

( , , )

( , , ) 1 0 0

 ( , , ) 0 1 0  
4

( , , ) 0 0 0

( , , )

  ( , , )

( , ,

x

y

z

jkr
j k x y z

r

r

J x y z

J x y z

J x y z

E r
e

E r jk e dx dy dz
r

E r

H r

H r

H r



   






 

  


 

 

 

 








  

   

  

  

  

  

     
         
     
         

  

[( cos sin ) sin cos ]

- -

( , , )

( , , )

( , , )

0 1 0

1 0 0
4

) 0 0 0

     

x

y

z

jkr
j k x y z

J x y z

J x y z

J x y z

e
jk e dx dy dz

r

   










  

   

  

  

  

  

     
         
     
         

  
 

The radiation field may thus be determined when the current distribution is given. 
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8  Conclusion 

 
An efficient technique “Vector operations Transform into Matrix operations” has been 

presented in detail. The objective of this technique is to simplify the evaluation of vector 

algebraic and differential operations in applications related to vector problems. The 
technique is especially useful when there are mixed coordinate basis involved in the 
vector operations. 
 

It is interesting to note that in many literatures, the electric field E(r) is expressed in 
dyadic form as [9] 

 

2

2 2

1
( ) (1 ) ( ) ( )d

1 1 2 2ˆ ˆ ˆ ˆ       ( ) (1 )(1 ) ( ) ( )d
( ) ( )

[ ]

V

V

jk g R v
k

jk g R v
jkR jkR jkR jkR





     

         





E r J r

RR RR J r

 

 

and for the far field,  r r   

 
ˆˆ ˆ( ) ( )(1 ( ) jk

V

jk g r e dv     
r r

E r rr ) J r  

 

The dyadic form seems to be identical to the vector form described in the previous 
section. Both will certainly yield the same exact results.  However, in the vector form the 
differential operations can directly carry out in spherical coordinates by VTM approach, 
while in the dyadic form the differential operations must perform in Cartesian coordinates 

and then return back to spherical coordinates, which is fairly laborious in computation. 
 

Applying VTM technique may easily resolve some problems, which appear to be 
impossible or difficult to accomplish.  It seems to be a very easy task for us to derive 
some of vector differential formulas, such as ABC, ABC, and ABC.  

However, simply applying the existing well-known formulas of AB, AB, and AB 
will fail to achieve the results, unless having a formula of CAB to work with.  Perhaps, 
this is the reason why these formulas appear rarely in any textbooks and literatures in 
vector analysis.  
 

No claim is made that the VTM technique presented is superior to those conventional 
evaluations appeared in most of vector analysis textbooks. It is not intended to replace the 
existing well known establishment in vector problems, but rather to aid readers in 
overcoming the difficulties in resolving some applications related to vector operations. 
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Appendix A.   Modified operators related to formal operators 
 

 

The identities, relating the formal operators to the modified operators, are listed below: 
 

 

[ ] [ T ] [ ] [ T ]

[ ] [ T ] [ ] [ T ]

[ ] [ T ] [ ] [ T ]

[ ] [ T ] [ ] [ T ]

[ ] [ T ] [ ] [ T ]

M O

M O

M O

M O

M O

s s c s s c

s s c s s c

s s s c s s s c

s s s c s s s c

s s s s s c s s s s s c

    

    

      

      

             

 

 
 
where  [ T ]s c  is the transformation matrix from Cartesian to spherical coordinates. While 

both [ T ]   and  [ T ]
O

s c s c  are identical, the matrix [ T ]
O

s c  should be treated as a constant 

matrix. 
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The formal vector differential operators in spherical coordinates are already given in 

Sec. 3. The modified vector differential operators are listed below for reference:  
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Appendix B.    Partial differential operators in term of spherical coordinates 
 

, ,
x y z

    
  

  
B.1    Find in terms of spherical coordinates  

 

It can be obtained by applying either one of the following three identities:  
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 B.2    Find and in spherical coordinates  

 
 It can be obtained by applying either one of the following two identities:   
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Appendix C.  Time derivative of unit vectors and vector functions  
 

C.1.  Time derivatives of unit vectors ˆ ˆ ˆ( , , )r   and ˆ ˆ ˆ( , , )r   in terms of ˆ ˆ ˆ( , , )r   
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C.2    Time derivatives of vector functions , ,( )r F  and , ,( )r F  

where   ˆ ˆ ˆ, ,( ) r rr rF F F           F F F F  
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C.3.   Differentiation of unit vectors in spherical coordinates 
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Examples for derivation: 
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Appendix D.  Vector differential operations to vector algebraic operations 

 
Vector differential operations can convert into pure vector algebraic operations 

when the operands involve only functions of  R, where  R = r – r'.  
 

 

 

3

0

( )

( ) 0

( ) 2

2ˆ

ˆ 0

1ˆ ˆ ˆ( ) (1 )

ˆ( ) 0

1ˆ ˆ ˆ( ) (1 )

1ˆ ˆ ˆ(1 )

ˆ

ˆ

ˆ

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

R

R

R

R

R

R

R

f R f R

f R f R

f R f R

  

 

  

   

  

 

  

 

    

   

     

   

 

   

  

   

  

 



R

R

R J J

R J

R J J

J R J

R

R

R J RR J

R J

R J RR J

J R RR J

R

J R J

J R J

J R J

J R J

R

F ˆ( ) ( )

ˆ( ) ( )

ˆ( ( ) ) ( )

R R

R R

R R

 

  

   

R F

F R F

F J RF J

 

 

 



International Journal of Mathematical Engineering and Science 
ISSN : 2277-6982                            Volume 1 Issue 1 

http://www.ijmes.com/                    https://sites.google.com/site/ijmesjournal/ 
 

60 
 

 

( ) 0

2
( ) ( ) ( )

( ) 0

1ˆ ˆ ˆ ˆ( ) (1 ) ( ) ( )

1ˆ ˆ ˆ ˆ( ) (1 ) ( ) (1 ) ( )

2
( ) ( ) ( ) ( )

( ( ) ) 0

2
( ( ) ) ( ) (

( )

( )

( )

(

f R

f R f R f R
R

f R

f R f R f R
R

f R f R f R
R

f R f R f R
R

R

R R
R

 

    

  

       

        

     

  

      

J

J RR RR J

J RR RR J

J J

F J

F J F F )

( ) 0

1ˆ ˆ ˆ ˆ( ) (1 ) ( ) ( )

1ˆ ˆ ˆ ˆ( ) (1 ) ( ) (1 ) ( )

2
( ) ( ) ( ) ( )

)R

R

R R R
R

R R R
R

R R R
R



  

       

        

     

J

F

F RR F RR F

F RR F RR F

F F F

 

 
Here 
 

2 2 2 1/ 2

ˆ ˆ ˆ( ) ( ) ( )

| | [( ) ( ) ( ) ]

ˆ ˆ ˆ ˆ
| |

x x x y y y z z z

R x x y y z z

R R R
x y z

R x y z

          

          

   
    

   

R r r

r r

R r r
R

r r

 

 

and the vector differential operator  operates upon r, but not r', and J is treated as a 

constant vector under .  Also F(R) and f(R) are vector and scalar functions of R, 
respectively. It is noted that the all derived formulas are independent of coordinate 
systems. 
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Appendix E.    Derivation of some equations in Sec. 7 of main text 
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E. 2   Derivation of  
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Next, consider E(r) due to J(r): 
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E. 3   Alternative derivation of  
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This completes the alternative derivation. 
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