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Abstract. In this paper, we discuss the convergence of GAOR method to solve 

linear system when the coefficient matrix is a weighted strictly doubly diagonally 

dominant matrix. Moreover, we show that our results are better than previous ones 

by using two numerical examples.  
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1   Introduction 

Sometimes we have to solve the following linear system: 

  H y f ,                                               1  

where 
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2

I B D
H

C I B

 
  

 
 

is invertible. For example, in the variance-covariance matrix [1]. A generalized 

SOR(GSOR) method to solve linear system (1) was proposed in [2], afterwards, a 

generalized AOR(GAOR) method to solve linear system (1) was established in [3] as 

follows: 
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In [4-6], authors studied the convergence of GAOR method for solving the linear 

system .Hy f In [4], authors studied the convergence of GAOR method when the 

coefficient matrices are consistently ordered matrices and gave the regions of 

convergence. In [5] and [6], authors studied the convergence of GAOR method for strictly 

diagonally dominant coefficient matrices and gave the regions of convergence. Most 

linear systems of interest have coefficient matrices that are not strictly diagonally 

dominant; in this paper we will discuss the convergence of GAOR method when the 

coefficient matrices are weighted strictly doubly diagonally dominant. 

Throughout this paper, we denote the i  row sums of the modulus of the entries of J  

and K  by 
iJ  and 

iK , the i  column sums of the modulus of the entries of J  and 

K  by iJ
  and iK

 , the spectral radius of iterative matrix 
,rL by  ,rL , and 

 1,2, ,N n ,  1 | 0, 0i iN i K K    , 2 1N N N  ,   | |i ik

k i

R A a


 , 

  | |i ki

i k

R A a


  , ,i k N . 

Definition [7] We call matrix 
n nA C   a strictly diagonally dominant matrix if 

 ii ia R A , i N  , 

and denote A SD . 

We call matrix 
n nA C   a weighted strictly doubly diagonally dominant matrix if 

         1ii jj i j i ja a R A R A R A R A      , , ,i j N i j   , 

and denote  A SDD  , where [0,1].  

Lemma [7] If  A SDD  , then A is nonsingular. 

In this paper, we study the convergence of GAOR method for solving the linear system 

Hy f for weighted strictly doubly diagonally dominant coefficient matrices. Firstly, we 

obtain upper bound for the spectral radius of the matrix 
,rL  which is the iterative matrix 

of GAOR iterative method. Moreover, we present one convergence theorem of GAOR 

method. Finally, we present two numerical examples. 
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2   Upper bound of the spectral radius of 
,rL  

In this section, we obtain upper bound of the spectral radius of the iterative matrix
,rL . 

Theorem 1.  Let  H SDD  , then  ,rL  satisfies the following inequality: 

 ,rL  
,

max 1
i j
i j




   

      1i i j j i i j jJ r K J r K J r K J r K         
         


.  

Proof. Let   be an arbitrary eigenvalue of the iterative matrix
,rL , then 

    ,det 0rI L   ,                  7  

i.e.  

   det 1 0I J rK        . 

If  1 ( )I J rK SDD         , from Lemma we know that  

 1 I J rK        

is nonsingular, that is 

  det 1 0I J rK        , 

then is not an eigenvalue of the iterative matrix 
,rL , we have 

  
2

1 i i j jJ r K J r K            

   1 i i j jJ r K J r K           , i j . 

While is an eigenvalue of the iterative matrix ,rL , then there exists at least a couple 

of  ,i j N i j  , such that 

2
1          1i i j j i i j jJ r K J r K J r K J r K                  . 

That is 

    
2 2

2 1 1 i i j jJ r K J r K                 

   1 0i i j jJ r K J r K            .   8  
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It is easy to find that the discriminant of a curve of second order 

      4 4 1 0,i i j j i i j jJ r K J r K J r K J r K                      

then the solution of (8) satisfies 

  1    

      1i i j j i i j jJ r K J r K J r K J r K                  , i j . 

So  ,rL satisfies the following inequality   

 ,rL  
,

max 1
i j
i j




   

      1i i j j i i j jJ r K J r K J r K J r K         
         


.  

3   Convergence of GAOR method  

In this section, we investigate the convergence of GAOR method to solve linear system 

(1). We assume that H is a weighted strictly doubly diagonally dominant coefficient 

matrix and obtain the regions of convergence of GAOR method. 

Theorem 2. If  H SDD  , , ,i j N i j   ,  1 1i j i jJ J J J      , then  

GAOR method convergences if ,r satisfy either  

  0 1  , 
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i j i j i j

J K J K J K J K
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2 2 1
1 min 2,min
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i j i j
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J J J J
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2 1
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J J J J
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J K J K J K J K

   

  


    

 
        
  

 

    
 

2

2
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min
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i j j i i j j i

i j
i j i j i j

J K J K J K J K

K K K K

  

  

          
   


    
  

, 

where 

    
2

1 1i j j i i j j iJ K J K J K J K          
  

  

   4 1 1 1i j i j i j i jK K K K J J J J              
   

, 

     
2

2

2 1i j j i i j j iJ K J K J K J K           
  

 

      2 24 1 1 1 4 1i j i j i j i jK K K K J J J J                   
   

. 

Proof. Because ( )H SDD  , then GAOR method convergences if 


,

max 1
i j
i j




   

      1 1i i j j i i j jJ r K J r K J r K J r K         
         


 

That is 

1    

      
,

max 1 1i i j j i i j j
i j
i j

J r K J r K J r K J r K         


           
 

. 

Firstly, when 0 1  , we have  

 22 2 2 2 2

i j i j j i i jJ J r J K r J K r K K          

  22 2 2 21 i j i j j i i jJ J r J K r J K r K K                . 

That is 

      2
1 1i j i j i j j i i j j ir K K K K r J K J K J K J K                

    
 

 1 1 0i j i jJ J J J        .  9  

Then, we have the following conditions: 

 1  when 1,i j N , then 0, 0i j i jK K K K     . From  

 1 1i j i jJ J J J      ,  
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We have r   .  

 2  when 
1 2,i N j N   or 

2 1,i N j N  , then  

      1 1 1 0i j j i i j j i i j i jr J K J K J K J K J J J J                 
  

. 

From  1 1i j i jJ J J J      , we have  

 

    ,

1 1
min

1

i j i j

i j
i j i j j i i j j i

J J J J
r

J K J K J K J K

 

 

   


      

. 

 3  when 
2,i j N , it is easy to prove that the discriminant of a curve of second 

order
1 0  , and then  
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,

1
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2 1

i j j i i j j i

i j
i j i j i j

J K J K J K J K
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K K K K

 

 

          
  

   
 

. 

So, when 0 1  , we have 

 

    ,

1 1
min min ,

1

i j i j

i j
i j i j j i i j j i

J J J J
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J K J K J K J K

 

 


   

 
      



 

    
 

1

,

1

min
2 1

i j j i i j j i

i j
i j i j i j

J K J K J K J K
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. 

Secondly, when 1 2  , we have 

 22 2 2 2 24 4 i j i j j i i jJ J r J K r J K r K K             

  22 2 2 21 i j i j j i i jJ J r J K r J K r K K                . 

That is 

      22 21 1i j i j i j j i i j j iK K K K r J K J K J K J K r                  
    

 

   
22 1 2 0i j i jJ J J J          

 
.    10  

Then we have the following conditions: 

      1 when 1,i j N , then 0, 0i j i jK K K K     . From (10), we have 

 2 1 1 4 4 0i j i jJ J J J          
 

. 
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From  1 1i j i jJ J J J      , we have 

 

 ,

2 2 1
1 min

1 1

i j i j

i j
i j i j i j

J J J J

J J J J

 


 

   
 

   
, r   . 

 2 when 
1 2,i N j N   or 

2 1,i N j N  , then 0i iK K   or 

0j jK K   . From (10), we have 

   
2 22 1i j i jJ J J J         

    2 1i j j i i j j ir J K J K J K J K          
  

, 

so 
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 3 when 2,i j N , then 0, 0, 0, 0i j i jK K K K     . From 
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,  1 1 0i j i jJ J J J       , 

we know that  

   21 1 4 1 0i j i jJ J J J          
 

. 

It is easy to find that the discriminant of a curve of second order of (10) 
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2 1i j j i i j j iJ K J K J K J K           
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From (10), we have  
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So, when 
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, we have 
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3  Examples 

In this section, we give two numerical examples to show that our results are better than 

previous ones. 

Example 1  Let 

1

2

1 1
1 0

3 6

7 5
0 1

6 6

1 1
0 1

3 6

1 1
0 1

6 3

I B D
H

C I B

 
 
 
 
   

    
  

 
 
 
 

, 

where 

1

1
1

3

0 1

I B

 
  
  
 

, 2

1
1

6

1
1

3

I B

 
 

   
 
 
 

. 

Obviously, ,H SD so we can’t use the results of paper [2] and paper [6]. 

But
1

2
H SDD

 
  

 
 and 

1 1
0 0

3 6

7 5
0 0

6 6

1 1
0 0

3 6

1 1
0 0

6 3

J

 
  

 
  
 

  
  
 
 
  
 

, 

0 0 0 0

0 0 0 0

1 1 1
0

3 9 18

1 7 5
0

6 36 36

K

 
 
 
 

  
 
 
 
 

, 

1 3 4

1

2
J J J   , 2 2J  ， 1 2 3 4

1 1 5
, , , 1

3 2 3
J J J J       , 

1 2 0K K  , 3 4

1

2
K K  ， 1 2 3 4

1 5 1 5
, , ,

3 18 4 36
K K K K       . 

So  
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1N  ,  2 1, 2,3, 4N  , 
1 1

1, , ,
2 2

i j i jJ J J J i j N i j     . 

By Theorem 2, we obtain the following regions of convergence:  

   0 1  , 
55765 47

15 3
r   , or 

   
23

1 48 48
24

   ,  
2

576 1 1 11153 47

5 45 3
r

 

 
    

 
. 

Example 2  (Example 1 of [6]) Let 
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where 
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It is easy to know that 
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and 
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1 2 3

2

3
J J J   , 1 2 0K K  , 3

10

9
K  , 1 2 3

2

3
J J J     , 

1 2

4

9
K K   , 3

2

9
K   . 

So 1N  ,  2 1,2,3N  , 
1 1

1, , ,
2 2

i j i jJ J J J i j N i j     . 

By Theorem 2, we obtain the following regions of convergence: .  

   0 1   and  3
21 4

2
r   , or 

   
6

1
5

   and 

2
1 1 1

9 6
2 3

r


 
    

 
.  



International Journal of Mathematical Engineering and Science 
ISSN : 2277-6982                            Volume 1 Issue 1 

http://www.ijmes.com/                    https://sites.google.com/site/ijmesjournal/ 
 

80 
 

In addition, .H SD  

By Theorem 6 of paper [6], we obtain the following regions of convergence: 

   0 1r   and 0 1  , or 

   0 0.3r  and 0 1.2  , or 

   0.3 0r    and 
18

0 .
15 10r

 


 

By Theorem 3 of paper [5], we obtain the following region of convergence: 

0 r    and 
18

0 .
15 10r

 


 

Comparing with the results of Example 1 of paper [6], we know that the regions of 

convergence got by Theorem 2 in this paper are larger than ones of paper [6] and paper 

[5]. 
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