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Abstract.  This article is concerned with the formulation and analytical solution 
of equations for modeling a steady two-dimensional MHD flow of an 

electrically conducting viscous incompressible fluid in porous media in the 
presence of a transverse magnetic field. The governing equations, namely, 
Navier-Stokes equations and the Darcy-Lapwood-Brinkman model are 
employed for the flow through the porous media. The solutions obtained for the 

Riabouchinsky-type flows are then classified into different types. 
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1 Introduction   

 
One of the oldest chapters of engineering sciences, the magnetohydrodynamic fluid 
flow in porous media due to its rapid expanse and widespread industrial and 
environmental applications, is still a subject of current research interest. For example, 
the rock that constitutes the earth's crust  is essentially a porous medium that deforms 

over geological timescales. The flow through, and erosion of, this medium by magma 
leads to such phenomena on layered magma chambers and volcanic eruptions. The 
flow of groundwater through soil and / or rock has important applications in 
agriculture and pollution control. Other topics of interest include compaction of 
sedimentary basins and the phenomenon of frost heave, which occurs when 
groundwater freezes. As well as damaging roads and pavements, frost heave is 

responsible for geological formations [1], [5], [6]. One of the original motivations for 
studying porous medium flows was the extraction of oil from rocks. It was found that 
the suction of viscous fluid from a porous medium is often unstable, tending to leave 
behind a sizeable proportion of the oil in small isolated packets and increasing the 
extracted fraction is a constant challenge. Another important issue for the oil industry 
is upscaling from locally measured properties (e.g. permeability) [4]. Further 

application of porous media is most of the tissues in the body (e.g. bone, cartilage, 
muscle) are deformable porous medium. The proper  functioning of such materials 
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depends crucially on the flow of blood, nutrients through them. Porous medium 
models are used to understand various medical conditions (such as tumour growth) 
and treatment (such as injections) [3]. There are four independent fields of fluid 
dynamics namely, general fluid flow, flow through porous media, 
magnetohydrodynamics flow and analytical approaches to flow problems. In the field 

of general fluid flow, an enormous amount of work has been carried out over the past 
two centuries, and many aspects of fluid flow theory are well developed [10]. and in 
their study of inviscid aligned flow, by complex technique. Various aspects of 
magnetohydrodynamic flow have been studied, and many models have been 
developed to study the interactions between the magnetic field, the electric field, and 
how they interact with a flowing fluid. Analysis of this type of flow has been proved 

by [16]. Some rotational and irrotational viscous incompressible aligned plane flow 
were discussed in [2], [7]. 
 As per fluid flow through porous media, interest in the field dates as far back as 1856 
by Darcy and currently one finds various models governing types of fluid flow in 
many porous structures. The main type of single phase flow models have been 
developed and reviewed by [7], [12]. 

 Although many models of flow through porous media are available, and various 
others are continually being developed, a model of particular importance to this work 
is the Darcy-Lapwood-Brinkman model [8], [13]. This accounts for both viscous 
shear and inertial effects of flow through porous media. A modified version of model 
in our current analysis, with the exception that a magnetic field is imposed on the 
flow field will be used. 

In this work, we consider a single-phase fluid flow through porous media in the 
presence of a magnetic field. The aim is to analyze the nonlinear model equation in an 
attempt to find possible solutions corresponding to a particular form of the stream 
function. The choice of the stream function in this work is one that is linear with 
respect to one of the independent variables. This type of flow is referred to as the 
Riabouchinsky flow. In this case, the two dimensional Navier-Stokes equations, 

written as a fourth order partial differential equations in terms of the stream function, 
may be replaced by fourth order ordinary differential equations in two unknown 
functions of a single variable.  Solutions to the coupled set  are then obtained based on 
the knowledge of particular integrals of one of the equations. A different type of flow 
may then be obtained with the knowledge of one of the functions.  
Riabouchinsky [14] assumed one of the functions to be zero and studied the resulting 

flow which represents a plane flow in which the flow is separated in the two 
symmetrical regions by a vertical or a horizontal plane. In addition to the study of 
Navier-Stokes flows and their applications [15], Riabouchinsky flows have also 
received considerable attention in the study of non-Newtonian flows [9] and in 
magnetohydrodynamics [11]. 
In this work we find analytical solutions to the two-dimensional viscous fluid flows 

through porous media in the presence of a magnetic field. The governing equations 
are based on the Darcy-Lapwood-Brinkman model of flow through porous media. 
The medium is assumed to be traversed and aligned by a magnetic field. Solutions are 
obtained for Riabouchinsky-type flows, with a modified solution algorithm that has 
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been developed to handle the type of flow. Solutions obtained are then classified into 
different types. 
 
 

2.    Flow Equations 
2.1  The Darcy-Lapwood-Brinkman (DLB) Model  

 

The steady flow of an incompressible viscous fluid through porous media is governed 
by the conservation of mass and conservation of linear momentum principles. In the 
absence of sources and sinks, conservation of mass principle takes the form 

V 0 ,            
                                                               (1) 

Where V is the macroscopic velocity vector. The conservation of linear momentum is 

given by the Navier-Stokes equations of the form  

2(V )V  V,
P 

 


                                                       (2) 

Where P is the pressure ,  is the viscosity coefficient and is the fluid density. 

When the macroscopic inertia and viscous shear are important, fluid flow through 
porous medium may be described by the DLB of the form  

     
    

2(V )V  V V ,
P

k

 

  


                               (3) 

Where k is the permeability. Equation (3) is postulated to govern the flow through 
porous medium of high permeability and the flow through a mushy zone undergoing 
rapid freezing. Through the viscous shear term, equation (3) is capable of handling the 
presence of a macroscopic boundary on which a non-slip condition is imposed. 

Comparison of the structure of equation (3) with that of the Navier-Stokes equation 
(2) which govern the flow of  a viscous fluid in free-space shows the presence in 

equation (3) of the viscous damping term V( )
k

  that is postulated to the Darcy 

resistance to motion exerted by the medium on the transversing fluid. However, the 
presence of this term does not alter the nonlinear structure exhibited in the  Navier-
Stokes equations. 
 
2.2  Flow through porous media in the presence of a magnetic field  

                                                                                                                                                                                       

The steady flow of a viscous, incompressible, electrically conducting fluid through 
porous media in the presence of a magnetic field is governed by the following system 
of partial differential equations 
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  V 0 ,                          (4) 

  
  

2 2
1 2

1

(V )V V V ( H) H , + k
k

P


                          (5) 

  

2

1
(V H) ( H) 0 

k 
                             (6) 

  H 0             (7) 

Where V is the velocity vector field, H  is the magnetic vector field, P  is the 

pressure,   is the electrical conductivity, 
1k is the medium permeability to the fluid, 

2k is the magnetic permeability, 
1  

is the fluid viscosity, 
2 is the porous medium 

viscosity and   is the fluid density. In virtue of the vector identity 

  1
2

2

(V )V V V ( V) ( )            (8) 

then equation (5) takes the form  

 2
1 2

2
1
2 V V ( V) + ( )  .V H HP k 

  
          
  

                 (9) 

The governing equations are thus (4), (6), (7) and (9). It is required to solve this 

system of equations for the unknowns V , H  and P  . 

 
2.3 The case of two-dimensional flow 

 

Considering plane-transverse flow in two space dimensions x and y , with a velocity 

vector field V ( , ,0)u v  and a magnetic field 0 0H ( , , )H which acts in a constant 

direction 0
z





, then equation (7) is automatically satisfied and the governing 

equations (4), (6) and (9) take the following components form: 

  0 x yu v                                            (10) 

  2 2 221 1
1 22 2

1

)  ( x y xx x
Hq v v u P u u k

k



                         (11) 

  2 2 221 1
1 22 2

1

)  ( x y y
yy

Hq u v u P v v k
k




                 (12) 
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2

21
  0 ,x yH H

k
Hu v


            (13) 

Where the subscript notation denotes partial differentiation, and 2 2 2q u v   is the 

square of the speed. The system of equations (10) – (13) represent four scalar 
equations in the unknowns ( , )u x y , ( , )v x y , ( , )P x y and ( , )H x y . It should be 

noted that if the fluid is infinitely conducting, then 

2

1
0

k 
  and equation (13) reduces 

to  
  

    0 x yH Hu v                                    (14) 

If we now define  

 

2
2

1
2( , )P x y P k H   

 

2
2

1
2( , ) [ ]x x xP x y P k H   

 

2
2

1
2( , ) [ ]y y yP x y P k H  , 

Then the equations (11) and (12) take the following forms respectively: 

 2 21 2
12

1

[ ] ( )  xx x y k
q v v u P u u


       

   

            (15) 

 2 21 2
12

1

[ ] ( ) yy x y k
q u v u P v v


                            (16) 

The governing equations for the case of finite electrical conductivity are therefore 
(10), (13), (15) and (16), and equations (10), (14), (15) and (16) are for  the case of 
infinite conducting fluid. 

 
2.4 Equations for vorticity function and stream function 

 

Introducing the vorticity function  ( , )x y  and the pressure function ( , )h x y  

defined respectively by 

  
   

 ( , ) x yx y v u           (17) 

       
21

2
( , )h x y P q                  (18) 

  21
2

 p [ ]x xxh q 
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2

2
1p [ ]  .y yyh q    

Then equations (15) and (16) take the following forms respectively  
 

  

 

2

1

2
1 , x k

h v u u


               (19) 

    

 

2 2

1
1

 .y k
h u v v


                 (20)

   

Hence the governing equations are thus (10), (14), (19) and (20) with   and h  are 

given in (17) and (18) respectively. 

 Let ( , )x y  be the stream function defined in terms of the components as 

  
 y u    and        x v    

Then we can see clearly that the conductivity equation (10) is identically satisfied 
since  

      
0 y y xy yxu v                                                (21) 

and the vorticity equation (14) becomes  

 
2               (22) 

Equations (19), (20) and (13) are then become in terms of the stream function as 
follows : 

          2

1

2 2
1( )x x y yk

h 


            (23) 

         2

1

2 2
1( )y y x xk

h 


            (24) 

      
 2

21 0 .y x x y k
H H H


                          (25) 

Equations (22)-(25) are now required to be solved for ( , )x y , ( , )x y , ( , )H x y  

and ( , )h x y . The velocity components u  and v will be obtained from (21), P from 

equation (18) and then follows P .  
If the fluid is infinitely electrically conducting, then the diffusion equation (25) is 
reduced to  

                                         
0 .y x x yH H    

A compatibility equation can be derived from equations (23) and (24) using the 

integrability condition  xy yxh h . Thus, differentiating equation (23) with respect to 
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y and equation (24) with respect to x  and using the integrability condition we obtain 

the compability equation 

                    

 

2 2 22 2
1

1

( ) ( )  x y y x
k


                                   (27) 

or 

     
2

2 42

1

1

( , )
,

( , )
 

x y k

  
  

 
   


         (28) 

Where   

 1

1





  

 and   

 2

2





  ;    

2  .xx yy     

4
2xxxx xxyy yyyy      . 

Hence once equation (26) is solved for ( , )x y , the vorticity function can be 

calculated from equation (17) and ( , )H x y  from equation (25). The pressure function 

( , )h x y can be obtained from equations (23) and (24), while ( , )P x y  is obtained from 

equation (18) and hence ( , )P x y  follows. The velocity components can then be 

obtained from equation (21). 
 

3.   An Overview of the Solution Methodology  
3.1  The case of Navier-Stokes Equation 

 

The two-dimensional steady flow of a viscous incompressible fluid in free space is 
governed by the continuity equation (1) and the Navier-Stokes equation (2). In this 
form, it is required to solve (1) and (2) for V  and P . These equations may be written 

in vorticity-stream function form using definitions (17) and (21) to obtain stream 
function equation  

  2                (29) 

Vorticity equation 

 
2 2

2
1y x x y k

          .                                (30) 

Integrability equation for the Navier-Stokes equation can be obtained by substituting 
equation (29) into equation (30) to yield 

 2

2

4 2 2 2
1 0 .x y y x k

                               (33) 
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Let  

  21
2

 ( , )h x y P q                                     (34) 

be the generalized pressure function for the Navier-Stokes equation. Then the 

momentum equation (2) may be written in component form as  

   

2

1

2 2
1( )  x x y y

k
h


                                      (35) 

    

2 2

1

1

2( )  .y y x x
k

h


                                      (36) 

Equation (33) can then be solved for ( , )x y . Using equation (29) we can obtain 

( , )x y , ( , )u x y  and ( , )v x y  can then be obtained from (21). The pressure 

function ( , )h x y  may then be obtained from equations (35) and (36) and the pressure 

function ( , )P x y  is then follows from (34). In order to provide a solution for equation 

(33) we assume that the stream function ( , )x y  is linear with respect to the 

independent variable y and has the form 

   ( , ) ( ) ( )x y y f x g x   .                                 (37) 

where ( )f x  and ( )g x  are four lines differentiable arbitrary functions of x . 

 

3.2 Reduction of the governing partial differential equations to ordinary 

differential equations 

 

Substituting equation (37) into equation (33) gives  

                      
1

2

1

(1 ) (1 )
  

' ' '' '' '' '' '' 0 v v

k
y f g y f g f f y f g y f g


           (38) 

Equating the coefficients of similar powers of y, leads to the following coupled set of 
fourth order ordinary differential equations : 

       

1 2

1

( )
1 '' [ ' '' '' ] 0v

k
f f f f f f


                                (39) 

     

1 2

1

( )
1 '' [ ' ''  '' ] 0 v

k
g g g f f g


                              (40) 

 

3.3   Particular Solution 

 

In the absence of general solutions for the coupled equations (39) and (40), it is 
customary to determine  ( )f x  and  ( )g x  in accordance with the following 

algorithm: 
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 A particular solution is found for  ( )f x satisfying equation (39). 

 The function  ( )f x is then substituted into equation (40) and a general 

solution is    then found for  ( )g x . 

 With the knowledge of  ( )f x  and  ( )g x  the stream function ( , )x y can 

then be obtained from equation (37). 
The velocity components and the vorticity function can be calculated from (21) and  
(29), the pressure function can be determined from equation (35) and (36) and the 
pressure follows from equation (34). 

 
3.4   The different types of possible flows and their solutions 

A solution to the system of equations (39) and (40) is considered for the case 

1k  . 

In this case, equations (39) and (40) give the coupled set of fourth order ordinary 
differential equations 

                                          1

(1 ) [ ' '' ''] 0 vf f f f f                                   (41) 

                                       
  1

(1 ) [ ' '' ''] 0 vg g f f g                                           (42) 

Equation (41) admits the three particular solutions  

         1
1

6
( )  f x

x


                         (43) 

  12( ) (1 ) xf x e                                     (44) 

and  

     3 1 2( )  . f x c x c                    (45) 

where  ,
 

,
 1c  and 2c are arbitrary constants. The solution 3( )f x  is independent of 

the viscocity. Upon substituting for 1( )f x from equation (43) into equation (42) gives 

  
1 2 3

1 0 1 2 3( )  ,g x x x x        
           

               (46) 

where 
0 , 1 , 

2  and  
3  are arbitrary constants. The corresponding stream function 

( , )x y   and the velocity components take the following forms respectively: 

 
1 2 3

1 0 1 2 36( , )  
y

x y x x x
x

          
                 (47) 

   

1( , )  u x y
y x


 

                        (48) 

    

2 2 3 2
1 1 3 36( , ) 3  v x y yx x x x

x


     

      
              

(49) 



International Journal of Mathematical Engineering and Science 

ISSN : 2277-6982                            Volume 1 Issue 2 
http://www.ijmes.com/                                              sjournal/https://sites.google.com/site/ijme                     

 

10 
 

 
Similarly, substituting from equation (3.14) into equation (42) yields  

   2 4 3 2( ) exp [ ]  x x xg x c c e c e dx e x dx      
 

             
 

   1 exp[ ] exp[ ]  ,x x xc e dx e x dx x dx                        
(50)         

             

where 1c , 2c , 3c  and 4c are arbitrary constants. The corresponding stream function 

with the velocity components are  
 

   1 4 3 2( , ) (1 ) exp [ ]x x x xx y e y c c e c e dx e x dx
          

  1 exp ( ) exp( )  x x xc e dx e x dx x dx                                 (51) 

  
1( , ) (1 ) xu x y e

y


 


  


                       (52) 

  
1( , )  .v x y

x





   


                   (53) 

Likewise, substituting 3( )f x  from equation (45) into equation (42) gives 

   

1

21
3 3 1 2

1
2( ) exp[ { }]g x c c x c x dxdxdx                       (54) 

where  1c , 2c  and 3c  are arbitrary constants. The corresponding stream function and 

the velocity components  take the following forms respectively : 

     
 

1

2
1 2 3 1 2

1 1
2( , ) ( ) exp[ { }]  x y c x c y c c x c x dxdxdx                  (55) 

 
1 2( , )  ,u x y c x c

y


  


               (56)                           

 
 

1

21
1 3 1 2

1
2( , ) exp[ { }]( ) v x y c y c c x c x dxdx

y



     

              (57) 

 

Conclusion 
 

In the current work we have discussed the analytical solution of the 
magnetohydrodynamic flow through porous media in the presence of a magnetic 
field. We have implemented the Riabouchinsky method. The solutions obtained using 
the above procedure involve a number of arbitrary constants, and restrictive 

2( )f x
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assumptions are needed to determine them. It is also clear that determining ( )g x is 

not an easy task, and some integrals are rather involved. In the absence of a 
systematic procedure for determining the arbitrary constants, Riabouchinsky [14] 

assumed that ( ) 0g x  , and obtained the special form of the stream function 

 ( , ) ( )x y y f x  . This amounts to assigning the value of zero to each of the 

arbitrary constants 
1( )g x  and 

2( )g x and 
3( )g x above.  
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