Focal Curves of Bıharmonıc Curves in the \square_{α} $\mathsf{SL}_2^\square(\mathsf{R})$

Talat Körpınar¹ and Essin Turhan¹ and J. López-Bonilla²

¹Firat University, Department of Mathematics, 23119, Elaziğ, TURKEY 2 ESIME-Zacatenco, Instituto Politécnico Nacional, Col. Lindavista, CP 07738, México D.F. talatkorpinar@gmail.com, essin.turhan@gmail.com, jlopezb@ipn.mx

Abstract. In this paper, we study focal curve of biharmonic curves in the $SL_2^{\square}(R)$. Finally, we find out their explicit parametric equations.

Keywords: Biharmonic curve, $SL_2^{\square}(R)$, focal curve.

1 Introduction

The theory of biharmonic functions is an old and rich subject. Biharmonic functions have been studied since 1862 by Maxwell and Airy to describe a mathematical model of elasticity. The theory of polyharmonic functions was developed later on, for example, by E. Almansi, T. Levi-Civita and M. Nicolescu.

As suggested by Eells and Sampson in [6], we can define the bienergy of a map *f* by

$$
E_2(f) = \frac{1}{2} \int_M | \tau(f) |^2 v_g,
$$

where $\tau(f)$ = trace ∇df is tension field and say that is biharmonic if it is a critical point of the bienergy.

Jiang derived the first and the second variation formula for the bienergy in [8],

showing that the Euler-Lagrange equation associated to
$$
E_2
$$
 is
\n
$$
\tau_2(f) = -\mathcal{Y}'(\tau(f)) = -\Delta \tau(f) - \text{trace} R^N \left(df, \tau(f) \right) df = 0,
$$
\n(1)

where J^f is the Jacobi operator of f. The equation $\tau_2(f)=0$ is called the biharmonic equation. Since J^f is linear, any harmonic map is biharmonic.

This study is organised as follows: Firstly, we obtain focal curve of biharmonic

curves in the $SL_2^{\square}(R)$. Finally, we find out their explicit parametric equations.

2 Preliminaries

We identify $SL_2(\mathbb{R})$ with

$$
\mathsf{R}^3_+ = \{(x, y, z) \in \mathsf{R}^3 : z > 0\}
$$

endowed with the metric

$$
g = ds2 = (dx + \frac{dy}{z})^{2} + \frac{dy^{2} + dz^{2}}{z^{2}}.
$$

The following set of left-invariant vector fields forms an orthonormal basis for $\mathsf{SL}_2^{\square}(\mathsf{R})$

$$
\mathbf{e}_1 = \frac{\partial}{\partial x}, \mathbf{e}_2 = z \frac{\partial}{\partial y} - \frac{\partial}{\partial x}, \mathbf{e}_3 = z \frac{\partial}{\partial z}.
$$
 (2)

The characterising properties of *g* defined by

$$
g(\mathbf{e}_1, \mathbf{e}_1) = g(\mathbf{e}_2, \mathbf{e}_2) = g(\mathbf{e}_3, \mathbf{e}_3) = 1, \quad g(\mathbf{e}_1, \mathbf{e}_2) = g(\mathbf{e}_2, \mathbf{e}_3) = g(\mathbf{e}_1, \mathbf{e}_3) = 0.
$$

The Riemannian connection ∇ of the metric g is given by

$$
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]),
$$

which is known as Koszul's formula.

Using the Koszul's formula, we obtain

$$
\nabla_{e_1} \mathbf{e}_1 = 0, \qquad \nabla_{e_1} \mathbf{e}_2 = \frac{1}{2} \mathbf{e}_3, \quad \nabla_{e_1} \mathbf{e}_3 = -\frac{1}{2} \mathbf{e}_2,
$$
\n
$$
\nabla_{e_2} \mathbf{e}_1 = \frac{1}{2} \mathbf{e}_3, \quad \nabla_{e_2} \mathbf{e}_2 = \mathbf{e}_3, \quad \nabla_{e_2} \mathbf{e}_3 = -\frac{1}{2} \mathbf{e}_1 - \mathbf{e}_2,
$$
\n
$$
\nabla_{e_3} \mathbf{e}_1 = -\frac{1}{2} \mathbf{e}_2, \quad \nabla_{e_3} \mathbf{e}_2 = \frac{1}{2} \mathbf{e}_1, \quad \nabla_{e_3} \mathbf{e}_3 = 0.
$$
\n(3)

Moreover we put

$$
R_{ijk} = R(\mathbf{e}_i, \mathbf{e}_j)\mathbf{e}_k, \ R_{ijkl} = R(\mathbf{e}_i, \mathbf{e}_j, \mathbf{e}_k, \mathbf{e}_l),
$$

where the indices i, j, k and l take the values 1,2 and 3

$$
R_{1212} = R_{1313} = \frac{1}{4}, R_{2323} = -\frac{7}{4}.
$$
 (4)

3 Biharmonic Curves in $SL_2^{\square}(R)$

Biharmonic equation for the curve γ reduces to

$$
\nabla_{\mathbf{T}}^3 \mathbf{T} - R(\mathbf{T}, \nabla_{\mathbf{T}} \mathbf{T}) \mathbf{T} = 0,\tag{5}
$$

that is, γ is called a biharmonic curve if it is a solution of the equation (5).

Let us consider biharmonicity of curves in $SL_2^{\square}(R)$. Let $\{T, N, B\}$ be the Frenet frame field along γ . Then, the Frenet frame satisfies the following Frenet-Serret equations:

$$
\nabla_{\mathbf{T}} \mathbf{T} = \kappa \mathbf{N}, \qquad \nabla_{\mathbf{T}} \mathbf{N} = -\kappa \mathbf{T} + \tau \mathbf{B}, \qquad \nabla_{\mathbf{T}} \mathbf{B} = -\tau \mathbf{N}, \tag{6}
$$

where κ is the curvature of γ and τ its torsion and

$$
g(T,T)=1, g(N,N)=1, g(B,B)=1, g(T,N)=g(T,B)=g(N,B)=0.
$$

With respect to the orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, we can write

$$
\mathbf{T} = T_1 \mathbf{e}_1 + T_2 \mathbf{e}_2 + T_3 \mathbf{e}_3, \quad \mathbf{N} = N_1 \mathbf{e}_1 + N_2 \mathbf{e}_2 + N_3 \mathbf{e}_3,
$$

$$
\mathbf{B} = \mathbf{T} \times \mathbf{N} = B_1 \mathbf{e}_1 + B_2 \mathbf{e}_2 + B_3 \mathbf{e}_3.
$$
(7)

Theorem 3.1. $\gamma: I \to SL_2^{\square}(\mathsf{R})$ is a biharmonic curve if and only if

$$
\kappa = \text{constant} \neq 0, \quad \kappa^2 + \tau^2 = -\frac{1}{4} + \frac{15}{4}B_1^2, \quad \tau' = 2N_1B_1.
$$
 (8)

Proof. Using (5) and Frenet formulas (6), we have (8).

Theorem 3.2. ([9]) Let $\gamma: I \to SL_2^{\square}(\mathbb{R})$ be a unit speed non-geodesic biharmonic *curve. Then, the parametric equations of* γ are

$$
x(s) = \frac{1}{N} \sin \varphi \sin[Ns + C] + \frac{1}{N} \sin \varphi \cos[Ns + C] + \varphi_2,
$$
 (9)
\n
$$
y(s) = \frac{1}{N^2 + \cos^2 \varphi} \sin \varphi \varphi_1 e^{\cos \varphi} (-N \cos[Ns + C] + \cos \varphi \sin[Ns + C]),
$$

\n
$$
z(s) = \varphi_1 e^{\cos \varphi},
$$

\n*ere* N, C, φ_1 , φ_2 *are constants of integration*.
\n**Focal Curve of Biharmonic Curves in** SL₂(R)
\nnoting the focal curve by φ_7 , we can write
\n
$$
\varphi_7(s) = (\gamma + c_1 N + c_2 B)(s),
$$
 (10)
\n*ere* the coefficients c_1 , c_2 are smooth functions of the parameter of the curve γ ,
\nled the first and second focal curvatures of γ , respectively. Further, the focal
\nvartures c_1 , c_2 are defined by
\n
$$
c_1 = \frac{1}{K}, c_2 = \frac{c_1}{\tau}, K \neq 0, \tau \neq 0.
$$
 (11)
\n**Lemma 4.1.** Let $\gamma : I \rightarrow SL_2(R)$ be a unit speed biharmonic curve and φ_7 its
\n*val curve* on SL₂(R). Then,
\n
$$
c_1 = \frac{1}{K} = \text{constant and } c_2 = 0.
$$
 (12)
\n**Proof.** Using (7) and (11), we get (12).
\n**Lemma 4.2.** Let $\gamma : I \rightarrow SL_2(R)$ be a unit speed biharmonic curve and φ_7 its
\n*val curve* on SL₂(R). Then,
\n
$$
\varphi_7(s) = (\gamma + c_1 N)(s).
$$
 (13)

where \aleph , C , \wp_1 , \wp_2 are constants of integration.

4 Focal Curve of Biharmonic Curves in $SL_2^{\square}(R)$

Denoting the focal curve by \wp_γ , we can write

$$
\wp_{\gamma}(s) = (\gamma + c_1 \mathbf{N} + c_2 \mathbf{B})(s),\tag{10}
$$

where the coefficients c_1 , c_2 are smooth functions of the parameter of the curve γ , called the first and second focal curvatures of γ , respectively. Further, the focal curvatures c_1 , c_2 are defined by

$$
c_1 = \frac{1}{\kappa}, c_2 = \frac{c_1'}{\tau}, \kappa \neq 0, \tau \neq 0.
$$
 (11)

Lemma 4.1. Let $\gamma: I \to SL_2^{\square}(\mathbb{R})$ be a unit speed biharmonic curve and \wp_{γ} its *focal curve on* $SL_2^{\square}(\mathsf{R})$ *. Then,*

$$
c_1 = \frac{1}{\kappa} = \text{constant and } c_2 = 0. \tag{12}
$$

Proof. Using (7) and (11), we get (12).

Lemma 4.2. Let $\gamma: I \to SL_2^{\square}(\mathbb{R})$ be a unit speed biharmonic curve and \wp_{γ} its *focal curve on* $SL_2(R)$ *. Then,*

$$
\wp_{\gamma}(s) = (\gamma + c_1 \mathbf{N})(s). \tag{13}
$$

Lemma 4.3. Let $\gamma: I \to \mathsf{SL}_2^\square(\mathsf{R})$ be a unit speed non-geodesic biharmonic curve. *Then, the position vector of* γ *is*

$$
\gamma(s) = \left[\frac{1}{\aleph} \sin \varphi \sin[\aleph s + C] + \frac{1}{\aleph} \sin \varphi \cos[\aleph s + C] + \varphi_2 \right] \tag{14}
$$

+
$$
\left[\frac{1}{\left(\aleph^2 + \cos^2 \varphi\right)} \sin \varphi (-\aleph \cos[\aleph s + C] + \cos \varphi \sin[\aleph s + C])\right] \mathbf{e}_1
$$

$$
\left[\frac{1}{\left(\aleph^2 + \cos^2 \varphi\right)} \sin \varphi (-\aleph \cos[\aleph s + C] + \cos \varphi \sin[\aleph s + C]) \mathbf{e}_2 + \mathbf{e}_3 \right]
$$

where \aleph, C, \wp_2 are constants of integration.

Proof. Assume that γ is a non-geodesic biharmonic curve $SL_2^{\square}(R)$. Using (2), yields

$$
\frac{\partial}{\partial x} = \mathbf{e}_1, \frac{\partial}{\partial y} = \frac{1}{z} (\mathbf{e}_2 + \mathbf{e}_1), \frac{\partial}{\partial z} = \frac{1}{z} \mathbf{e}_3.
$$
 (15)

Substituting (15) to (9) , we have (14) as desired.

Theorem 4.4. Let $\gamma: I \to SL_2^{\square}(\mathsf{R})$ be a unit speed non-geodesic biharmonic curve and \wp_{γ} its focal curve on $\mathsf{SL}_{2}^{\square}(\mathsf{R})$. Then,

$$
\wp_{\gamma}(s) = \left[\frac{1}{\aleph} \sin \varphi \sin[\aleph s + C] + \frac{1}{\aleph} \sin \varphi \cos[\aleph s + C] + \wp_{2} \right]
$$

+
$$
\left[\frac{1}{\left(\aleph^{2} + \cos^{2} \varphi\right)} \sin \varphi(-\aleph \cos[\aleph s + C] + \cos \varphi \sin[\aleph s + C])\right]
$$

-
$$
\frac{c_{1} \aleph}{\kappa} \sin \sin[\aleph s + C] \mathbf{e}_{1}
$$

+
$$
\left[\frac{1}{\left(\aleph^{2} + \cos^{2} \varphi\right)} \sin \varphi(-\aleph \cos[\aleph s + C] + \cos \varphi \sin[\aleph s + C] \right]
$$

+
$$
\frac{c_{1}}{\kappa} (\aleph \sin \varphi \cos[\aleph s + C] - \sin^{2} \varphi \cos[\aleph s + C] \sin[\aleph s + C]
$$

-
$$
\cos \varphi \sin \varphi \cos[\aleph s + C] \mathbf{e}_{2}
$$
 (16)

+
$$
(1+\frac{c_1}{\kappa}(\sin^2 \varphi \cos[\aleph s + C]\sin[\aleph s + C] + \sin^2 \varphi \sin^2[\aleph s + C])\mathbf{e}_3
$$
,

where \aleph , C , \wp_1 , \wp_2 are constants of integration.

Proof. We assume that $\gamma: I \to SL_2^{\square}(\mathbb{R})$ be a unit speed biharmonic curve. Using Lemma 4.1, we get

$$
\mathbf{T} = \sin\varphi\cos[\aleph s + C]\mathbf{e}_1 + \sin\varphi\sin[\aleph s + C]\mathbf{e}_2 + \cos\varphi\mathbf{e}_3.
$$

Using first equation of the system (6) and (4) , we have

$$
\nabla_{\mathbf{T}}\mathbf{T} = (T_1^{'})\mathbf{e}_1 + (T_2^{'}-T_1T_2-T_1T_3)\mathbf{e}_2 + (T_3^{'}+T_1T_2+T_2^{2})\mathbf{e}_3.
$$

By the use of Frenet formulas and above equation, we get

$$
\mathbf{N} = -\frac{\aleph}{\kappa} \sin \sin[\aleph s + C] \mathbf{e}_1
$$

+ $\frac{1}{\kappa} (\aleph \sin \varphi \cos[\aleph s + C] - \sin^2 \varphi \cos[\aleph s + C] \sin[\aleph s + C]$ (17)
- $\cos \varphi \sin \varphi \cos[\aleph s + C] \mathbf{e}_2$
+ $\frac{1}{\kappa} (\sin^2 \varphi \cos[\aleph s + C] \sin[\aleph s + C] + \sin^2 \varphi \sin^2[\aleph s + C] \mathbf{e}_3$.

Combining (17) and (11), we obtain (16). This concludes the proof of Theorem. We can use Mathematica in above Theorems 3.3 - 4.2, yields

Fig. 1. Mathematical's result in Theorems 3.3 – 4.2.

References

- 1. Alegre, P., Arslan, K., Carriazo, A., Murathan C., Öztürk, G.: Some Special Types of Developable Ruled Surface. Hacettepe Journal of Mathematics and Statistics, 39 (3), 319-- 325 (2010)
- 2. Caddeo R., Montaldo, S.: Biharmonic submanifolds of $S³$, Internat. J. Math. 12(8), 867--876 (2001)
- 3. Chen, B.Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17, 169--188 (1991)
- 4. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces, Pearson Education. 1976.
- 5. Ekmekçi, N., Ilarslan, K.: On Bertrand curves and their characterization. Diff. Geom. Dyn. Syst., 3 (2), 17--24 (2001)
- 6. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109--160 (1964)
- 7. Jiang, G.Y.: 2-harmonic isometric immersions between Riemannian manifolds. Chinese Ann. Math. Ser. A 7 (2), 130--144 (1986)
- 8. Jiang G.Y: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A 7 (4), 389--402 (1986)
- 9. Körpmar, T., Turhan, E., Asil, V.: Biharmonic curves in the $SL_2^{\square}(R)$, (preprint)
- 10. Loubeau, E., Montaldo, S.: Biminimal immersions in space forms. preprint, math. DG/0405320 v1 (2004)
- 11. O'Neill, B.: Semi-Riemannian Geometry. Academic Press. New York (1983)
- 12. Sato, I.: On a structure similar to the almost contact structure, Tensor, (N.S.), 30, 219--224 (1976)
- 13. Takahashi, T.: Sasakian ϕ -symmetric spaces, Tohoku Math. J., 29, 91--113 (1977)

14. Turhan, E., Körpınar, T.: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis³. Zeitschrift für Naturforschung A - A Journal of Physical Sciences 65a, 641--648 (2010)