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1  Introduction 
 
The theory of biharmonic functions is an old and rich subject. Biharmonic functions 
have been studied since 1862 by Maxwell and Airy to describe a mathematical model 
of elasticity. The theory of polyharmonic functions was developed later on, for 
example, by E. Almansi, T. Levi-Civita and M. Nicolescu. 

As suggested by Eells and Sampson in [6], we can define the bienergy of a map f  

by 
 

    ,
2

1
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where  =f trace df  is tension field and say that is biharmonic if it is a critical 

point of the bienergy. 
Jiang derived the first and the second variation formula for the bienergy in [8], 

showing that the Euler--Lagrange equation associated to 
2E  is 

 

          2 = = trace , 0,f Nf f f R df f df      J  (1) 

  

where fJ  is the Jacobi operator of f . The equation   0=2 f  is called the 

biharmonic equation. Since 
fJ  is linear, any harmonic map is biharmonic. 

This study is organised as follows: Firstly, we obtain focal curve of biharmonic 

curves in the  


RSL2
. Finally, we find out their explicit parametric equations. 
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2  Preliminaries 
 

We identify  


RSL2
 with 

 

  0>:,,= 33 zzyx RR   

 

endowed with the metric 
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The following set of left-invariant vector fields forms an orthonormal basis for 

 


RSL2
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The characterising properties of g  defined by 
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The Riemannian connection   of the metric g  is given by 

 

        YXZgXZYgZYXgZYg X ,,,=,2   
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which is known as Koszul's formula. 
Using the Koszul's formula, we obtain 

 

 ,
2

1
=,

2

1
=0= 23

1
32

1
1

1
eeee,e eee   

 ,
2

1
=,=,

2

1
= 213

2
32

2
31

2
eeeeeee eee   (3) 

 0.=
2

1
=

2

1
= 3

3
12

3
21

3
e,ee,ee eee   

 

Moreover we put 
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where the indices kji ,,  and l  take the values 1,2  and 3  
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3   Biharmonic Curves in  


RSL2
 

 
Biharmonic equation for the curve   reduces to 

 

   0,=,3
TTTT TT  R  (5) 

 

that is,   is called a biharmonic curve if it is a solution of the equation (5). 

Let us consider biharmonicity of curves in  


RSL2
. Let  BN,T,  be the Frenet 

frame field along  . Then, the Frenet frame satisfies the following Frenet--Serret 

equations: 
 

                  ,= NTT         ,= BTNT        ,= NBT        (6) 

 

where   is the curvature of   and   its torsion and 

 

       1,=1,=1,= BB,NN,TT, ggg            0.=== BN,BT,NT, ggg  

 

With respect to the orthonormal basis },{ 321 e,e,e  we can write 

 

,= 332211 eeeT TTT    ,= 332211 eeeN NNN     

 .== 332211 eeeNTB BBB   (7) 

Theorem 3.1.  


RSL2: I  is a biharmonic curve if and only if 

 

            0,constant=     ,
4

15

4

1
= 2

1

22 B     .2= 11BN
'      (8) 

 

Proof. Using (5) and Frenet formulas (6), we have (8). 

Theorem 3.2. ([9]) Let  


RSL2: I    be a unit speed non-geodesic biharmonic 

curve. Then, the parametric equations of   are 
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where ,  ,C  ,1  2  are constants of integration .  

  

 4  Focal Curve of Biharmonic Curves in  


RSL2
 

 

Denoting the focal curve by ,  we can write 

 

 ),)((=)( 21 sccs BN   (10) 

 

where the coefficients ,1c  2c  are smooth functions of the parameter of the curve  , 

called the first and second focal curvatures of  , respectively. Further, the focal 

curvatures 1c , 2c  are defined by 
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Lemma 4.1. Let  


RSL2: I  be a unit speed biharmonic curve and   its 

focal curve on  


RSL2
. Then, 

 

 1 2

1
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 (12) 

 
Proof. Using (7) and (11), we get (12). 

 

Lemma 4.2. Let  


RSL2: I  be a unit speed biharmonic curve and   its 

focal curve on  


RSL2
. Then, 
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Lemma 4.3. Let  


RSL2: I   be a unit speed non-geodesic biharmonic curve. 

Then, the position vector of   is 
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where 2,,  C  are constants of integration.  

 

Proof. Assume that   is a non-geodesic biharmonic curve  


RSL2
 .  

Using (2), yields 
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Substituting (15) to (9), we have (14) as desired. 

Theorem 4.4. Let  


RSL2: I  be a unit speed non-geodesic biharmonic curve 

and   its focal curve on  


RSL2
. Then, 
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where ,  ,C  ,1  2  are constants of integration .  

Proof. We assume that  


RSL2: I  be a unit speed biharmonic curve. 

Using Lemma 4.1, we get  
 

    .cossinsincossin= 321 eeeT   CsCs  

 

Using first equation of the system (6) and (4), we have 
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By the use of Frenet formulas and above equation, we get 
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Combining (17) and (11), we obtain (16). This concludes the proof of Theorem. 
We can use Mathematica in above Theorems 3.3 - 4.2, yields 
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Fig. 1. Mathematical’s result in Theorems 3.3 – 4.2. 
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