
6 

 

International Journal of Mathematical Engineering and Science 

ISSN: 2277- 6982                                     Volume 1, Issue 3 (March 12)  

http://www.ijmes.com/                         https://sites.google.com/site/ijmesjournal/ 

 

Effects of Mass Transfer on Unsteady Free Convection 

MHD Flow Between Two Heated Vertical Plates in the 

Presence of Transverse Magnetic Field 

 

B H A S K A R    K A L I T A 

Associate Professor, Department- Mathematics 

T. H. B. College, Jamugurihat, Sonitpur, Assam 

e-mail -  drbhaskarkalita@yahoo.com    

 

Abstract: In this work a study is presented of the effects of mass transfer on unsteady free 

convection flow of an incompressible viscous fluid past between two heated vertical parallel 

plates under uniform transverse magnetic field. An analytical solution for the problem under 

consideration has been obtained using the Laplace Transform Method  7 . The effects of the 

concentration parameter Sc (Schmidt number), the magnetic parameter M, the viscosity-heat 

conduction parameter Pr (Prandtl number) together with variation of time, have been 

examined on the flow of fluid velocity, temperature and concentration. The analytical results 

have shown that the above mentioned effects have to be taken into consideration in the flow 

of fluid, heat and mass transfer processes. 

 

Keywords: Unsteady free convection MHD flow, Mass transfer, Laplace 

Transformation 

Subject Classification: 76W05 

 

1. Introduction: 

 
 It has been seen by long experience that, in many engineering activities, especially in 

chemical engineering, that some processes are considered to be the mass transfer processes, which 

are sometimes accompanied by many other processes like heat transfer, rotation of fluids, 

electromagnetic forces, etc. The random movement of the molecules, which by their mixing tend to 

equalize existing differences in their energy, causes the heat conduction in a gas. By the same 

movement local differences in concentration of a gas mixture diminished in time even if no 

macroscopic mixing occurs. This process is known as diffusion. By diffusion or convection, in a 

mixture of local concentration differences, a component is transported from one location to another. 

The mass transport through an interface between various phases of the same medium if found to be 

a special important in engineering sciences.    

          The range of free-convection flows that occur in nature and in engineering practices is vast 

and significant. So far, many papers, both theoretical and experimental, have been published on free 

convection heat transfer in view of their interest in astrophysics, geophysics, engineering and 

medical sciences. However, the flow of a fluid is caused not only by the temperature differences but 

also by concentration differences. These concentration differences also affect the flow and 

temperature near the surface of a body embedded in a fluid. In engineering applications, the 
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concentration differences are created by either injecting the foreign gases or bycoating the surface 

with evaporating material, which evaporates due to the   

heat of the surface. These mass transfer differences do affect the rate of heat transfer. In practice

2H , 20 , 2CO  etc. are the foreign gases, which are injected in the air, flowing past bodies. Thus, 

for flows past vertical surfaces, there is buoyancy force, which arises due to temperature differences 

and concentration differences.  

            In recent years, many research workers have presented analytical as well as numerical 

solutions to such problems of fluid over vertical surfaces. However, unsteady free convection flows 

received little attention. Illingworth published the first paper on unsteady laminar flow of gas near 

an infinite flat plate, in 1950. But the results were published for unit Prandtl number. Siegel (1958) 

studied unsteady free convection near a semi-infinite vertical plate under uniform wall temperature. 

Goldstien and Eckert (1960) derived experimentally the one dimensional unsteady free convection 

flow past a semi-infinite vertical plate. Many papers relating to unsteady free convection flow past 

an infinite vertical plate were published. These are by Schetz and Eichhorn (1962), Goldstein and 

Briggs (1964) etc. 

           Gebhart and Pera [1971] have obtained the solution of the vertical natural convective flows 

resulting from the combined buoyancy effects of thermal and mass diffusion. Soundalgekar [1979] 

derived the solution of the effect of mass transfer and free convection currents on the flow past an 

impulsively started plate.  An analysis of the fluid flow, through a porous medium confined between 

two vertical walls, maintained at different temperature and concentration levels, were presented by 

Trevisan and Bejan [1985]. Yucel [1990] studied the natural convection heat and mass transfer 

along a vertical cylindrical surface, embedded in a porous medium, and which is maintained at a 

uniform temperature and concentration. A study on unsteady free convection MHD flow between 

two heated vertical parallel plates was presented by Gourla and Katoch [1991][3]. The effects of 

mass transfer on free convection flow past a vertical isothermal cone surface was studied by 

Kafoussias [1992]   . 
            In this paper, we have discussed the effects of mass transfer together with skin friction on the 

unsteady free convection flow between two heated vertical parallel plates. In section 2, the 

mathematical formulation of the problem under consideration is presented and in section 3, the 

analytical solutions are set out. The obtained results are shown graphically and a quantitative 

discussion is given in section 4. More importance has been given on the dimensionless parameters 

lGr and mGr on the velocity, temperature and concentration profiles as well as on the skin friction 

and rate of heat transfer. It is hoped that the results obtained not only provide useful information for 

applications but also serve as a complement for farther studies. 

 

2. Mathematical Formulation: 

 

In order to formulate the problem mathematically, we consider that the local properties of 

the fluid are not affected by the temperature differences except that of the density variation in the 

body force term. Also the influence of the density variations in other terms of the momentum, 

energy and concentration equations and the variation of the expansion coefficients  , 
* with 

temperature is negligible. The boundary layer is supposed to be thin. The level of the species 

concentration in the fluid is assumed to be so low that Soret and Dufour effects can be neglected. 

The fluid is supposed to be Newtonian, viscous and incompressible. The viscous dissipation, the 

induced magnetic field, the Hall effect, electrical effect and polarization effects are neglected. 
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We consider a vertical channel bounded by two fixed vertical parallel infinite plates and 

both are at the same temperature 0T  , initially. At time t>o, the plates are supplied heat at constant 

rate, thereby causing the presence of free convection currents in the fluid near the plates. As the 

plates are infinite in extent, the flow-variables are functions of y  and t . The x axis is taken 

along the plates in the vertically upward direction and the y  axis is taken normal to the plates. 

The uniform magnetic field 0B  is applied along horizontal direction, i.e. in a direction 

perpendicular to the fluid motion. 

Under the above assumptions following Boussinesq’s approximation, the flow fields are seem to be        

governed by the following equations: 

 Equation of mass conservation: 
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Equation of diffusion: 
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         At time t>0, the temperature of the plates (y = )h  changes according to                 

  tn

w eTTTT
 100 , where n  is a decay factor, 

            The concentration of the fluid changes according as   tn

w eCCCC
 100 . 

             At any time ,t  the velocity, the temperature and the concentration are given by  oou ,, , 

T and C , respectively. 

             The initial and boundary conditions are given by- 
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The dimensionless quantities which we used are- 
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Sc =  
D
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                                                                                     (6) 

            Using the dimensionless quantities (2-6), the equations (2-2) - (2-4) together with the 

boundary conditions (2-5), are found as follows: 
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                       u = 0,   T = 0,  C = 0      for all  y  1,1 ,  t = 0 

                       u = 0,  T = 1- 
nte

,  C = 1- 
nte

 for   y = 1                                                     (10) 

 

3. Solution of the equations: 

 
          Taking the Laplace Transform of equations (2-7) - (2-10), we get 
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The inverse Laplace Transform of (15)  –  (17), gives the actual solution as –  
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4. Results and Discussion: 
 

 In this section, we summarize the most important findings uncovered in this investigation 

and present the supporting results through graphs and tabular values. All figures and tables 

appearing in this work were generated directly from the exact solution / expressions given in § 3 

using scientific calculator first, and later on by C – program. Both the obtained results and data are 

same upto 10
th

 decimal places in all cases. To simplify our discussion, we choose the decay factor n 

and Magnetic Hartmann number M in such a way that there does not appear negative number under 

the square roots. Hence, based on certain and standard values of different parameters and numbers, 

we state the following.  

 Figure 1 has been obtained by plotting the temperature distribution T against y at different 

times when n = 1, Pr = .025. This figure shows that the temperature at any point increases with the 

increase of t. It is seen that the difference of distribution of temperature in between t =1 and t = 2 is 

large while in between t = 2 and t = 3 is small. It seems that there will be no increase of temperature 

distribution though time would be increased. 

 The temperature profiles have been drawn for t = .1, Pr = .025, and for different values of 

temperature decay factor n, in figure 2. It is found from this figure that the temperature at any point 

inside the vertical channel increases with the increase of n, and it flows with higher values at and 

near the walls than at the middle of the channel. This values of T uniformly decreases from the wall 

and minimum value occurs at y = 0. 

Figure 3 has been drawn to show the effect of Prandtl number (Pr) on temperature distribution. This 

investigation shows that for any value of Pr, at the closed region of the walls, the values of the 

temperature distribution is the same; but at the middle of the channel it varies significantly. Towards 

the middle of the channel, the temperature distribution decreases as Prandtl number increases. 

  In figure 4, we have investigated the mass diffusion (C) against y inside the channel in the 

presence of temperature decay factor n (=1) and Schmidt number Sc (=. 22) with respect to small 

time (t = .1) and large time (t = 1, 2, 3). A clear difference of mass diffusion for small and large time 

had been noticed. The difference is about to end after time t = 3, also diffusion rate is slow at the 

middle of the channel. 

 The figure 5, has been drawn to show the effect of temperature factor (n) on mass diffusion 

at time t = .5 and Schmidt number Sc = .22. The graph obtained for n = 5, shows that the diffusion 

difference is very high, highest near the walls. This means that at the center of the channel the 

diffusion rate is very slow. Most intriguingly, however, for n = 15, the diffusion processes is same at 

all regions of the channel. Perhaps the mass diffusing processes come to an end for values of n 

greater than 15. 

 The figure 6 has been drawn to show how various species diffuses at same time (t = .5, 

here), and temperature factor (n = 1, here). It has been observed that as the values of the Schmidt 

number, Sc, increases the diffusion difference increases. For Sc = 0, the rate of mass diffusion is 

similar in all regions of the channel. 

We have considered the figure 7 to show the effect on velocity profiles caused at different 

times with respect to standard fixed values of the parameters considered. From the figure, it is 

observed that for smaller times the flow distribution differs greatly than the larger times inside the 

channel; even for t = 2 and t = 3, the differences in values of u are very negligible. Moreover, the 

difference appears only after 3 digits of decimal place, which as a result ca’ not be seen any 

difference in the figure. 
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  In figure 8, we have shown the effect of magnetic field parameter M on velocity profiles for 

stan dard fixed values of different parameters as shown in figure. It is seen that as M increases u 

decreases. However, this is interesting to note that the flow field neither depends solely on M but 

also on n. This can be seen in analytical result in §3, under radical sign and on graphical vision in 

the figure. 

  Figure 9 has been drawn to show the effect of temperature factor (n) on velocity profiles at 

small time as well as at large time for fixed values of different parameters that appears under 

assumption. It is clearly observed that for t = .1 and n = 5, the flow distribution differs greatly than 

for t = 1 and n = 5. From this we confer that as time advances the flow distribution difference 

decreases. Again we see the effect of temperature decay factor n on velocity field. As the values of n 

increases, the corresponding values of u first increases, later on decreases; even at the middle of the 

channel. It is also the sign of stream -lines flow situation. 

 The velocity profiles have been plotted against y for n = 1, Pr = .025, Sc = .22, M = .5 and 

for various values of Grashof number )( mGr in figure 10. The profiles are studied at two different 

times. It is seen that as the values of mGr  increases the values of velocity field also increases at 

time t = .5; but at time t = 2 and for mGr = 4, it seems to decrease. Thereby it means that the flow 

field seems to attain the fully developed situation after time t = 2. The calculation done for small 

time shows that the increase of concentration also increases the difference of diffusion. 

 The view taken in figure 11 is one looking down upon the two different values of Prandtl 

number (Pr) at two different time. The plotted graphs clearly show that as Pr increases in turn the 

velocity field decreases. If we look down upon the time factor, it clearly suggests the idea that as 

time increases, the difference of flow distribution decreases irrespective of the kinds of electrically 

conducting fluid. It gives hints of matured mixture and fully developed situation at large time. 

Figure 12 illustrates the temporal evaluation of the flow pattern caused by varying values of Prandtl 

number (Pr) and magnetic Hartman number (M), simultaneously at fixed values of other parameters 

and time. It is seen that as Pr and M increases simultaneously, the values of u decreases at the center 

of the channel. However, any change of Prandtl and Hartmann number do not affect on the velocity 

distribution near the two walls.  

 

     
                    

 

 

 Fig. 1: T versus y for Pr = .025, n = 1 at time t = 1, 2, 3   Fig. 2: T versus y for Pr = .025, t = .1, at n = 

5, 10, 15      
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      Fig.-3: T versus y for Pr = .025, .25, .5 at t = 1, n = 1  Fig. -4: C versus y for n = 1, Sc = .22 at t 

= .1, 1, 2, 3 

 

 

 

 

         
                                                     

 

         Fig. -5: C versus y for t =.5, Sc =.22, n = 5,10,1   Fig.-6: C versus y for t =.5, n =1 at different 

values of Sc  
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         Fig.-7: u versus y for n =5, M =1, Sc = .22,  Fig.-8:u versus for n =.5, t = .1, Pr = .025, Sc = .22, 

            Pr = .025, 4,10  mt GrGr                    4,10  mt GrGr  

 

 

 

      
                  

  Fig.-9: u versus y for Pr = .025, M = .5, Sc = .22, Fig.-10: u versus y for n =1, Pr =.025, Sc =.22, M=.5 

          4,10  mt GrGr
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           Fig.-11: u versus y for n =5, M =.5, Sc =.22       Fig.-12: u versus y for n =1, t =1, Sc =.22, 

                                  4,10  mt GrGr
                                         

4,10  mt GrGr  

 

$ Skin Friction 
)( fC

: 

For engineering purposes, one is usually less interested in the shape of the velocity, temperature 

or concentration profiles than on the values of Skin friction, Heat transfer or Mass transfer parameter. 

All the values of these letter ones are conventionally described by appropriate coefficients. The 

following relations define them  
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But, we have only the skin friction here, as xNu (the local Nusselt number) and xNm (the local 

Sherwood number) become zero for T and C being the function of t instead of being function of y. 

Using (2-6), (2-20) and (2-22), we have (2-21) as  
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            We have obtained the result of skin friction for the plate at h = + 1. All the results that would 

be found for h = -1 would have been seemed to be opposite to the results found in tables (1) – (5). 

Here we have observed the effects of the following dimensionless parameters and decay factor.  

(a) The effect of Re: From the table 1, it is seen that the effects of the Reynolds number Re, the 

dimensionless parameter of the ratio of the inertial motion to the viscous resistance, is prominent in 

the skin friction. For Re = 1, skin friction is the highest, and then it decreases as Reynolds number 

increases. Other parameters are assumed fixed. 

 

(b) The effect of n: Table 2 has been obtained for various values of n, the temperature decay factor, 

starting from 1 to 25. It is seen that n plays an important role in the increase or decrease of skin 

friction. It is difficult to predict the situation that for increasing values of n there would be any 

increase or decrease in skin friction. This situation particularly depends on magnetic parameter M. 

(c) The effect on M:  In the table 3 the effect of M on the skin friction has been shown. It is seen that as 

M increases from .025 to .5, skin friction decreases. However, for other greater values this kind of  

               prediction cannot be done; even we will face domain error if we would consider the values, 

which    are        greater than square root values of n.  

The effects of Pr and Sc: We have deduced the values of skin friction for different values of Pr and Sc 

at two values of Re and fixed values of other parameters in table 4. It is obvious from the table that for  

Reynolds number = 1300 skin friction is negligible, while for Re = 1, it is significant. Moreover, for 

different pair values of Pr and Sc, we see different skin friction. For higher values of 

(d) these two, fC is negative. Alternately, for smaller and standard values, it is positive and 

remarkable.  

(e) The effects of Gr t   and  Gr m : Lastly, in table 5, we have given the variation in tGr  and mGr  to 

show its effect on skin friction. For high Reynolds number, the effects of these parameters are not 

significant, but for small Reynolds numbers these parameters are countable. 
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   Table 1.  Values of fC  for different values of Reynolds number (Re) when  

             ,5n    t = .1,  ,20,10  mt GrGr    Pr = .025,    Sc = .22,      M = .5 

            Re            fC     Re    fC  

              1      758.79895                 10               7.588047 

          100                    0.075880   200  0.01897 

          500                    0.003035   1000  0.000759 

         1200                    0.000527   1300  0.000449 

         1500                    0.000337   2000  0.00019 

         2200                    0.000157   2500  0.000121  

 

 

 Table 2. Values of fC  for different values of decay factor (n) at 

              ,10tGr   ,20mGr   M = .5,  Re = 10,  Sc = .22,  t = 1, Pr = .025 

 

            n     fC       n      fC  

            1  - 0.437598    2             - 1.237877 

        3     2.843106   4    0.498329 

       5     0.195368   7    0.008061 

        10              - 0.081594   15             - 0.133889 

        20   - 0.155934   25             - 0.168086 

 

                  

Table 3.  Variation of skin friction fC  for different values of M at 

 ,10tGr   ,20mGr   Pr = .025,  Sc = .22,  t = 1,  n = 5,  Re = 1300 

                   M          fC    M    fC        

                   .025               0.357097   .1   0.349901 

                    .25               0.311365   .5   0.195368 

           1.0             - 0.048251   1.5   0.069489 

           2.0             - 0.291442   2.2            - 0.262698 

 

 

             

Table 4. Skin friction fC  for various values of Pr and Sc when 

                    ,10tGr  ,20mGr   M = .5,  n = 5,  t = 1, Re = 1, 1300 

                     Pr                 Sc           )1(Re fC        )1300(Re fC  

                      0.025     0.22               19.536825          0.000012 

                      0.25       0.60             73.327301          0.000043   

         0.50    0.60             86.569122         0.000051 

         0.71    0.22             65.498520         0.000039 

                0.71               1.00           - 2722013.5      - 1.610659 

          1.00    1.00            - 4083093.5      - 3.756418 

                     2.00    1.50          - 128.387253        - .000076 
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Table 5. Variation of skin friction fC for different values of tGr  and mGr  at 

                        Pr = .025, t = 1, M = .5, n = 5, Sc = .22    

                       tGr   mGr    fC (Re=10)   fC (Re=1300) 

                        2.0  2.0     0.022515       0.000001 

                        2.0  4.0    0.039074       0.000002 

                        10   4.0     0.062896       0.000004 

                        20             10    0.142352       0.000008 

                        10             20    0.195368       0.000012 

                        10          100    0.857728       0.000051 
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