CHARACTERIZATION OF LATTICE SIGMA ALGEBRAS ON PRODUCT LATTICES

D.V.S.R. Anil Kumar

Associate Professor in Nizam Institute of Engineering and Technology, Deshmukhi, Nalgonda district Hyderabad, A.P., India. E-mail[: anilkumardaita@yahoo.in](mailto:anilkumardaita@yahoo.in)

T.Nageswara Rao

Professor in St. Mary's Women's Engineering College, Budampadu, Guntur Rural, Guntur District,A.P.,India. **E-mail:** tnraothota@yahoo.co.in

J. Venkateswara Rao

Professor of Mathematics, Mekelle University, Mekelle, Ethiopia E-mail[: venkatjonnalagadda@yahoo.co.in](mailto:venkatjonnalagadda@yahoo.co.in)

ABSTRACT:

 This manuscript describes that the class of super lattice measurable sets is closed under finite unions, countable unions, and countable intersections. It has been established that the product two lattice σ- algebras defined on a product lattice is lattice measurable and the elementary integration of these lattice measurable sets are equal. Further some characteristics of lattice σ- finite measures were identified.

Key words: Lattice σ- algebra, measure, lattice measure, σ-finite measure

ASM Classification numbers: 03G10, 28A05, 28A12

§1. INTRODUCTION:

 In section 2, by Tanaka[9] we define the definition of lattice sigma algebra, lattice measure on a lattice sigma algebra by Anil kumar etrl[1,2] the definition of lattice measurable of the space, lattice measurable set, lattice measure space, lattice σ – finite measure are defined. Here we prove some elementary properties of lattice measurable sets.

Section 2 is devoted to the basic concepts which were making use of in the later text. The rationalization of lattice σ- algebra and lattice measure on lattice σ- algebra were organized. Further a classification of lattice measure space, lattice measurable set, lattice σ – finite measure space, lattice σ- finite measure were prearranged.

Section 3 establishes the results that the class of super lattice measurable sets is closed under finite unions, countable union, countable intersections. Further instituted a theorem that the product two lattice σ- algebras defined on a product lattice is lattice measurable. It has been obtained that the elementary integration of these lattice measurable sets are equal. Finally some characteristics of lattice σ- finite measures were observed.

§2. PRELIMINARIES

This section briefly reviews the well-known facts of Birkhoff's [3] lattice theory. The system (L, \wedge , \vee), where L is a non empty set, \wedge and \vee are two binary operations on L, is called a lattice if \wedge and \vee satisfies, for any elements x, y, z, in L:(L1) commutative law: $x \wedge y = y \wedge x$ and $x \vee y = y \vee x$. (L2) associative law: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ and $x \vee (y \vee z) = (x \vee y) \vee z$. (L3) absorption law: $x \vee (y \wedge x) = x$ and $x \wedge (y \vee x) = x$. Hereafter, the lattice (L, \wedge, \vee) will often be written as L for simplicity. A lattice (L, \wedge, \vee) is called distributive if, for any x, y, z, in L. (L4) distributive law holds: $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ and $x \wedge (y \vee z) = (x \wedge z)$ y) \vee (x \wedge z). A lattice L is called complete if, for any subset A of L, L contains the supremum \vee A and the infimum \wedge A. If L is complete, then L itself includes the maximum and minimum elements which are often denoted by 1 and 0 or I and O respectively. A distributive lattice is called a Boolean lattice if for any element x in L, there exists a unique complement x^c such that $x \vee x^c = 1$ (L5) the law of excluded middle $x \wedge x^C = 0$ (L6) the law of non-contradiction.

Let L be a lattice and c: $L \rightarrow L$ be an operator. Then c is called a lattice complement in L if the following conditions are satisfied. (L5) and (L6); $\forall x \in L$, $x \lor x^C = 1$ and $x \land x^C = 0$, (L7) the law of contrapositive; $\forall x, y \in L$, $x \leq y$ implies $x^C \geq$ y^c ,(L8) the law of double negation; $\forall x \in L$, $(x^c)^c = x$. Throughout this paper, we consider lattices as complete lattices which obey (L1) - (L8) except for (L6) the law of non-contradiction. Unless otherwise stated, X is the entire set and L is a lattice of any subsets of X.

Definition2.1: If a lattice L satisfies the following conditions, then it is called a lattice σ -Algebra;

- (1) \forall h \in L, h^c \in L
- (2) if $h_n \in L$ for $n = 1, 2, 3, \dots,$ then $\bigvee_{n=1}^{\infty}$ $\bigvee_{n=1}$ **h**_n \in **L**.

We denote σ (L) = ß, as the lattice σ -Algebra generated by L.

Example 2.1: [[4] Halmos (1974)]. 1. $\{\phi, X\}$ is a lattice σ -Algebra.

2. P(X) power set of X is a lattice σ -Algebra.

Example2.2: Let $X = \mathcal{R}$ and $L = \{$ measurable subsets of \mathcal{R} $\}$ with usual ordering (\leq). Here L is a lattice and σ (L) = β is a lattice σ algebra generated by L.

Example2.3: Let X be any non-empty set, $L = \{All topologies on X\}$. Here L is a complete lattice but not σ -algebra.

Example2.4: [[4] Halmos (1974)]. Let $X = \Re$ and $L = \{E \le \Re / E \text{ is finite or } E^c \text{ is finite}\}$. Here L is lattice algebra but not lattice σ algebra.

Definition2.2: The ordered pair (X, β) is said to be lattice measurable space.

Example2.5: Let $X = \Re$ and $L = \{All Lebesgue measurable sub sets of $\Re \}$. Then it can be verified that (\Re, β) is a lattice$ measurable space.

Definition2.3: If the mapping $\mu: \mathcal{B} \to \mathbb{R} \cup \{\infty\}$ satisfies the following properties, then μ is called a lattice measure on the lattice σ -Algebra σ (L).

(1) $\mu(\phi) = \mu(0) = 0$.

(2) For all h, $g \in \beta$, such that $\mu(h)$, $\mu(g) \ge 0$ and $h \le g \Rightarrow \mu(h) \le \mu(g)$.

(3) For all h, $g \in \beta$, μ (h \vee g) + μ (h \wedge g) = μ (h) + μ (g).

(4) If $h_n \subset B$, $n \in N$ such that $h_1 \leq h_2 \leq ... \leq h_n \leq ...$, then $\mu \in \bigvee_{n=1}^{\infty} I_n$ $\bigvee_{n=1}$ **h**_n $)$ = lim μ (**h**_n $)$.

Note2.1: Let μ_1 and μ_2 be lattice measures defined on the same lattice σ -Algebra B. If one of them is finite, then the set function μ $(E) = \mu_1$ (E) - μ_2 (E), $E \in \mathcal{B}$ is well defined and is countably additive on \mathcal{B} .

Example 2.6: [[6] Royden (1981)]: Let X be any set and $B = P(X)$ be the class of all sub sets of X. Define for any $A \in B$, $\mu(A) = +\infty$ if A is infinite $= |A|$ if A is finite, where |A| is the number of elements in A. Then μ is a countable additive set function defined on B and hence μ is a lattice measure on β .

Definition2.4: A set A is said to be lattice measurable set or lattice measurable if A belongs to ß.

Example2.7: [Anilkumar etrl[1,2] 2011] The interval (a, ∞) is a lattice measurable under usual ordering.

Example2.8: [Anilkumar etrl[1,2] 2011] [0, 1] < \Re is lattice measurable under usual ordering. Let X= \Re , L= {lebesgue measurable subsets of \mathfrak{R} } with usual ordering (\leq) clearly $\sigma(L)$ is a lattice σ -algebra generated by L. Here [0,1] is a member of $\sigma(L)$. Hence it is a Lattice measurable set.

Example2.9: [Anilkumar etrl**[1,2]** 2011] Every Borel lattice is a lattice measurable.

Definition 2.5: The lattice measurable space (X, β) together with a lattice measure μ is called a lattice measure space and it is denoted by (X, β, μ) .

Example2.10: \mathcal{R} is a set of real numbers μ is the lattice Lebesgue measure on \mathcal{R} and β is the family of all Lebesgue measurable subsets of real numbers. Then $(\mathfrak{R}, \mathfrak{B}, \mu)$ is a lattice measure space.

Example2.11: \Re be the set of real numbers and β is the class of all Borel lattices, μ be a lattice Lebesgue measure on \Re then (\Re) , (β, μ) is a lattice measure space.

Definition2.6: Let (X, β, μ) be a lattice measure space. If $\mu(X)$ is finite then μ is called lattice finite measure.

Example2.12: The lattice Lebesgue measure on the closed interval [0, 1] is a lattice finite measure.

Example 2.13: When a coin is tossed, either head or tail comes when the coin falls. Let us assume that these are the only possibilities. Let $X = \{H, T\}$, H for head and T for tail. Let $B = \{\phi, \{H\}, \{T\}, X\}$. Define the mapping P: $B \rightarrow [0, 1]$ by P $(\phi) = 0$, P $(\{H\}) = P$ $({T}) = \frac{1}{2}$, P (X) = 1. Then P is a lattice finite measure on the lattice measurable space (X, ß).

Definition2.7: If μ is a lattice finite measure, then (X, β, μ) is called a lattice finite measure space.

Example2.14: Let *β* be the class of all Lebesgue measurable sets of [0, 1] and μ be a lattice Lebesgue measure on [0, 1]. Then ([0, 1], β , μ) is a lattice finite measure space.

Definition2.8: Let (X, β, μ) be a lattice measure space. If there exists a sequence of lattices measurable sets $\{X_n\}$ such that

(i) $X = \bigvee_{k=1}^{\infty}$ $\bigvee_{n=1}$ **x**_n and (ii) μ (**x**_n) is finite then μ is called a lattice σ – finite measure.

Example2.15: The lattice Lebesgue measure on (\mathcal{R}, μ) is a lattice σ – finite measure since $\mathcal{R} = \nu$ \vee _{*n*=1} (-n, n) and μ ((-n,n)) = 2n is

finite for every n.

Definition2.9: If μ be a lattice σ – finite measure, then (X, β, μ) is called lattice σ – finite measure space.

Example2.16: Let β be the class of all Lebesgue measurable sets on $\mathcal{R} = \int_{0}^{\infty}$ $\bigvee_{n=1}$ (-n, n) and μ be a lattice Lebesgue measure on \Re ,

then $(\mathfrak{R}, \mathfrak{B}, \mu)$ is a lattice σ – finite measure space.

Definition 2.10: The lattice measure m defined on $S \times T$ above is called the product of the lattice measures μ and λ and is denoted by μ \times λ.

Definition 2.11: Let X and Y be two lattices. Then their Cartesian product denoted by $X \times Y$ is defined as $X \times Y = \{(x, y) / x \in X, y\}$ \in Y}. It is called product lattice.

Example 2.17: Let L and M be two lattices shown in the figures below

Where $1 = (x_2, y_4)$, $d = (x_2, y_2)$, $e = (x_1, y_4)$, $f = (x_2, y_3)$, $a = (x_1, y_2)$, $b = (x_2, y_1)$, $c = (x_1, y_3)$ and $O = (x_1, y_1)$. **Definition 2.12:** If $A < X$, $B < Y$ then $A \times B < X \times Y$. Any lattice of the form $A \times B$ is called super lattice in $X \times Y$. **Example 2.18:** If $A \subseteq B$ and $C \subseteq D$ then $(A \times C) \subseteq (B \times D)$ Let(x, y) be any element of A \times C. Then by definition of product lattice we have $x \in A, y \in C.$ But it is given that $A \subset B$ and $C \subset D$.

Therefore $x \in B$ and $y \in D$.

That is (x, y) is an element of B \times D. Hence $(A \times C) \subset (B \times D)$.

Remark 2.1: Let (X, S), (Y, T) be lattice measurable spaces.

Then S is a lattice σ - algebra in X and T is a lattice σ - algebra in Y.

Definition 2.13: If $A \in S$ and $B \in T$, then the lattice of the form $A \times B$ is called super lattice measurable set.

Example 2.19: Every member of $S \times T$ is a super lattice measurable set.

Definition 2.14: If $Q = R_1 \vee R_2 \vee \dots \vee R_n$ where each R_i is a super lattice measurable set and $R_i \wedge R_j = \phi$ for $i \neq j$, then Q

is called elementary lattice. The class of all elementary lattices is denoted by L_E .

Remark 2.2: $S \times T$ is defined to be smallest lattice σ - algebra in $X \times Y$ which contains every super lattice measurable set.

Definition 2.15: If A_i , $B_i \in \sigma(L)$ such that $A_i \leq A_{i+1}$, $B_i \geq B_{i+1}$ for $i = 1, 2, 3, ...$ and $A =$ ∞ $\bigvee_{i=1}$ A_i, B = ∞ $\bigwedge_{i=1}$ B_i, then A $\in \sigma(L)$ and B

 $\in \sigma(L)$. This lattice σ - algebra $\sigma(L)$ is a monotone class.

Example 2.20: $X \times Y$ is a monotone class.

Definition 2.16: Let $E \leq X \times Y$ where $x \in X$, $y \in Y$. We define x – section lattice of E by $E_x = \{y/(x, y) \in E\}$ and y – section lattice of $E_y = \{x/(x, y) \in E\}.$

Note 2.2: $\dot{E}_x < Y$ and $E_v < X$.

Definition 2.17: [5] Let $\sigma(L)$ be a lattice σ -algebra of sub sets of a set X. A function μ : $\sigma(L) \rightarrow [0, \infty]$ is called a positive lattice measure defined on σ(L) if

(1) $\mu(\phi) = 0$

(2) $\mu(\bigvee_{n=1}^{\infty} A_n)$ $\sum_{n=1}^{\infty} A_n$) = $\sum_{n=1}^{\infty}$ $n=1$ $\mu(A_n)$ where $\{A_n\}$ is a disjoint countable collection of members of $\sigma(L)$ and $\mu(A) < \infty$ for at least one A

$$
\in \sigma(L).
$$

Example 2.21: (i) Counting measure: Let X be a non – empty set. Let $\sigma(L) = P(X)$. Define μ : $\sigma(L) \rightarrow [0, \infty]$ by $|E|$ = number of lattice measurable sets in E, if E is finite, ∞ if E is infinite. Then μ is a positive lattice measure on P(X) called the positive lattice counting measure on X.

(ii) Unit mass at x_0 : Let X be a non – empty set. Let $\sigma(L) = P(X)$. Fix $x_0 \in X$.

Define μ : $\sigma(L) \rightarrow [0, \infty]$ by $\mu(E) = 1$ if $x_0 \in E = 0$ if $x_0 \notin E$

then μ is a positive lattice measure on $P(X)$ is called unit measure concentrated at x_0 .

Theorem 2.1: [5] If $E \in S \times T$, then $E_x \in T$ and $E_y \in S$ for every $x \in X$ and $y \in Y$.

Theorem 2.2: $\overline{5}$ $\overline{5}$ \times T is the smallest monotone class which contains all elementary lattices.

Theorem 2.3: [7] Suppose $\{f_n\}$ is a sequence of complex lattice measurable functions on X such that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for every $x \in X$. If there is a function $g \in L^1$ such that $|f_n(x)| \le g(x)$ where $n = 1, 2, 3, \dots, x \in X$,

then (1)
$$
f \in L^1
$$
 (2) $\lim_{x \to 0} \int_X |f_n - f| d\mu = 0$. (3) $\lim_{x \to 0} \int_X f_n d\mu = \int_X f d\mu$.

Theorem 2.4: [7] Let $\{f_n\}$ be a sequence of lattice measurable functions on X such that $0 \le f_1(x) \le f_2(x)$ $\le \infty$ for every $x \in$ X and $f_n(x) \to f(x)$ as $n \to \infty$ for every $x \in X$. Then f is lattice measurable and $\int f_n d\mu$ $\int_{X} f_n d\mu \rightarrow \int_{X}$ f dµ as $n \to \infty$.

Result 2.1: [1] First Valuation Theorem: Suppose that ${E_k}$ is monotonic increasing sequence of lattice measurable sets and $E =$

$$
\bigvee_{k=1}^{\infty} E_k \text{ then } m(E) = \text{Lt}_{n \to \infty} m(E_n).
$$

Result 2.2: [1] Second Valuation Theorem: Suppose that ${E_k}$ is a monotonic decreasing sequence of lattice measurable sets and $E =$

 $\bigwedge_{k=1}^{\infty} E_k$ $\bigwedge_{k=1}^{\infty} E_k$, then m(E) = $\operatorname{Lt}_{n\to\infty}$ m(E_n).

Theorem 2.5: [5] Let μ be a positive lattice measure defined on a lattice σ -algebra $\sigma(L)$. Then μ satisfies first valuation theorem (Result 2.1) and second valuation theorem(Result 2.2) that is

(1) Let
$$
A = \bigvee_{n=1}^{\infty} A_n
$$
, $A_n \in \sigma(L)$. Let $A_1 < A_2$ Then $\mu(A_n) \to \mu(A)$ as $n \to \infty$.

(2) If $A = \bigwedge_{n=1}^{\infty} A_n$ $\wedge_{n=1} A_n$, $A_n \in \sigma(L)$ and $A_1 > A_2$ with $\mu(A_1)$ finite. Then $\mu(A_n) \rightarrow \mu(A)$ as $n \rightarrow \infty$.

§3. CHARACTERIZATION OF LATTICE SIGMA ALGEBRAS ON PRODUCT LATTICES

Definition 3.1: Let $f: X \times Y \to Z$ is topological space. For each $x \in X$, define $f_x: Y \to Z$ by $f_x(y) = f(x, y)$. Then f_x is called Ylattice measurable function. For each $y \in Y$, define $f_y : X \to Z$ by $f_y(x) = f(x, y)$. Then f_y is called X – lattice measurable function. **Theorem 3.1:** Let f be an $(S \times T)$ lattice measurable function on $X \times Y$, Then

1) For each $x \in X$, f_x is a T – lattice measurable function

2) For each $y \in Y$, f_y is a S – lattice measurable function.

Proof. Let V be an open set in Z. Let $Q = \{(x, y) \in X \times Y : f(x, y) \in V\}$

Since f is S \times T lattice measurable, $Q \in S \times T$. $Q_x = \{y: (x, y) \in Q\} = \{y: f(x,y) \in V\} = \{y: f_x(y) \in V\}$ By theorem 2.1 $Q_x \in T$. Therefore f_x is a T – lattice measurable function. A similar argument shows that f_y is an S –lattice measurable function.

Result 3.1: If $\Phi(x) = \lambda(Q_x)$, $\psi(y) = \mu(Q_y)$ where $Q_x \in S$ and $Q_y \in T$ for all $x \in X$, $y \in Y$ and $K = \{Q \in S \times T: \Phi \text{ is } S \text{-lattice}\}$ measurable, ψ is T-lattice measurable and $\int f d\mu = \int \psi d\lambda$ } ------(1). Then every super lattice measurable set belong to K where

X Y K is the class of super lattice measureable set satisfying (1).

Proof. Let $Q = A \times B$, $A \in S$, $B \in T$. Then $Q \in \mathcal{S} \times \mathcal{T}$. Also, $Q_x = \mathcal{B}$ if $x \in \mathcal{A}$ $=$ ϕ if x \notin A Therefore λ (Q_x) = λ (B) χ _A (x).

In a similar way, $Q_y = A$ if $y \in B$ $=$ ϕ if $y \notin B$

 $\mu(Q_y) = \mu(A) \chi_B(y)$

Therefore $\Phi(x) = \lambda(B) \chi_A(x)$, $\psi(y) = \mu(A) \chi_B(y)$. Since $A \in S$, Φ is S-lattice measurable and since $B \in T$, ψ is T-lattice measurable.

Also
$$
\int_{X} \Phi d\mu = \int_{X} \lambda(B) \chi_{A}(x) d\mu = \lambda (B) \mu (A)
$$

$$
\int_{Y} \psi d\lambda = \int_{Y} \mu(A) \chi_{B}(y) d\lambda = \mu (A) \lambda (B)
$$

Therefore \int_{X} Φ dµ = \int_{Y} ψ dλ.

Thus, every super lattice measurable set belongs to K.

Result 3.2: If $Q_1 < Q_2 <$ $Q_n \in K$ and if $Q =$ $\bigcup_{i=1}^{\infty} Q_i$ then $Q \in K$ (or) finite union of members of K is again a member of K. **Proof:** Since $Q_i \in S \times T$, and since $S \times T$ is a lattice σ - algebra, we get $Q \in S \times T$.

n

Let $\Phi_i(x) = \lambda(Q_{ix}), \psi_i(y) = \mu(Q_{iy}),$ then as $Q_i \in K$, we get Φ_i is S – lattice measurable, ψ_i is T – lattice measurable for every i and \int_{X} Φ _i dµ = \int_Y ψ_i d λ . Since μ and λ are positive lattice measures, $\lambda(Q_{ix}) \to \lambda(\vee Q_{ix})$ and $\mu(Q_{iy}) = \mu(\vee Q_{iy})$ as $i \to \infty$ ∞ .(by theorem 2.5(1)) Since $Q_x = \vee Q_{ix}$, $Q_y = \vee Q_{iy}$, we get $\lambda(Q_{ix}) \to \lambda(Q_x)$ and $\mu(Q_{iy}) \to \mu(Q_y)$, that is $\Phi_i \to \Phi$ and Ψ_i \rightarrow ψ as $i \rightarrow \infty$.

Since $\{\Phi_i\}$ are S-lattice measurable, $\{\Psi_i\}$ are T-lattice measurable (by theorem 2.4), we get that Φ is S-lattice measurable, ψ is

T –lattice measurable and

$$
\int_{\mathbf{X}} \Phi_i d\mu \to \int_{\mathbf{X}} \Phi d\mu, \int_{\mathbf{Y}} \psi_i d\lambda \to \int_{\mathbf{Y}} \psi d\lambda.
$$
 Since $\int_{\mathbf{X}} \Phi_i d\mu = \int_{\mathbf{Y}} \psi_i d\lambda$, for every i, we get that $\int_{\mathbf{X}} \Phi d\mu = \int_{\mathbf{Y}} \psi d\lambda$. Therefore Q

Result 3.3: If $\{Q_i\}$ is a disjoint countable collection of members of K and if $Q = \bigvee_i Q_i$ then $Q \in K$. (or) countable union of member of K is again a member of K.

Proof: Let Q_1, Q_2, \ldots, Q_n be n disjoint numbers of K. Let $Q = Q_1 \vee Q_2 \vee \ldots, Q_n$. As $Q_i \in S \times T$ is a lattice σ - algebra, we get $Q \in S \times T$. Let $\Phi_i(x) = \lambda(Q_i, \psi_i(y)) = \mu(Q_i, \psi_i)$. Then Φ_i 's are S-lattice measurable and ψ_i 's are T-lattice measurable for all

$$
i, 1 \leq i \leq n \text{ and } \int_{X} \Phi_{i} d\mu = \int_{Y} \psi_{i} d\lambda. \ Q_{x} = \mathop{\vee}\limits_{i=1}^{n} Q_{ix}, \ Q_{y} = \mathop{\vee}\limits_{i=1}^{n} Q_{iy}. \text{ Let } \Phi(x) = \lambda (Q_{x}), \ \psi(y) = \mu (Q_{y}). \text{ Then } \Phi(x) = \lambda \left(\mathop{\vee}\limits_{i=1}^{n} Q_{ix} \right) = \lambda \left(\mathop{\vee}\limits_{i=1}^{n} Q_{ix} \right)
$$

$$
\sum_{i=1}^{n} \lambda(Q_{ix})
$$
 (Therefore Q_{ix} 's are disjoint) $\psi(y) = \mu(\bigvee_{i=1}^{n} Q_{iy}) = \sum_{i=1}^{n} \mu(Q_{iy})$ (Therefore Q_{iy} 's are disjoint) That is $\Phi(x) = \sum_{i=1}^{n} \Phi_i(x)$,

 $\Psi(y) = \sum_{i=1}^{n}$ $i = 1$ $\psi_i(y)$. Therefore $\Phi(x)$ is S –lattice measurable and $\psi(y)$ is T –lattice measurable. Now $\chi_Q = \sum_{i=1}^n \chi_k(y)$ $\sum_{i=1}^{\infty} \chi_{Q_i}$ (Therefore Q is

the disjoint union of Q_i's). Now $\lambda(Q_x) = \int \chi_Q(x, y) d\lambda(y)$

Y

$$
\begin{split}\n&= \iint_{Y} \left(\sum_{i=1}^{n} \chi_{Q_{i}}(x, y) \right) d\lambda(y) \\
&= \int_{X} d\mu \left(x \right) \int_{Y} \chi_{Q_{i}}(x, y) d\lambda(y) \\
&= \int_{X} d\mu \left(x \right) \int_{Y} \sum_{i=1}^{n} \chi_{Q_{i}}(x, y) d\lambda(y) = \int_{X} d\mu \left(x \right) \left(\sum_{i=1}^{n} \int_{Y} \chi_{Q_{i}}(x, y) d\lambda(y) \right) \\
&= \int_{X} d\mu \left(x \right) \int_{Y} \sum_{i=1}^{n} \chi_{Q_{i}}(x, y) d\lambda(y) = \int_{X} d\mu \left(x \right) \left(\sum_{i=1}^{n} \int_{Y} \chi_{Q_{i}}(x, y) d\lambda(y) \right) \\
&= \int_{Y} \psi_{i} d\lambda \left(\text{Since } Q_{i} \in K \right) = \sum_{i=1}^{n} \int_{Y} \psi_{i} d\lambda(y) \int_{X} \chi_{Q_{i}}(x, y) d\mu(x) = \int_{Y} d\lambda \left(y \right) \int_{X} \sum_{i=1}^{n} \chi_{Q_{i}}(x, y) d\mu(x) \\
&= \int_{Y} \psi d\lambda\n\end{split}
$$

Therefore $Q \in K$. Let $Q =$ ∞ $\bigcup_{i=1}^{\infty} Q_i$, $Q_i \in K$, Q_i is disjoint. Then $Q_1 < Q_1 \vee Q_2 < \dots \vee Q_i \vee \dots \dots \vee Q_n < Q_n \dots \dots \dots \dots$ Let $Q_1 = w_1$, Q_1 $\vee Q_2 = w_2, \dots, Q_1 \vee \dots, Q_n = w_n$ etc. Then $w_1, w_2, \dots, w_n, \dots$ are in K. (Since they are finite union of disjoint members of K). Also $w_1 < w_2 < \ldots > w_n < \ldots$ and $Q =$ ∞ $\bigvee_{i=1}^{N}$ W_i. Hence by result 2, Q \in K.

Result 3.4: If μ (A) < and λ (B) < , and if A B > Q¹ > Q² >Q3………. Q = ∞ $\bigwedge_{i=1}^{\Lambda} Q_i$, $Q_i \in K$ for every i, then $Q \in K$ (or) countable intersection of members of K is again a member of K.

Proof: Since $Q_i \in K$, and since $S \times T$ is a lattice σ - algebra, we get $Q = \bigwedge_{i=1}^{\infty} P_i$ $\bigwedge_{i=1}^{\Lambda} Q_i \in S \times T$. Let $\Phi_i(x) = \lambda (Q_{ix}), \psi_i(y) = \mu(Q_{iy})$. Then as $Q_i \in K$, we get, Φ_i is a S –lattice measurable and Ψ_i is a T –lattice measurable for every i and \int_X Φ_i dµ = \int_Y $ψ_i dλ$. Now

μ and λ are positive lattice measures. Also $A \times B > Q_1 > Q_2 > ...$

$$
\lambda(Q_{1x}) \leq \lambda((A \times B)_x) = \lambda(B) \chi_A(x) \leq \lambda(B) < \infty. \mu(Q_{1y}) \leq \mu((A \times B)_y) = \mu(A) \chi_B(y) \leq \mu(A) < \infty. \text{ Therefore by the}
$$

theorem, (by theorem 2.5(2)). We get,

 $\lambda(Q_{1x}) \rightarrow \lambda(Q_{x}), \mu(Q_{1y}) \rightarrow \mu(Q_{y})$ that is $\Phi_i \rightarrow \Phi, \psi_i \rightarrow \psi$, as $i \rightarrow \infty$ where $\Phi(x) = \lambda(Q_{x}), \psi(y) = \mu(Q_{y}).$ Now { Φ_i } are S-lattice measurable, { ψ_i } are T-lattice measurable. Also, if $g(x) = \lambda ((A \times B)_x)$, $h(y) = \mu ((A \times B)_y)$ then $\Phi_i \le g$, ψ_i \leq h for all i, clearly g is S – lattice measurable and h is T – lattice measurable (by result 3.1).

Therefore by theorem 2.3. Φ is S-lattice measurable and ψ is T-lattice measurable and $\lim_{n\to\infty}\int_{X}$ Φ_n dµ = \int_X Φ dµ, $\lim_{n\to\infty} \int_{Y}$ ψ_n d λ =

 $\int\limits_{\rm Y}$ ψ dλ But \int_{X} Φ_n dµ = $\int\limits_{Y}$ Ψ_n d λ , for every n. Therefore \int_{X} Φ dµ = \int_{Y} $ψ$ d $λ$. Therefore $Q \in K$.

Theorem 3.2: Let (X, S, μ) , (Y, T, λ) be lattice σ - finite measure spaces. Suppose $Q \in S \times T$. If $\Phi(x) = \lambda (Q_x)$, $\psi(y) = \mu (Q_y)$ for all $x \in X$, $y \in Y$ then Φ is S-lattice measurable, ψ is T lattice measurable and \int_{X} Φ dµ = \int_{Y} $ψ$ d $λ$.

Proof. From the hypothesis, we have that μ and λ are positive lattice measures on S and T respectively and X = ∞ $\bigvee_{n=1} X_n$, $\mu(X_n)$ < ∞

 ∞ , Y = $\bigvee_{m=1}^{\infty} Y_m$, $\lambda(Y_m) < \infty$. Since $Q_x \in T$, $Q_y \in S$ we can find $\lambda(Q_x)$ and $\mu(Q_y)$. Let $K = \{Q \in S \times T : \Phi \text{ is } S \text{ -lattice}\}$ measurable, ψ is T-lattice measurable and \int_{X} f d $\mu = \int_{Y}$ ψ d λ }. Define Q_{mn} = Q \land (X_n \times Y_m) (m, n = 1, 2, 3,). Let β = {Q $\in S \times T$: $Q_{mn} \in K$ for all choices of m and n}.

[Since $X =$ ∞ $\bigvee_{n=1} X_n, Y =$ ∞ \vee Y_m, X_n's are disjoint, Y_m's are disjoint, μ (X_n) < ∞ , μ (Y_m) < ∞ for all m, n.] Then from result 3.2 and result 3.4 we get that ß is a monotone class.

(Note that if $\widetilde{Q} \in B$, then $Q \in S \times T$ and $Q_{mn} \in S \times T$ and $Q_{mn} \in K$ for all m, n).

But Q_{mn} 's are disjoint. Also $Q = \vee Q_i$. Therefore $Q \in K$ (by result 3.3) if $Q \in B$ such that $Q_i < Q_{i+1}$ for $i = 1, 2, 3, \ldots$ then $Q_i \in B$ and ∞

hence $\vee Q_i \in K$ (by result 3.2) let $Q = \vee Q_i$. Then $Q_{mn} =$ $\bigvee_{i=1}^{\infty} (Q_i)_{mn}$. As $(Q_i)_{mn} \in K$ for all m, n and since these are disjoint $Q_{mn} \in K$ (by result 3.4). Hence $Q \in B$. A similar argument shows that if $Q_i \in B$ and $Q_i > Q_{i+1}$ i = 1, 2, 3, ... then $\land Q_i \in B$. For this we use result 3.4. We also observe that $Q_i < X \times Y$ implies $Q_i < X_n \times Y_m$. Also $\mu(X_n) < \infty$, $\mu(Y_m) < \infty$. Result 3.1 and result 3.3 shows that B contains all elementary lattices. But $B < S \times T$ (by definition of B). By theorem 2.2. $B = S \times T$. Thus $Q_{mn} \in K$ for all $Q \in S \times T$ T and for all choices of m, n.

As $Q = \vee Q_{mn}$, Q_{mn} being disjoint we get by result 3.3, $Q \in K$.

Therefore for every $Q \in S \times T$ we get Φ is S –lattice measurable and Ψ is T –lattice measurable and \int_{X} Φ dµ = \int_{Y} ψ dλ . Hence

the theorem.

Remark 3.1: Since
$$
\lambda(Q_x) = \int_{Y} \chi_Q(x, y) d\lambda(y)
$$
 ($x \in X$) and $\mu(Q_y) = \int_{X} \chi_Q(x, y) d\mu(x)$ ($y \in Y$)

$$
\int_{X} \Phi d\mu = \int_{Y} \psi d\lambda
$$
 gives $\int_{X} d\mu(x) \int_{Y} \chi_Q(x, y) d\lambda(y) = \int_{Y} d\lambda(y) \int_{X} \chi_Q(x, y) d\mu(x).$

Result 3.5: Let (X, S, μ) and (Y, T, λ) be lattice σ - finite measure spaces. For any $Q \in S \times T$ define m(Q) = \int_{X} $\lambda(Q_X) d\mu(x) =$

 $\int \mu(Q_Y) d\lambda$ (y). Then m is a lattice measure on a lattice σ - algebra S \times T. X

Proof: Clearly m(Q) is in [0, ∞]. Let $\{A_i\}_{i=1}^{\infty}$ be a disjoint countable collection of lattice measurable sets of S \times T. Let A = ∞ $\bigvee_{i=1}$ A_i .

Let $\Phi(x) = \lambda(A_x) = \lambda($ ∞ $\sum_{i=1}^{\infty} A_{i_{x}}$) = $\sum_{i=1}^{\infty}$ $i=1$ $\lambda(A_{i_x}) = \sum^{\infty}$ $i=1$ $\Phi_i(x)$ where $\Phi_i(x) = \lambda(A_{i_x})$. Therefore $\Phi = \sum_{i=1}^{\infty}$ $i=1$ Φ_i . m(A) = \int_{X} $\lambda(A_X) d\mu(x) = \int_X$ Φ dμ $=\int \sum_{n=1}^{\infty}$ $\int_{X} \sum_{i=1}^{\infty} \Phi_i d\mu = \sum_{i=1}^{\infty} \int_{X}$ $\sum_{i=1}^{\infty} \int_{X} \Phi_i d\mu = \sum_{i=1}^{\infty} \int_{X}$ $i=1$ \bar{X} $\lambda(A_{i_x}) d\mu(x)$ $=\sum^{\infty}$ $m(A_i)$.

 $i=1$ Therefore m is a lattice measure on the lattice σ – algebra $S \times T$.

Result 3.6: $\mu \times \lambda$ is lattice σ - finite measure.

Proof: X = ∞ $\underset{i=1}{\vee} X_n, Y =$ ∞ \vee Y_m, X_n's are disjoint, Y_m's are disjoint and μ (X_n) < ∞ , μ (Y_m) < ∞ for all m, n. Obviously X_n \in S and $Y_m \in T$. Therefore $X_n \times Y_m$ is a super lattice measurable set and hence $X_n \times Y_m \in S \times T$ for all m, n. Also $\mu \times \lambda (X_n \times Y_m) =$ $\mu \times \lambda$ (Q) where Q = $X_n \times Y_m = \int_{X}$ $\lambda(Q_X) d\mu(x)$ $=\int\limits_X$ $\lambda(Y_m) \chi_{X_n}(x) d\mu(x) = \lambda(Y_m) \mu(X_n) < \infty$. Since $\lambda(Y_m) < \infty$ and $\mu(X_n) < \infty$, therefore $X \times Y = \bigvee_{m,n} X_n \times Y_m$ and $\mu \times \lambda(X_n \times Y_m) < \infty$ for all m, n. Hence $\mu \times \lambda$ is

lattice σ - finite measure.

Conclusion:

 This manuscript express that the class of super lattice measurable sets is closed under finite unions, countable unions, and countable intersections. It has been ascertained that the product two lattice σ- algebras defined on a product lattice is lattice measurable and the elementary integration of these lattice measurable sets are made equal. Further some characteristics of lattice σfinite measures were acknowledged.

REFERENCES.

[1] D.V.S.R. Anil kumar, J. Venkateswara Rao, E.S.R. Ravi kumar, Characterization of Class of Measurable Borel Lattices, International Journal of Contemporary Mathematical Sciences, Volume 6(2011), no. 9, 439 – 446. [2] D.V.S.R. Anil kumar, J. Venkateswara Rao, J. Pramada (2011), Radon – Nikodym Theorem and its uniqueness of Signed Lattice Measure, International Journal Of Mathematics And Computation, Volume 12, No. S11; pp.19-27. [3] Birkhoff. G (1967), Lattice Theory 3rd ed., AMS Colloquim Publications, Colloguim Publications, Rhode Island, New Delhi. [4] Halmos. P.R (1974), Measure Theory,Springer, New York. [5] J. pramada, J. Venkateshwara rao and D.V.S.R. Anil Kumar, 2011. Characterization of Class of Super Lattice Measurable Sets. Journal of Applied Sciences, 11: 3525-3529. DOI: 10.3923/jas.2011.3525.3529 URL: http://scialert.net/abstract/?doi=jas.2011.3525.3529 $[6]$ Royden. H.L.(1981), Real Analysis, $3rd$ ed., Macmillan Publishing, New York. [7] Rudin, W., 1987. Real and Complex Analysis. $3rd$ Edn. McGraw – Hill, UK. [8] Szasz Gabor(1963), Introduction to lattice theory, academic press, New York and London [9] Tanaka. J(2009), Hahn Decomposition Theorem of Signed Lattice Measure, arXiv:0906.0147Vol1 [Math.CA] 31 May 2009.