CHARACTERIZATION OF LATTICE SIGMA ALGEBRAS ON PRODUCT LATTICES

D.V.S.R. Anil Kumar

Associate Professor in Nizam Institute of Engineering and Technology, Deshmukhi, Nalgonda district Hyderabad, A.P., India. E-mail: <u>anilkumarda ita@yahoo.in</u>

T.Nageswara Rao

Professor in St. Mary's Women's Engineering College, Budampadu, Guntur Rural, Guntur District, A.P., India. E-mail: <u>tnraothota@yahoo.co.in</u>

J. Venkateswara Rao

Professor of Mathematics, Mekelle University, Mekelle, Ethiopia E-mail: venkatjonnalagadda@yahoo.co.in

ABSTRACT:

This manuscript describes that the class of super lattice measurable sets is closed under finite unions, countable unions, and countable intersections. It has been established that the product two lattice σ - algebras defined on a product lattice is lattice measurable and the elementary integration of these lattice measurable sets are equal. Further some characteristics of lattice σ - finite measures were identified.

Key words: Lattice σ - algebra, measure, lattice measure, σ -finite measure

ASM Classification numbers: 03G10, 28A05, 28A12

§1. INTRODUCTION:

In section 2, by Tanaka[9] we define the definition of lattice sigma algebra, lattice measure on a lattice sigma algebra by Anil kumar etrl[1,2] the definition of lattice measurable of the space, lattice measurable set, lattice measure space, lattice σ – finite measure are defined. Here we prove some elementary properties of lattice measurable sets.

Section 2 is devoted to the basic concepts which were making use of in the later text. The rationalization of lattice σ - algebra and lattice measure on lattice σ - algebra were organized. Further a classification of lattice measure space, lattice measurable set, lattice σ - finite measure space, lattice σ - finite measure were prearranged.

Section 3 establishes the results that the class of super lattice measurable sets is closed under finite unions, countable union, countable intersections. Further instituted a theorem that the product two lattice σ - algebras defined on a product lattice is lattice measurable. It has been obtained that the elementary integration of these lattice measurable sets are equal. Finally some characteristics of lattice σ - finite measures were observed.

§2. PRELIMINARIES

This section briefly reviews the well-known facts of Birkhoff's [3] lattice theory. The system (L, \land, \lor) , where L is a non empty set, \land and \lor are two binary operations on L, is called a lattice if \land and \lor satisfies, for any elements x, y, z, in L:(L1) commutative law: $x \land y = y \land x$ and $x \lor y = y \lor x$. (L2) associative law: $x \land (y \land z) = (x \land y) \land z$ and $x \lor (y \lor z) = (x \lor y) \lor z$. (L3) absorption law: $x \lor (y \land x) = x$ and $x \land (y \lor x) = x$. Hereafter, the lattice (L, \land, \lor) will often be written as L for simplicity. A lattice (L, \land, \lor) is called distributive if, for any x, y, z, in L. (L4) distributive law holds: $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ and $x \land (y \lor z) = (x \land y) \lor (x \land z)$. A lattice L is called complete if, for any subset A of L, L contains the supremum $\lor A$ and the infimum $\land A$. If L is complete, then L itself includes the maximum and minimum elements which are often denoted by 1 and 0 or I and O respectively. A distributive lattice is called a Boolean lattice if for any element x in L, there exists a unique complement x^c such that $x \lor x^c = 1$ (L5) the law of excluded middle $x \land x^c = 0$ (L6) the law of non-contradiction.

Let L be a lattice and c: $L \to L$ be an operator. Then c is called a lattice complement in L if the following conditions are satisfied. (L5) and (L6); $\forall x \in L, x \lor x^{c} = 1$ and $x \land x^{c} = 0$,(L7) the law of contrapositive; $\forall x, y \in L, x \le y$ implies $x^{c} \ge y^{c}$,(L8) the law of double negation; $\forall x \in L, (x^{c})^{c} = x$. Throughout this paper, we consider lattices as complete lattices which obey (L1) - (L8) except for (L6) the law of non-contradiction. Unless otherwise stated, X is the entire set and L is a lattice of any subsets of X.

Definition2.1: If a lattice L satisfies the following conditions, then it is called a lattice σ-Algebra;

- (1) $\forall h \in L, h^{c} \in L$
- (2) if $h_n \in L$ for n = 1, 2, 3, then $\bigvee_{n=1}^{\infty} h_n \in L$.

We denote σ (L) = β , as the lattice σ -Algebra generated by L.

Example 2.1: [[4] Halmos (1974)]. 1. $\{\phi, X\}$ is a lattice σ -Algebra.

2. P(X) power set of X is a lattice σ -Algebra.

Example 2.2: Let $X = \Re$ and $L = \{$ measurable subsets of $\Re \}$ with usual ordering (\leq). Here L is a lattice and σ (L) = β is a lattice σ -algebra generated by L.

Example2.3:Let X be any non-empty set, $L = \{All \text{ topologies on } X\}$. Here L is a complete lattice but not σ - algebra.

Example2.4: [[4] Halmos (1974)]. Let $X = \Re$ and $L = \{E < \Re / E \text{ is finite or } E^c \text{ is finite}\}$. Here L is lattice algebra but not lattice σ - algebra.

Definitition2.2: The ordered pair (X, β) is said to be lattice measurable space.

Example2.5: Let $X = \Re$ and $L = \{All Lebesgue measurable sub sets of <math>\Re \}$. Then it can be verified that (\Re, β) is a lattice measurable space.

Definitition2.3: If the mapping μ : $\beta \rightarrow R \cup \{\infty\}$ satisfies the following properties, then μ is called a lattice measure on the lattice σ -Algebra σ (L).

(1) $\mu(\phi) = \mu(0) = 0.$

(2) For all $h, g \in \beta$, such that $\mu(h), \mu(g) \ge 0$ and $h \le g \Longrightarrow \mu(h) \le \mu(g)$.

(3) For all $h, g \in \beta$, $\mu (h \lor g) + \mu (h \land g) = \mu (h) + \mu (g)$.

(4) If $h_n \subset \beta, n \in N$ such that $h_1 \le h_2 \le \dots \le h_n \le \dots$, then $\mu (\bigvee_{n=1}^{\infty} h_n) = \lim \mu(h_n)$.

Note2.1: Let μ_1 and μ_2 be lattice measures defined on the same lattice σ -Algebra β . If one of them is finite, then the set function μ (E) = μ_1 (E) - μ_2 (E), E $\in \beta$ is well defined and is countably additive on β .

Example2.6: [[6]Royden (1981)]: Let X be any set and $\beta = P(X)$ be the class of all sub sets of X. Define for any $A \in \beta$, $\mu(A) = +\infty$ if A is infinite = |A| if A is finite, where |A| is the number of elements in A. Then μ is a countable additive set function defined on β and hence μ is a lattice measure on β .

Definition2.4: A set A is said to be lattice measurable set or lattice measurable if A belongs to β .

Example2.7: [Anilkumar etrl[1,2] 2011] The interval (a, ∞) is a lattice measurable under usual ordering.

Example 2.8: [Anilkumar etrl[1,2] 2011] $[0,1] < \mathfrak{R}$ is lattice measurable under usual ordering. Let $X = \mathfrak{R}$, $L = \{\text{lebesgue measurable subsets of } \mathfrak{R} \}$ with usual ordering (\leq) clearly $\sigma(L)$ is a lattice σ -algebra generated by L. Here [0,1] is a member of $\sigma(L)$. Hence it is a Lattice measurable set.

Example2.9: [Anilkumar etrl[1,2] 2011] Every Borel lattice is a lattice measurable.

Definition 2.5: The lattice measurable space (X, β) together with a lattice measure μ is called a lattice measure space and it is denoted by (X, β , μ).

Example2.10: \Re is a set of real numbers μ is the lattice Lebesgue measure on \Re and β is the family of all Lebesgue measurable subsets of real numbers. Then (\Re , β , μ) is a lattice measure space.

Example2.11: \Re be the set of real numbers and β is the class of all Borel lattices, μ be a lattice Lebesgue measure on \Re then (\Re , β, μ) is a lattice measure space.

Definition2.6: Let (X, β, μ) be a lattice measure space. If $\mu(X)$ is finite then μ is called lattice finite measure. **Example2.12:** The lattice Lebesgue measure on the closed interval [0, 1] is a lattice finite measure. **Example2.13:** When a coin is tossed, either head or tail comes when the coin falls. Let us assume that these are the only possibilities. Let $X = \{H, T\}$, H for head and T for tail. Let $\beta = \{\phi, \{H\}, \{T\}, X\}$. Define the mapping P: $\beta \rightarrow [0, 1]$ by P (ϕ) = 0, P ($\{H\}$) = P ($\{T\}$) = $\frac{1}{2}$, P (X) = 1. Then P is a lattice finite measure on the lattice measurable space (X, β).

Definition2.7: If μ is a lattice finite measure, then (X, β , μ) is called a lattice finite measure space.

Example 2.14: Let β be the class of all Lebesgue measurable sets of [0, 1] and μ be a lattice Lebesgue measure on [0, 1]. Then ([0, 1], β , μ) is a lattice finite measure space.

Definition2.8: Let (X, β, μ) be a lattice measure space. If there exists a sequence of lattices measurable sets $\{x_n\}$ such that

(i) $X = \bigvee_{n=1}^{\infty} X_n$ and (ii) $\mu(X_n)$ is finite then μ is called a lattice σ – finite measure.

Example2.15: The lattice Lebesgue measure on (\mathfrak{R}, μ) is a lattice σ – finite measure since $\mathfrak{R} = \bigvee_{n=1}^{\infty} (-n, n)$ and $\mu((-n, n)) = 2n$ is

finite for every n.

Definition2.9: If μ be a lattice σ – finite measure, then (X, β , μ) is called lattice σ – finite measure space.

Example2.16: Let β be the class of all Lebesgue measurable sets on $\Re = \bigvee_{n=1}^{\infty} (-n, n)$ and μ be a lattice Lebesgue measure on \Re ,

then (\Re , ß, μ) is a lattice $\sigma-$ finite measure space.

Definition 2.10: The lattice measure m defined on $S \times T$ above is called the product of the lattice measures μ and λ and is denoted by $\mu \times \lambda$.

Definition 2.11: Let X and Y be two lattices. Then their Cartesian product denoted by $X \times Y$ is defined as $X \times Y = \{(x, y) | x \in X, y \in Y\}$. It is called product lattice.

Example 2.17: Let L and M be two lattices shown in the figures below

Where $l = (x_2, y_4)$, $d = (x_2, y_2)$, $e = (x_1, y_4)$, $f = (x_2, y_3)$, $a = (x_1, y_2)$, $b = (x_2, y_1)$, $c = (x_1, y_3)$ and $O = (x_1, y_1)$. **Definition 2.12:** If A < X, B < Y then $A \times B < X \times Y$. Any lattice of the form $A \times B$ is called super lattice in $X \times Y$. **Example 2.18:** If $A \subset B$ and $C \subset D$ then $(A \times C) \subset (B \times D)$ Let(x, y) be any element of $A \times C$. Then by definition of product lattice we have

 $x \in A, y \in C$.

But it is given that $A \subset B$ and $C \subset D$.

Therefore $x \in B$ and $y \in D$.

That is (x, y) is an element of $B \times D$. Hence $(A \times C) \subset (B \times D)$.

Remark 2.1: Let (X, S), (Y, T) be lattice measurable spaces.

Then S is a lattice σ - algebra in X and T is a lattice σ - algebra in Y.

Definition 2.13: If $A \in S$ and $B \in T$, then the lattice of the form $A \times B$ is called super lattice measurable set.

Example 2.19: Every member of $S \times T$ is a super lattice measurable set.

Definition 2.14: If $Q = R_1 \lor R_2 \lor \dots \lor R_n$ where each R_i is a super lattice measurable set and $R_i \land R_j = \phi$ for $i \neq j$, then Q

is called elementary lattice. The class of all elementary lattices is denoted by L_E .

Remark 2.2: $S \times T$ is defined to be smallest lattice σ - algebra in $X \times Y$ which contains every super lattice measurable set.

Definition 2.15: If $A_i, B_i \in \sigma(L)$ such that $A_i < A_{i+1}, B_i > B_{i+1}$ for i = 1, 2, 3, ... and $A = \bigvee_{i=1}^{\infty} A_i, B = \bigwedge_{i=1}^{\infty} B_i$, then $A \in \sigma(L)$ and $B = \bigcap_{i=1}^{\infty} A_i$.

 $\in \sigma(L)$. This lattice σ - algebra $\sigma(L)$ is a monotone class.

Example 2.20: $X \times Y$ is a monotone class.

Definition 2.16: Let $E < X \times Y$ where $x \in X$, $y \in Y$. We define x – section lattice of E by $E_x = \{y | (x, y) \in E\}$ and y – section lattice of $E_y = \{x/(x, y) \in E\}$.

Note 2.2: $\dot{E}_x < Y$ and $E_y < X$.

Definition 2.17: [5] Let $\sigma(L)$ be a lattice σ -algebra of sub sets of a set X. A function μ : $\sigma(L) \rightarrow [0, \infty]$ is called a positive lattice measure defined on $\sigma(L)$ if

(1) $\mu(\phi) = 0$

(2) $\mu(\bigvee_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ where $\{A_n\}$ is a disjoint countable collection of members of $\sigma(L)$ and $\mu(A) < \infty$ for at least one A

$$\in \sigma(L)$$
.

Example 2.21: (i) Counting measure: Let X be a non – empty set. Let $\sigma(L) = P(X)$. Define μ : $\sigma(L) \rightarrow [0, \infty]$ by |E| = number of lattice measurable sets in E, if E is finite, ∞ if E is infinite. Then μ is a positive lattice measure on P(X) called the positive lattice counting measure on X.

(ii) Unit mass at x_0 : Let X be a non – empty set. Let $\sigma(L) = P(X)$. Fix $x_0 \in X$.

Define μ : $\sigma(L) \rightarrow [0, \infty]$ by $\mu(E) = 1$ if $x_0 \in E = 0$ if $x_0 \notin E$

then μ is a positive lattice measure on P(X) is called unit measure concentrated at x₀.

Theorem 2.1: [5] If $E \in S \times T$, then $E_x \in T$ and $E_y \in S$ for every $x \in X$ and $y \in Y$.

Theorem 2.2: [5] S \times T is the smallest monotone class which contains all elementary lattices.

Theorem 2.3: [7] Suppose $\{f_n\}$ is a sequence of complex lattice measurable functions on X such that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for every $x \in X$. If there is a function $g \in L^1$ such that $|f_n(x)| \le g(x)$ where $n = 1, 2, 3, \dots, x \in X$,

then (1)
$$f \in L^1$$
 (2) $\lim_{X} \int_{X} |f_n - f| d\mu = 0.$ (3) $\lim_{X} \int_{X} f_n d\mu = \int_{X} f d\mu.$

Theorem 2.4: [7] Let $\{f_n\}$ be a sequence of lattice measurable functions on X such that $0 \le f_1(x) \le f_2(x) \dots \le \infty$ for every $x \in X$ and $f_n(x) \to f(x)$ as $n \to \infty$ for every $x \in X$. Then f is lattice measurable and $\int_{Y} f_n d\mu \to \int_{Y} f d\mu$ as $n \to \infty$.

Result 2.1: [1] First Valuation Theorem: Suppose that $\{E_k\}$ is monotonic increasing sequence of lattice measurable sets and E =

$$\bigvee_{k=1}^{\infty} E_k \text{ then } m(E) = \lim_{n \to \infty} m(E_n).$$

Result 2.2: [1] Second Valuation Theorem: Suppose that $\{E_k\}$ is a monotonic decreasing sequence of lattice measurable sets and E =

 $\bigwedge_{k=1}^{\infty} E_k, \text{ then } m(E) = \lim_{n \to \infty} m(E_n).$

Theorem 2.5: [5] Let μ be a positive lattice measure defined on a lattice σ -algebra $\sigma(L)$. Then μ satisfies first valuation theorem (Result 2.1) and second valuation theorem(Result 2.2) that is

(1) Let
$$A = \bigvee_{n=1}^{n} A_n$$
, $A_n \in \sigma(L)$. Let $A_1 \le A_2$ Then $\mu(A_n) \to \mu(A)$ as $n \to \infty$.

(2) If $A = \bigwedge_{n=1}^{\infty} A_n$, $A_n \in \sigma(L)$ and $A_1 > A_2$ with $\mu(A_1)$ finite. Then $\mu(A_n) \to \mu(A)$ as $n \to \infty$.

§3. CHARACTERIZATION OF LATTICE SIGMA ALGEBRAS ON PRODUCT LATTICES

Definition 3.1: Let f: $X \times Y \rightarrow Z$ is topological space. For each $x \in X$, define $f_x: Y \rightarrow Z$ by $f_x(y) = f(x, y)$. Then f_x is called Y-lattice measurable function. For each $y \in Y$, define $f_y: X \rightarrow Z$ by $f_y(x) = f(x, y)$. Then f_y is called X – lattice measurable function. **Theorem 3.1:** Let f be an (S × T) lattice measurable function on X × Y, Then

1) For each $x \in X$, f_x is a T-lattice measurable function

2) For each $y \in Y$, f_y is a S – lattice measurable function.

Proof. Let V be an open set in Z. Let $Q = \{(x, y) \in X \times Y : f(x, y) \in V\}$

Since f is S × T lattice measurable, $Q \in S \times T$. $Q_x = \{y: (x, y) \in Q\} = \{y: f(x, y) \in V\} = \{y: f_x (y) \in V\}$ By theorem 2.1 $Q_x \in T$. Therefore f_x is a T – lattice measurable function. A similar argument shows that f_y is an S –lattice measurable function.

Result 3.1: If $\Phi(x) = \lambda(Q_x)$, $\psi(y) = \mu(Q_y)$ where $Q_x \in S$ and $Q_y \in T$ for all $x \in X$, $y \in Y$ and $K = \{Q \in S \times T: \Phi \text{ is } S \text{ -lattice measurable}, \psi \text{ is } T \text{ -lattice measurable and } \int f d\mu = \int \psi d\lambda \}$ -----(1). Then every super lattice measurable set belong to K where

K is the class of super lattice measureable set satisfying (1).

Proof. Let $Q = A \times B$, $A \in S$, $B \in T$. Then $Q \in S \times T$. Also, $Q_x = B$ if $x \in A$ $= \phi$ if $x \notin A$ Therefore $\lambda(Q_x) = \lambda(B) \chi_A(x)$.

In a similar way, $Q_y = A$ if $y \in B$ = ϕ if $y \notin B$

 $\mu(Q_y) = \mu(A) \chi_B(y)$

Therefore $\Phi(x) = \lambda(B) \chi_A(x)$, $\psi(y) = \mu(A) \chi_B(y)$. Since $A \in S$, Φ is S-lattice measurable and since $B \in T$, ψ is T-lattice measurable.

Also
$$\int_{X} \Phi \, d\mu = \int_{X} \lambda(B) \chi_{A}(x) \, d\mu = \lambda(B) \, \mu(A)$$
$$\int_{Y} \psi \, d\lambda = \int_{Y} \mu(A) \chi_{B}(y) d\lambda = \mu(A) \, \lambda(B)$$

Therefore $\int_{X} \Phi d\mu = \int_{Y} \psi d\lambda$.

Thus, every super lattice measurable set belongs to K.

Result 3.2: If $Q_1 < Q_2 < \dots Q_n \in K$ and if $Q = \bigvee_{i=1}^{n} Q_i$ then $Q \in K$ (or) finite union of members of K is again a member of K. **Proof:** Since $Q_i \in S \times T$, and since $S \times T$ is a lattice σ - algebra, we get $Q \in S \times T$.

Let $\Phi_i(x) = \lambda(Q_{ix}), \ \psi_i(y) = \mu(Q_{iy})$, then as $Q_i \in K$, we get Φ_i is S – lattice measurable, ψ_i is T – lattice measurable for every i and $\int_X \Phi_i \ d\mu = \int_Y \psi_i \ d\lambda$. Since μ and λ are positive lattice measures, $\lambda(Q_{ix}) \rightarrow \lambda(\bigvee_i Q_{ix})$ and $\mu(Q_{iy}) = \mu(\bigvee_i Q_{iy})$ as $i \rightarrow \infty$. (by theorem 2.5(1)) Since $Q_x = \vee Q_{ix}, Q_y = \vee Q_{iy}$, we get $\lambda(Q_{ix}) \rightarrow \lambda(Q_x)$ and $\mu(Q_{iy}) \rightarrow \mu(Q_y)$, that is $\Phi_i \rightarrow \Phi$ and $\psi_i \rightarrow \psi$ as $i \rightarrow \infty$.

Since $\{\Phi_i\}$ are S-lattice measurable, $\{\Psi_i\}$ are T-lattice measurable (by theorem 2.4), we get that Φ is S-lattice measurable, Ψ is

T-lattice measurable and

$$\int_{X} \Phi_{i} d\mu \rightarrow \int_{X} \Phi d\mu, \int_{Y} \psi_{i} d\lambda \rightarrow \int_{Y} \psi d\lambda. \text{ Since } \int_{X} \Phi_{i} d\mu = \int_{Y} \psi_{i} d\lambda, \text{ for every } i, \text{ we get that } \int_{X} \Phi d\mu = \int_{Y} \psi d\lambda. \text{ Therefore } Q \in K.$$

Result 3.3: If $\{Q_i\}$ is a disjoint countable collection of members of K and if $Q = \bigvee Q_i$ then $Q \in K$. (or) countable union of member of K is again a member of K.

Proof: Let Q_1, Q_2, \ldots, Q_n be n disjoint numbers of K. Let $Q = Q_1 \lor Q_2 \lor \ldots, Q_n$. As $Q_i \in S \lor T$ is a lattice σ - algebra, we get $Q \in S \times T$. Let $\Phi_i(x) = \lambda(Q_{ix})$, $\psi_i(y) = \mu(Q_{iy})$. Then Φ_i 's are S-lattice measurable and ψ_i 's are T-lattice measurable for all

$$i, 1 \le i \le n \text{ and } \int_{X} \Phi_i \ d\mu = \int_{Y} \psi_i \ d\lambda. \ Q_x = \bigvee_{i=1}^n Q_{ix}, \ Q_y = \bigvee_{i=1}^n Q_{iy}. \text{ Let } \Phi(x) = \lambda(Q_x), \ \psi(y) = \mu(Q_y). \text{ Then } \Phi(x) = \lambda(\bigvee_{i=1}^n Q_{ix}) = \sum_{i=1}^n Q_{ix}$$

 $\sum_{i=1}^{n} \lambda(Q_{ix}) \text{ (Therefore } Q_{ix}\text{'s are disjoint) } \Psi(y) = \mu(\bigvee_{i=1}^{n} Q_{iy}) = \sum_{i=1}^{n} \mu(Q_{iy}) \text{ (Therefore } Q_{iy}\text{'s are disjoint) } \text{That is } \Phi(x) = \sum_{i=1}^{n} \Phi_i(x) \text{,}$

 $\psi(y) = \sum_{i=1}^{n} \psi_i(y)$. Therefore $\Phi(x)$ is S –lattice measurable and $\psi(y)$ is T –lattice measurable. Now $\chi_Q = \sum_{i=1}^{n} \chi_{Q_i}$ (Therefore Q is

the disjoint union of Q_i 's). Now $\lambda(Q_x) = \int \chi_Q(x, y) d\lambda(y)$

$$= \int_{Y} \left(\sum_{i=1}^{n} \chi_{Q_{i}}(x, y) \right) d\lambda(y)$$

Therefore $\int_{X} \Phi d\mu = \int_{X} d\mu(x) \int_{Y} \chi_{Q}(x, y) d\lambda(y)$

$$= \int_{X} d\mu(x) \int_{Y} \sum_{i=1}^{n} \chi_{Q_{i}}(x, y) d\lambda(y) = \int_{X} d\mu(x) \left(\sum_{i=1}^{n} \int_{Y} \chi_{Q_{i}}(x, y) d\lambda(y) \right) = \sum_{i=1}^{n} \int_{X} d\mu(x) \int_{Y} \chi_{Q_{i}}(x, y) d\lambda(y) = \sum_{i=1}^{n} \int_{X} \Phi_{i} d\mu = \sum_{i=1}^{n} \int_{Y} \psi_{i} d\lambda$$
 (Since $Q_{i} \in K$) = $\sum_{i=1}^{n} \int_{Y} \psi_{i} d\lambda(y) \int_{X} \chi_{Q_{i}}(x, y) d\mu(x) = \int_{Y} d\lambda(y) \int_{X} \sum_{i=1}^{n} \chi_{Q_{i}}(x, y) d\mu(x) = \int_{Y} d\lambda(y) \int_{X} \chi_{Q}(x, y) d\mu(x)$

$$= \int_{Y} \psi d\lambda$$

Therefore $Q \in K$. Let $Q = \bigvee_{i=1}^{\infty} Q_i$, $Q_i \in K$, Q_i is disjoint. Then $Q_1 < Q_1 \lor Q_2 < \dots < Q_i \lor \dots < Q_n \lor Q_n$. Let $Q_1 = w_1, Q_1 = w_1, Q_1 = w_1$. $\vee Q_2 = w_2, \dots, Q_1 \vee \dots, Q_n = w_n$ etc. Then w_1, w_2, \dots, w_n ... are in K. (Since they are finite union of disjoint members of K). Also $w_1 < w_2 < \dots < w_n < \dots$ and $Q = \bigvee_{i=1}^{\infty} w_i$. Hence by result 2, $Q \in K$.

Result 3.4: If $\mu(A) < \infty$ and $\lambda(B) < \infty$, and if $A \times B > Q_1 > Q_2 > Q_3 \dots Q_1 = \bigwedge_{i=1}^{\infty} Q_i$, $Q_i \in K$ for every i, then $Q \in K$ (or) countable intersection of members of K is again a member of K.

Proof: Since $Q_i \in K$, and since $S \times T$ is a lattice σ - algebra, we get $Q = \bigwedge_{i=1}^{\infty} Q_i \in S \times T$. Let $\Phi_i(x) = \lambda(Q_{ix}), \psi_i(y) = \mu(Q_{iy})$. Then as $Q_i \in K$, we get, Φ_i is a S-lattice measurable and ψ_i is a T-lattice measurable for every i and $\int \Phi_i d\mu = \int \psi_i d\lambda$. Now

 μ and λ are positive lattice measures. Also A \times B > Q₁ > Q₂ >.....

$$\lambda(Q_{1x}) \le \lambda((A \times B)_x) = \lambda(B) \ \chi_A(x) \le \lambda(B) < \infty. \ \mu(Q_{1y}) \le \mu((A \times B)_y) = \mu(A) \ \chi_B(y) \le \mu(A) < \infty.$$
 Therefore by the 34

theorem, (by theorem 2.5(2)). We get,

 $\lambda(Q_{1x}) \rightarrow \lambda(Q_x), \ \mu(Q_{1y}) \rightarrow \mu(Q_y)$ that is $\Phi_i \rightarrow \Phi, \ \psi_i \rightarrow \psi$, as $i \rightarrow \infty$ where $\Phi(x) = \lambda(Q_x), \ \psi(y) = \mu(Q_y)$. Now $\{\Phi_i\}$ are S-lattice measurable, $\{\psi_i\}$ are T-lattice measurable. Also, if $g(x) = \lambda((A \times B)_x), \ h(y) = \mu((A \times B)_y)$ then $\Phi_i \leq g, \ \psi_i \leq h$ for all i, clearly g is S-lattice measurable and h is T-lattice measurable (by result 3.1).

Therefore by theorem 2.3. Φ is S-lattice measurable and ψ is T-lattice measurable and $\lim_{n \to \infty} \int_{V} \Phi_n d\mu = \int_{V} \Phi d\mu$, $\lim_{n \to \infty} \int_{V} \psi_n d\lambda =$

 $\int_{Y} \psi \, d\lambda \, \text{But} \, \int_{X} \Phi_n \, d\mu = \int_{Y} \psi_n \, d\lambda, \text{ for every n. Therefore } \int_{X} \Phi \, d\mu = \int_{Y} \psi \, d\lambda.$ Therefore $Q \in K$.

Theorem 3.2: Let (X, S, μ) , (Y, T, λ) be lattice σ - finite measure spaces. Suppose $Q \in S \times T$. If $\Phi(x) = \lambda(Q_x)$, $\psi(y) = \mu(Q_y)$ for all $x \in X, y \in Y$ then Φ is S-lattice measurable, ψ is T lattice measurable and $\int_X \Phi d\mu = \int_Y \psi d\lambda$.

Proof. From the hypothesis, we have that μ and λ are positive lattice measures on S and T respectively and $X = \bigvee_{n=1}^{\infty} X_n$, $\mu(X_n) < \infty$

 $\infty, Y = \bigvee_{m=1}^{\infty} Y_m, \ \lambda(Y_m) < \infty.$ Since $Q_x \in T, Q_y \in S$ we can find $\lambda(Q_x)$ and $\mu(Q_y)$. Let $K = \{Q \in S \times T : \Phi \text{ is } S \text{ -lattice measurable}, \psi \text{ is } T \text{ -lattice measurable and } \int_X f \ d\mu = \int_Y \psi \ d\lambda \}$. Define $Q_{mn} = Q \land (X_n \times Y_m) \ (m, n = 1, 2, 3, \dots)$. Let $\beta = \{Q \in S \times T : Q_{mn} \in K \text{ for all choices of m and } n\}$.

[Since $X = \bigvee_{n=1}^{\infty} X_n$, $Y = \bigvee_{m=1}^{\infty} Y_m$, X_n 's are disjoint, Y_m 's are disjoint, $\mu(X_n) < \infty$, $\mu(Y_m) < \infty$ for all m, n.] Then from result 3.2 and result 3.4 we get that β is a monotone class.

(Note that if $\overline{Q} \in \beta$, then $Q \in S \times T$ and $Q_{mn} \in S \times T$ and $Q_{mn} \in K$ for all m, n).

But Q_{mn} 's are disjoint. Also $Q = \bigvee Q_i$. Therefore $Q \in K$ (by result 3.3) if $Q \in \beta$ such that $Q_i < Q_{i+1}$ for i = 1, 2, 3, ... then $Q_i \in \beta$ and ∞

hence $\lor Q_i \in K$ (by result 3.2) let $Q = \lor Q_i$. Then $Q_{mn} = \bigvee_{i=1}^{\infty} (Q_i)_{mn}$. As $(Q_i)_{mn} \in K$ for all m, n and since these are disjoint $Q_{mn} \in K$ (by result 3.4). Hence $Q \in \beta$. A similar argument shows that if $Q_i \in \beta$ and $Q_i > Q_{i+1}$ i = 1, 2, 3,.... then $\land Q_i \in \beta$. For this we use result 3.4. We also observe that $Q_i < X \times Y$ implies $Q_i < X_n \times Y_m$. Also $\mu(X_n) < \infty$, $\mu(Y_m) < \infty$. Result 3.1 and result 3.3 shows that β contains all elementary lattices. But $\beta < S \times T$ (by definition of β). By theorem 2.2. $\beta = S \times T$. Thus $Q_{mn} \in K$ for all $Q \in S \times T$ and for all choices of m, n.

As $Q = \lor Q_{mn}$, Q_{mn} being disjoint we get by result 3.3, $Q \in K$.

Therefore for every $Q \in S \times T$ we get Φ is S-lattice measurable and ψ is T-lattice measurable and $\int_X \Phi \, d\mu = \int_Y \psi \, d\lambda$. Hence

the theorem.

Remark 3.1: Since
$$\lambda(Q_x) = \int_Y \chi_Q(x, y) d\lambda(y) \ (x \in X) \text{ and } \mu(Q_y) = \int_X \chi_Q(x, y) d\mu(x) \ (y \in Y)$$

$$\int_X \Phi d\mu = \int_Y \psi d\lambda \text{ gives } \int_X d\mu(x) \int_Y \chi_Q(x, y) d\lambda(y) = \int_Y d\lambda(y) \int_X \chi_Q(x, y) d\mu(x).$$

Result 3.5: Let (X, S, μ) and (Y, T, λ) be lattice σ - finite measure spaces. For any $Q \in S \times T$ define $m(Q) = \int_X \lambda(Q_X) d\mu(x) = \int \mu(Q_Y) d\lambda$ (y). Then m is a lattice measure on a lattice σ - algebra $S \times T$.

Proof: Clearly m(Q) is in $[0, \infty]$. Let $\{A_i\}_{i=1}^{\infty}$ be a disjoint countable collection of lattice measurable sets of S × T. Let $A = \bigvee_{i=1}^{\infty} A_i$.

Let $\Phi(x) = \lambda(A_x) = \lambda(\bigvee_{i=1}^{\infty} A_{i_x}) = \sum_{i=1}^{\infty} \lambda(A_{i_x}) = \sum_{i=1}^{\infty} \Phi_i(x)$ where $\Phi_i(x) = \lambda(A_{i_x})$. Therefore $\Phi = \sum_{i=1}^{\infty} \Phi_i$. $m(A) = \int_X \lambda(A_X) d\mu(x) = \int_X \Phi d\mu$ $= \int_X \sum_{i=1}^{\infty} \Phi_i d\mu = \sum_{i=1}^{\infty} \int_X \Phi_i d\mu = \sum_{i=1}^{\infty} \int_X \lambda(A_{i_x}) d\mu(x)$ $= \sum_X m(A_i)$.

Therefore m is a lattice measure on the lattice σ – algebra S × T. **Result 3.6:** $\mu \times \lambda$ is lattice σ - finite measure.

Proof: $X = \bigvee_{i=1}^{\infty} X_n$, $Y = \bigvee_{i=1}^{\infty} Y_m$, X_n 's are disjoint, Y_m 's are disjoint and $\mu(X_n) < \infty$, $\mu(Y_m) < \infty$ for all m, n. Obviously $X_n \in S$ and $Y_m \in T$. Therefore $X_n \times Y_m$ is a super lattice measurable set and hence $X_n \times Y_m \in S \times T$ for all m, n. Also $\mu \times \lambda (X_n \times Y_m) = \mu \times \lambda(Q)$ where $Q = X_n \times Y_m = \int_X \lambda(Q_X) d\mu(x)$ $= \int_X \lambda(Y_m) \chi_{X_n}(x) d\mu(x) = \lambda(Y_m) \mu(X_n) < \infty$. Since $\lambda(Y_m) < \infty$ and $\mu(X_n) < \infty$, therefore $X \times Y = \bigvee_{m \in N} X_n \times Y_m$ and $\mu \times \lambda(X_n \times Y_m) < \infty$ for all m, n. Hence $\mu \times \lambda$ is

lattice σ - finite measure.

Conclusion:

This manuscript express that the class of super lattice measurable sets is closed under finite unions, countable unions, and countable intersections. It has been ascertained that the product two lattice σ - algebras defined on a product lattice is lattice measurable and the elementary integration of these lattice measurable sets are made equal. Further some characteristics of lattice σ -finite measures were acknowledged.

REFERENCES.

[1] D.V.S.R. Anil kumar, J. Venkateswara Rao, E.S.R. Ravi kumar, Characterization of Class of Measurable Borel Lattices, International Journal of Contemporary Mathematical Sciences, Volume 6(2011), no. 9, 439 – 446. [2] D.V.S.R. Anil kumar, J. Venkateswara Rao, J. Pramada (2011), Radon – Nikodym Theorem and its uniqueness of Signed Lattice Measure, International Journal Of Mathematics And Computation, Volume 12, No. S11; pp.19-27. [3] Birkhoff. G (1967), Lattice Theory 3rd ed., AMS Colloquim Publications, Colloguim Publications, Rhode Island, New Delhi. [4] Halmos. P.R (1974), Measure Theory, Springer, New York. [5] J. pramada, J. Venkateshwara rao and D.V.S.R. Anil Kumar, 2011. Characterization of Class of Super Lattice Measurable Sets. Sciences. Journal of Applied 11: DOI: 10.3923/jas.2011.3525.3529 3525-3529. URL: http://scialert.net/abstract/?doi=jas.2011.3525.3529 [6] Royden. H.L.(1981), Real Analysis, 3rd ed., Macmillan Publishing, New York. [7] Rudin, W., 1987. Real and Complex Analysis. 3rd Edn. McGraw-Hill, UK. [8] Szasz Gabor(1963), Introduction to lattice theory, academic press, New York and London [9] Tanaka. J(2009), Hahn Decomposition Theorem of Signed Lattice Measure, arXiv:0906.0147Vol1 [Math.CA] 31 May 2009.