International Journal of Mathematical Engineering and Science ISSN : 2277-6982 Volume 1 Issue 4 (April 2012) http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

On Completely g^µb –irresolute Functions in supra topological spaces

M.TRINITA PRICILLA¹ and LAROCKIARANI² ¹Assistant Professor, Department of Mathematics Jansons Institute of Technology, Coimbatore-641659 abishai_kennet@yahoo.in ²Associate Professor, Department of Mathematics NirmalaCollege for Women Coimbatore-641 018.

Abstract. The focus of this paper is to formulate the notion of completely $g^{\mu}b$ -irresolute function which is a stronger form of $g^{\mu}b$ -irresolute function in supra topological spaces. Further the class of $g^{\mu}b$ -closed sets are utilized to define the applications namely strongly $g^{\mu}b$ -normal space, strongly $g^{\mu}b$ -regular space, mildly $g^{\mu}b$ -regular spaces and some of their characterizations are obtained.

Keywords: Completely $g^{\mu}b$ -irresolute function, strongly $g^{\mu}b$ -normal space, strongly $g^{\mu}b$ -regular space, mildly $g^{\mu}b$ -regular space.

1 Introduction

In 1970, Levine [7] introduced the concept of generalized closed sets in topological space and a class of topological spaces called T spaces. Extensive research on generalizing closedness was done in recent years by many Mathematicians [3, 4, 7, 8, and 9]. In 1972, Grossley and Hildebrand[4] introduced the notion of irresoluteness. Further many different forms of irresolute functions have been developed over the years. Andrijevic [2] defined a new class of generalized open sets in a topological space, the so-called bopen sets.

The notion of supra topological spaces, S-S continuous functions and S^{*} - continuous functions was initiated by A.S.Mashhour et al [9] in 1983. In 2010, O.R.Sayed and Takashi Noiri [11] formulate the concept of supra b open sets and supra b - continuity on topological spaces. In this paper, we present and characterize the concepts of completelyg^µb-irresolute functions. As applications some new classes of spaces namely strongly g^µb-regular space, mildly g^µb-regular spaces are established to derive their properties. Also some related properties of these functions are analyzed.

2. PRELIMINARIES

Definition: 2.1 [7]

A subclass $\tau^* \subset P($ is called a supra topology on X if $X \in \tau^*$ and τ^* is closed under arbitrary union. (X, τ^*) is called a supra topological space (or supra space). The members of τ^* are called supra open sets.

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 4 (April 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

Definition: 2.2 [7]

The supra closure of a set A is defined as $cl^{\mu}(A) = \bigcap \{B : B \text{ is sup } ra \text{ closed and } A \subseteq B\}$

The supra interior of a set A is defined as $Int^{\mu}(A) = \bigcup \{B : B \text{ is } \sup ra \text{ open and } A \supseteq B\}$

Definition: 2.3[3]

Let (X, μ) be a supra topological space. A set A of X is called supra generalized b - closed set (simply $g^{\mu}b$ - closed) if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open. The complement of supra generalized b - closed set is supra generalized b - open set.

Definition: 2.4[13]

A Subset A of (X, μ) is said to be supra regular open if $A = Int^{\mu}(Cl^{\mu}(A))$ and supra regular closed if $A = cl^{\mu}(Int^{\mu}(A))$.

Definition: 2.5 [11]

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $g^{\mu} b$ -continuous if $f^{-1}(V)$ is $g^{\mu} b$ - closed in (X, τ) for every supra closed set V of (Y, σ) .

Definition: 2.6 [11]

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $g^{\mu}b$ -irresolute if $f^{-1}(V)$ is $g^{\mu}b$ - closed in (X, τ) for every $g^{\mu}b$ - closed set V of (Y, σ) .

Definition: 2.7[11]

A map $f: (X, \tau) \to (Y, \sigma)$ is said to be M- $g^{\mu}b$ -closed map if the image f(A) is $g^{\mu}b$ -closed in (Y, σ) for every $g^{\mu}b$ -closed set A in (X, τ) .

3. Characterizations of completely g^{μ} b-irresolute Functions Definition: 3.1

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be completely g^µb-irresolute if $f^{-1}(V)$ is regular^µ open in (X, τ) for every g^µb-open set V in (Y, σ) .

Definition: 3.2

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be completely^µcontinuous if $f^{-1}(V)$ is regular^µ open in (X, τ) for every supra -open set V in (Y, σ) .

Definition: 3.3

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be completely $g^{\mu}b$ continuous if $f^{-1}(V)$ is supra open in (X, τ) for every $g^{\mu}b$ - open set V in (Y, σ) .

Theorem: 3.4

- (i) Every completely $g^{\mu}b$ -irresolute function is $g^{\mu}b$ -irresolute.
- (ii) Every completely $g^{\mu}b$ -irresolute function is $g^{\mu}b$ -continuous.

International Journal of Mathematical Engineering and Science

ISSN : 2277-6982	Volume 1 Issue 4 (April 2012)
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/

- (iii) Every completely^{μ} continuous function is g^{μ}b-continuous.
- (iv) Every completely^{μ} continuous function is completely g^{μ}b-irresolute.
- (v) Every completely g^µb-irresolute function is completely g^µb continuous.

Proof: It is obvious.

Remark: 3.4

The converse of the theorem need not be true as shown by the following example

Example: 3.5

Let X = {a b,c}; $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ Define $f: (X, \tau) \to (X, \tau)$ be an identity function. Here f is both g^µb-irresolute and g^µb-continuous functions. But $f^{-1}\{a\} = \{a\}$ is not regular^µ -closed. Therefore f is not completely g^µ b-irresolute.

Theorem: 3.6

A function $f: (X, \tau) \to (Y, \sigma)$ is completely g[#]b-irresolute if the inverse image of each g[#]b-closed set is regular[#] closed in (X, τ) .

Proof: Let V be $g^{\mu}b$ -closed in (Y, σ) . Then Y - V is $g^{\mu}b$ -open in Y. By hypothesis, $f^{-1}(Y - V)$ is regular^{μ} open in X implies $X - f^{-1}(V)$ is regular^{μ} open in X. That is, $f^{-1}(V)$ is regular^{μ} closed in X. Hence f is completely $g^{\mu}b$ irresolute.

Theorem: 3.7

The following are equivalent for a function $f: (X, \tau) \rightarrow (Y, \sigma)$.

- 1. f is completely $g^{\mu}b$ -irresolute
- 2. For each $x \in X$ and each g^{μ} b-open set Vof Y containing f(x), there exists a regular^{μ}-open set U in X containing x such that $f(U) \subset V$.
- 3. $f^{-1}(V)$ is regular^µ-open in X for every g^{μ} b-open set Vof Y.

4. $f^{-1}(F)$ is regular^{μ}-closed in X for every g^{μ} b-closedset Fof Y. Proof: It is obvious.

Theorem: 3.8

The following hold for function $f: (X, \tau) \to (Y, \sigma)$ and

$$g:(Y,\sigma) \to (Z,\gamma)$$

- (a) If f is completely $g^{\mu}b$ -irresolute and g is $g^{\mu}b$ -continuous then $g \circ f: (X, \tau) \to (Z, \gamma)$ is completely^{μ} continuous function.
- (b) If f is completely $g^{\mu}b$ -irresolute and g is $g^{\mu}b$ -irresolute then $g \circ f: (X, \tau) \to (Z, \gamma)$ is completely $g^{\mu}b$ -irresolute function.
- (c) If f is completely^µ continuous and g is completely $g^{\mu}b$ -irresolute then $g \circ f: (X, \tau) \to (Z, \gamma)$ is completely $g^{\mu}b$ -irresolute function.

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 4 (April 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

Proof: Straight forward.

Theorem: 3.9

If a mapping $f: (X, \tau) \to (Y, \sigma)$ is M-g^µb-closed then for each subset B of Y and each g^µb-open set U of X containing $f^{-1}(B)$ there exists g^µb-open set V in Y containing B such that $f^{-1}{V} \subset U$.

Proof: Let B be a subset of Y and U be $g^{\mu}b$ -open set of X such that $f^{-1}\{B\} \subset U$. Then Y - f(X - U) = V is $g^{\mu}b$ -open set of Y containing B such that $f^{-1}\{V\} \subset U$.

4. Applications

Definition: 4.1

A space X is said to be almost $^{\mu}$ -connected (resp.g^{μ}b-connected)if there does not exist disjoint regular $^{\mu}$ open (resp.g^{μ}b-open) sets A and B such that $A \cup B = X$.

Definition: 4.2

A space X is said to be r^{μ} -disconnected if there exists two regular^{μ}-open sets R and W such that $X = R \cup W$ and $R \cap W = \phi$ Otherwise X is called r^{μ} -connected.

Theorem: 4.3

If X is r^{μ} -connected space and $f: (X, \tau) \to (Y, \sigma)$ is completely g^{μ} b-irresolute surjection, then Y is g^{μ} b-connected.

Proof: Suppose Y is not $g^{\mu}b$ -connected then there exist non-empty $g^{\mu}b$ -open sets H_1 and H_2 in Y such that $H_1 \cap H_2 = \phi$ and $Y = H_1 \cup H_2$. Since f is completely $g^{\mu}b$ -irresolute function, we have $f^{-1}(H_1) \cap f^{-1}(H_2) = \phi$ and

 $X = f^{-1}(H_1) \cup f^{-1}(H_2)$. Since f is surjection $f^{-1}(Hj) = \phi$ and

 $f^{-1}(Hj) \in R^{\mu}o(X)$ for j=1,2. This implies X is not r^{μ} -connected which is a contradiction.

Definition: 4.4

A supra topological space X is said to be $g^{\mu}b$ -regular($almost^{\mu}regular$) if

for each supra closed(resp. regular $^{\mu}$ closed) set F of X and each $x \notin F$, there exist disjoint g^µb -open(resp.supra open) sets U and V such that $x \in U$ and $F \subset V$.

Definition: 4.5

A space X is called strongly $g^{\mu}b$ -regular if for each $g^{\mu}b$ -closed subsets F and each point $x \notin F$, there exists disjoint $g^{\mu}b$ -open sets U and V in X such that $x \in U$ and $F \subset V$.

International Journal of Mathematical Engineering and ScienceISSN : 2277-6982Volume 1 Issue 4 (April 2012)http://www.ijmes.com/https://sites.google.com/site/ijmesjournal/

Definition: 4.6

A space X is called mildly $g^{\mu}b$ -regular if for each regular^{μ}-closed subset F and every point $x \notin F$, there exists disjoint $g^{\mu}b$ -open sets U and V in X such that $x \in U$ and $F \subset V$.

Theorem: 4.7

- (i) If f is completely g^{μ} b-irresolute, g^{μ} b-open from an $g^{\mu}b$ -regular space X onto a space Y, then Y is strongly g^{μ} b-regular.
- (ii) If f is completely g^{μ} b-irresolute, g^{μ} b-open from an almost ${}^{\mu}$ regular space X onto a space Y, then Y is strongly g^{μ} b-regular.

Proof: (i)Let F be $g^{\mu}b$ -closed set of Y and let $y \notin F$. Take y = f(x). Since f is completely $g^{\mu}b$ -irresolute $f^{-1}(F)$ is regular^{μ}-closed and so supra closed in X and $x \notin f^{-1}(F)$. By almost regularity of X, there exists disjoint $g^{\mu}b$ -open sets U and V such that $x \in U$ and $f^{-1}(F) \subset V$. We obtain that $y = f(x) \in f(U)$ and $F \subset f(V)$ such that f(U) and f(V) are disjoint $g^{\mu}b$ -open sets. Thus, Y is strongly $g^{\mu}b$ -regular. (ii)It is similar to (i)

Theorem: 4.8

If $f: (X, \tau) \to (Y, \sigma)$ is completely $g^{\mu}b$ -irresolute, M- $g^{\mu}b$ -closed injection of a mildly $g^{\mu}b$ -regular space onto a space Y, then Y is strongly $g^{\mu}b$ -regular space.

Proof: Let F be g^µb-closed subset of Y and let $y \notin F$. Then $f^{-1}(F)$ is regular^µclosed subset of X such that $f^{-1}(y) = x \notin f^{-1}(F)$. Since X is mildly g^µb-regular space, there exists disjoint g^µb-open sets U and V in X such that

 $f^{-1}(y) \in U$ and $f^{-1}(F) \subset V$. By theorem 3.15, there exists g^{μ} b-open sets G = Y - f(X - U) such that $f^{-1}(G) \subset U$, $y \in G$ and H = Y - f(X - V) such that $f^{-1}(H) \subset V, F \subset H$.

Clearly G and H are disjoint g^µb-open subsets of Y. Hence Y is strongly g^µb-regular. **Definition: 4.9**

A space X is said to be strongly $g^{\mu}b$ -normal (resp. mildly $g^{\mu}b$ -normal) if for each pair of distinct $g^{\mu}b$ -closed (resp.regular^{μ}-closed)sets A and B of X, there exist distinct $g^{\mu}b$ -open sets U and V such that $A \subset U$ and $B \subset V$.

Definition: 4.10

A space X is said to be almost^{μ}-normal if for each regular^{μ}-closed sets A and B such that $A \cap B = \phi$, there exist supra open sets U and V such that $A \subset U$ and $B \subset V$.

Theorem: 4.11

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 4 (April 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

If $f: (X, \tau) \to (Y, \sigma)$ is completely g^µb-irresolute, M-g^µb-closed function from a mildly g^µb-normal space X onto a space Y, then Y is strongly g^µb-normal.

Proof: Let A and B be two disjoint $g^{\mu}b$ -closed subsets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint regular^{μ}-closed subsets of X. Since X is mildly $g^{\mu}b$ -normal space, there exists disjoint $g^{\mu}b$ -open set U and V in X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Then by theorem 3.15, G = Y - f(X - U)

and H = Y - f(X - V) such that $A \subset G$, $f^{-1}(G) \subset U$ $B \subset H$, $f^{-1}(H) \subset V$. Clearly G and H are disjoint g^{ib}-open subsets of Y. Hence Y is strongly g^{ib}-normal. **Theorem: 4.12**

If f is completely $g^{\mu}b$ -irresolute, $g^{\mu}b$ -open from an almost^{μ}normal space X onto a space Y, then Y is strongly $g^{\mu}b$ -normal.

Proof: Let A and B be two disjoint g^{μ} b-closed subsets in Y. Since f is completely g^{μ} b-irresolute $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint regular^{μ}-closed and so supra closed in X. By almost^{μ} normality of X, there exists disjoint supra open sets U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. We obtain that $A \subset f(U)$ and $B \subset f(V)$ such that f(U) and f(V) are disjoint g^{μ} b-open sets. Thus, Y is

Definition: 4.13

strongly g^µb-normal.

A space (X, τ) is said to be $g^{\mu}b-T_0$ (resp.r^{μ} - T_0) if for each pair of distinct points x and y of X there exists $g^{\mu}b$ -open(resp.regular^{μ}-open)set U such that either $x \in U, y \in X \setminus U$ or $y \in U, x \in X \setminus U$.

Definition: 4.14

A space (X, τ) is said to be $g^{\mu}b \cdot T_1$ (resp.r^{μ} - T_1) if for each pair of distinct points x and y of X there exists $g^{\mu}b$ -open(resp.regular^{μ}-open)sets U_1 and U_2 such that $x \in U_1$, $y \in U_2$, $x \notin U_2$ and $y \notin U_1$.

Definition: 4.15

A space X is said to be $g^{\mu}b$ -Hausdorff (resp.r^{μ} - T_2) if for any $x, y \in X, x \neq y$, there exist $g^{\mu}b$ -open(resp.regular^{μ}-open) sets G and H such that $x \in G, y \in H$ and $G \cap H = \phi$.

Theorem: 4.16

Let $f: (X, \tau) \to (Y, \sigma)$ be injective and completely g^µb-irresolute function. If Y is g^µb-Hausdorff space, then X is r^µ - T₂.

Proof: Let x and y be any two distinct points of X. Since f is injective, $f(x) \neq f(y)$. Since Y is g^µb-Hausdorff space there exists disjoint g^µb-

International Journal of Mathematical Engineering and ScienceISSN : 2277-6982Volume 1 Issue 4 (April 2012)http://www.ijmes.com/https://sites.google.com/site/ijmesjournal/

open sets G and H such that $f(x) \in G$ and $f(y) \in H$. Since f is completely g^ubirresolute function it follows that $f^{-1}(G), f^{-1}(H)$ are disjoint regular^µ-open sets containing x and y respectively. Hence X is $r^{\mu} - T_2$.

Theorem: 4.17

If $f: (X, \tau) \to (Y, \sigma)$ is completely gth-irresolute injective function and Y is gth- T_1 , then X is rth- T_1 .

Proof: Let x, y be distinct points of X. Since Y is $g^{\mu}b - T_1$, there exists $g^{\mu}b$ -open sets F_1 and F_2 of Y such that $f(x) \in F_1, f(y) \in F_2; f(x) \notin F_2, f(y) \notin F_1$. Since f is injective completely $g^{\mu}b$ -

irresolute function we have $x \in f^{-1}(F_1), y \in f^{-1}(F_2)$,

 $x \notin f^{-1}(F_2), y \notin f^{-1}(F_1)$. Hence X is $r^{\mu} - T_1$.

Theorem: 4.18

If $f: (X, \tau) \to (Y, \sigma)$ is completely g^{μ} b-irresolute injective function and Y is g^{μ} b-hausdorff, then X is $r^{\mu} - T_2$.

Proof: Let x, y be distinct points of X. Then $f(x) \neq f(y) \in Y$. Since Y is g^µb-hausdorff there exists g^µb-open sets U and V such that $f(x) \in U, f(y) \in V$. Since f is completely g^µb-irresolute, $f^{-1}(U), f^{-1}(V)$ are regular^µ-open such that $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$, $f^{-1}(V) = \phi$. Hence X is r^µ - T₂. Proof for (ii) and (iii) is similar to (i)

 $f^{-1}(U) \cap f^{-1}(V) = \phi$. Hence X is $r^{\mu} - I_2$. Proof for (ii) and (iii) is sir **Theorem: 4.19**

- (i) If $f:(X,\tau) \to (Y,\sigma)$ is completely g^{μ} b-irresolute injective function and Y is g^{μ} b-hausdorff, then X is g^{μ} b $-T_2$.
- (ii) If $f:(X,\tau) \to (Y,\sigma)$ is completely g^{μ} b-irresolute injective function and Y is g^{μ} b-hausdorff, then X is supra $-T_2$.

Proof: Similar to theorem 4.18.

Definiton: 4.20

A supra topological space X is said to be

- (i) nearly $^{\mu}$ compact if every regular $^{\mu}$ open cover of x has a finite subcover;
- (ii) nearly countably ^µ compact if every countable cover by regular ^µ open sets has a finite subcover;
- (iii) nearly^µ Lindelof if every cover of X by regular^µ open sets has a countable subcover;
- (iv) $g^{\mu}b$ -compact if every $g^{\mu}b$ -open cover of X has a finite subcover;
- (v) countably $g^{\mu}b$ -compact if every $g^{\mu}b$ -open countable cover of X has a finite

International Journal of Mathematical Engineering and Science ISSN : 2277-6982 Volume 1 Issue 4 (April 2012) http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

subcover;

(vi) $g^{\mu}b$ -Lindelof if every cover of X by $g^{\mu}b$ -open sets has a countable subcover.

Theorem: 4.21

Let $f:(X,\tau) \to (Y,\sigma)$ be a completely $g^{\mu}b$ -irresolute surjective function. Then the following statements hold:

- (i) If X is nearly $^{\mu}$ compact, then Y is g^{μ}b-compact.
- (ii) If X is nearly $^{\mu}$ Lindelof, then Y is g^{μ}b-Lindelof.

Proof: (i) Let $f:(X,\tau) \to (Y,\sigma)$ be a completely g^µb-irresolute function of nearly^µ compact space X onto a space Y. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any g^µb-open cover of Y. Then, $\{f^{-1}(U_{\alpha}) : \alpha \in \Delta\}$ is a regular^µ open cover of X. Since X is nearly^µ compact, there exists a finite subfamily, $\{f^{-1}(U_{\alpha}) : i = 1, 2...n\}$ of

 $\{f^{-1}(U_{\alpha}): \alpha \in \Delta\}$ which cover X. It follows then that $\{U_{\varepsilon_i}; i = 1, 2...n\}$ is a finite subfamily of $\{U_{\alpha}: \alpha \in \Delta\}$ which cover Y. Hence, the space Y is g^{ib}-compact

finite subfamily of $\{U_{\alpha} : \alpha \in \Delta\}$ which cover Y. Hence, the space Y is g'b-compact space.

Definition: 4.22

A supra topological space X is said to be

- (i) S^{μ} -closed (resp.g^{μ}b-closed compact) if every regular $^{\mu}$ closed (resp.g^{μ}b-closed) cover of X has a finite subcover;
- (ii) Countably S^µ-closed-compact(resp. countablyg^µb-closed compact) if every countable cover of X by regular ^µ closed (resp.g^µb-closed) sets has a finite subcover;
- (iii) S^µ -Lindelof (resp.g^µb-closed Lindelof) if every cover of X by regular closed (resp.g^µb-closed) sets has a countable subcover.

Theorem: 4.23

Let $f: (X, \tau) \to (Y)$ be a completely g^µb-irresolute surjective function. Then the following statements hold:

- (i) If X is S^{μ}-closed, then Y is g^{μ}b-closed compact.
- (ii) If X is S^{μ} -Lindelof, then Y is g^{μ}b-closed Lindelof.
- (iii) If X is Countably S^{μ} -closed, then Y is countablyg^{μ}b-closed compact.

Proof: Similar to theorem 4.19.

REFERENCES:

[1] M.E. Abd E1 – Monsef, S.N. E1 – Deeb and R.A. Mahmoud, β -open sets

International Journal of Mathematical Engineering and ScienceISSN : 2277-6982Volume 1 Issue 4 (April 2012)http://www.ijmes.com/https://sites.google.com/site/ijmesjournal/

- and β continuous mappings. Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] D.Andrijevic, on b-open sets, Mat. Vesnik48(1996), no.1-2, 59-64
- [3] I. Arockiarani and M.Trinita Pricilla, On Supra generalized b-closed sets,
- Antarctica Journal of Mathematics, Volume 8(2011). [4]S.G.Crossley and S.K Hildebrand, Semitopological
- properties,Fund.Math.,74(1972),233-254.
- [5] J.Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 16(1995), 35-48.
- [6] P.E.Longand L.L.Herington, Basic properties of regular closed functions, Rend. circ. Mat. Palermo, 27(1978), 20-28.
- [7] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math., 12(1991), 5-13.
- [8]G.D.Maio,S-closed spaces,S-sets and S-ontinuous
- [9] A.S. Mashhour, A.A. Allam, F.S. Mahamoud and F.H.Khedr, On supra topological spaces, Indian J.Pure and Appl. Math. No. 4, 14 (1983), 502 510.
- [10]T.Noiri and G.D.Maio, properties of acompact spaces, Rend. Circ. Mat. Palermo. Ser(II), (1998), 359-369.
- [11] O.R. Sayed and Takashi Noiri, on supra b open sets and supra b -Continuity on topological spaces, European Journal of pure and applied Mathematics, 3(2) (2010), 295 - 302.
- [12] M.Trinita Pricilla and I. Arockiarani, $g^{\mu}b$ Homeomorphisms in Supra Topological spaces, International Journal for Trauma and addiction professionals, Vol.2, No.I, June 2012.
- [13]M.Trinita Pricilla and I. Arockiarani, "on supra T-closed sets", International journal of Mathematical Archive, 2(8)(2011)1-5.